/******************************************************************************
*
* Copyright(c) 2009-2014 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "../efuse.h"
#include "../base.h"
#include "../regd.h"
#include "../cam.h"
#include "../ps.h"
#include "../pci.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "dm.h"
#include "../rtl8723com/dm_common.h"
#include "fw.h"
#include "../rtl8723com/fw_common.h"
#include "led.h"
#include "hw.h"
#include "pwrseq.h"
#include "../btcoexist/rtl_btc.h"
#define LLT_CONFIG 5
static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
while (skb_queue_len(&ring->queue)) {
struct rtl_tx_desc *entry = &ring->desc[ring->idx];
struct sk_buff *skb = __skb_dequeue(&ring->queue);
pci_unmap_single(rtlpci->pdev,
rtlpriv->cfg->ops->get_desc(
(u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
skb->len, PCI_DMA_TODEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
}
static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
u8 set_bits, u8 clear_bits)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpci->reg_bcn_ctrl_val |= set_bits;
rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
}
static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte &= ~(BIT(0));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 tmp1byte;
tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
tmp1byte |= BIT(1);
rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
}
static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(1));
}
static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw)
{
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(1), 0);
}
static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val,
bool need_turn_off_ckk)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool support_remote_wake_up;
u32 count = 0, isr_regaddr, content;
bool schedule_timer = need_turn_off_ckk;
rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
(u8 *)(&support_remote_wake_up));
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
while (1) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (rtlhal->fw_clk_change_in_progress) {
while (rtlhal->fw_clk_change_in_progress) {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
count++;
udelay(100);
if (count > 1000)
return;
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
}
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
break;
}
}
if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
if (FW_PS_IS_ACK(rpwm_val)) {
isr_regaddr = REG_HISR;
content = rtl_read_dword(rtlpriv, isr_regaddr);
while (!(content & IMR_CPWM) && (count < 500)) {
udelay(50);
count++;
content = rtl_read_dword(rtlpriv, isr_regaddr);
}
if (content & IMR_CPWM) {
rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
"Receive CPWM INT!!! Set "
"pHalData->FwPSState = %X\n",
rtlhal->fw_ps_state);
}
}
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
} else {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
}
}
static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring;
enum rf_pwrstate rtstate;
bool schedule_timer = false;
u8 queue;
if (!rtlhal->fw_ready)
return;
if (!rtlpriv->psc.fw_current_inpsmode)
return;
if (!rtlhal->allow_sw_to_change_hwclc)
return;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
return;
for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
ring = &rtlpci->tx_ring[queue];
if (skb_queue_len(&ring->queue)) {
schedule_timer = true;
break;
}
}
if (schedule_timer) {
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
return;
}
if (FW_PS_STATE(rtlhal->fw_ps_state) !=
FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
if (!rtlhal->fw_clk_change_in_progress) {
rtlhal->fw_clk_change_in_progress = true;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
rtl_write_word(rtlpriv, REG_HISR, 0x0100);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
rtlhal->fw_clk_change_in_progress = false;
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
} else {
spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
mod_timer(&rtlpriv->works.fw_clockoff_timer,
jiffies + MSECS(10));
}
}
}
static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw)
{
u8 rpwm_val = 0;
rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
_rtl8723be_set_fw_clock_on(hw, rpwm_val, true);
}
static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = false;
u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
if (ppsc->low_power_enable) {
rpwm_val = (FW_PS_STATE_ALL_ON_88E | FW_PS_ACK);/* RF on */
_rtl8723be_set_fw_clock_on(hw, rpwm_val, false);
rtlhal->allow_sw_to_change_hwclc = false;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
} else {
rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&fw_pwrmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
}
}
static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool fw_current_inps = true;
u8 rpwm_val;
if (ppsc->low_power_enable) {
rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlhal->allow_sw_to_change_hwclc = true;
_rtl8723be_set_fw_clock_off(hw, rpwm_val);
} else {
rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
(u8 *)(&fw_current_inps));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
(u8 *)(&ppsc->fwctrl_psmode));
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
(u8 *)(&rpwm_val));
}
}
void rtl8723be_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
switch (variable) {
case HW_VAR_RCR:
*((u32 *)(val)) = rtlpci->receive_config;
break;
case HW_VAR_RF_STATE:
*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
break;
case HW_VAR_FWLPS_RF_ON: {
enum rf_pwrstate rfstate;
u32 val_rcr;
rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
(u8 *)(&rfstate));
if (rfstate == ERFOFF) {
*((bool *)(val)) = true;
} else {
val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
val_rcr &= 0x00070000;
if (val_rcr)
*((bool *)(val)) = false;
else
*((bool *)(val)) = true;
}
break; }
case HW_VAR_FW_PSMODE_STATUS:
*((bool *)(val)) = ppsc->fw_current_inpsmode;
break;
case HW_VAR_CORRECT_TSF: {
u64 tsf;
u32 *ptsf_low = (u32 *)&tsf;
u32 *ptsf_high = ((u32 *)&tsf) + 1;
*ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
*ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
*((u64 *)(val)) = tsf;
break; }
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n", variable);
break;
}
}
void rtl8723be_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
u8 idx;
switch (variable) {
case HW_VAR_ETHER_ADDR:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
break;
case HW_VAR_BASIC_RATE: {
u16 rate_cfg = ((u16 *)val)[0];
u8 rate_index = 0;
rate_cfg = rate_cfg & 0x15f;
rate_cfg |= 0x01;
rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff);
while (rate_cfg > 0x1) {
rate_cfg = (rate_cfg >> 1);
rate_index++;
}
rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
break; }
case HW_VAR_BSSID:
for (idx = 0; idx < ETH_ALEN; idx++)
rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
break;
case HW_VAR_SIFS:
rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
if (!mac->ht_enable)
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
else
rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
*((u16 *)val));
break;
case HW_VAR_SLOT_TIME: {
u8 e_aci;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"HW_VAR_SLOT_TIME %x\n", val[0]);
rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
(u8 *)(&e_aci));
}
break; }
case HW_VAR_ACK_PREAMBLE: {
u8 reg_tmp;
u8 short_preamble = (bool) (*(u8 *)val);
reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL + 2);
if (short_preamble) {
reg_tmp |= 0x02;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
} else {
reg_tmp &= 0xFD;
rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
}
break; }
case HW_VAR_WPA_CONFIG:
rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *)val));
break;
case HW_VAR_AMPDU_MIN_SPACE: {
u8 min_spacing_to_set;
u8 sec_min_space;
min_spacing_to_set = *((u8 *)val);
if (min_spacing_to_set <= 7) {
sec_min_space = 0;
if (min_spacing_to_set < sec_min_space)
min_spacing_to_set = sec_min_space;
mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
min_spacing_to_set);
*val = min_spacing_to_set;
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
}
break; }
case HW_VAR_SHORTGI_DENSITY: {
u8 density_to_set;
density_to_set = *((u8 *)val);
mac->min_space_cfg |= (density_to_set << 3);
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_SHORTGI_DENSITY: %#x\n",
mac->min_space_cfg);
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
mac->min_space_cfg);
break; }
case HW_VAR_AMPDU_FACTOR: {
u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
u8 factor_toset;
u8 *p_regtoset = NULL;
u8 index = 0;
p_regtoset = regtoset_normal;
factor_toset = *((u8 *)val);
if (factor_toset <= 3) {
factor_toset = (1 << (factor_toset + 2));
if (factor_toset > 0xf)
factor_toset = 0xf;
for (index = 0; index < 4; index++) {
if ((p_regtoset[index] & 0xf0) >
(factor_toset << 4))
p_regtoset[index] =
(p_regtoset[index] & 0x0f) |
(factor_toset << 4);
if ((p_regtoset[index] & 0x0f) > factor_toset)
p_regtoset[index] =
(p_regtoset[index] & 0xf0) |
(factor_toset);
rtl_write_byte(rtlpriv,
(REG_AGGLEN_LMT + index),
p_regtoset[index]);
}
RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
"Set HW_VAR_AMPDU_FACTOR: %#x\n",
factor_toset);
}
break; }
case HW_VAR_AC_PARAM: {
u8 e_aci = *((u8 *)val);
rtl8723_dm_init_edca_turbo(hw);
if (rtlpci->acm_method != EACMWAY2_SW)
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
(u8 *)(&e_aci));
break; }
case HW_VAR_ACM_CTRL: {
u8 e_aci = *((u8 *)val);
union aci_aifsn *p_aci_aifsn =
(union aci_aifsn *)(&(mac->ac[0].aifs));
u8 acm = p_aci_aifsn->f.acm;
u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
acm_ctrl =
acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
if (acm) {
switch (e_aci) {
case AC0_BE:
acm_ctrl |= ACMHW_BEQEN;
break;
case AC2_VI:
acm_ctrl |= ACMHW_VIQEN;
break;
case AC3_VO:
acm_ctrl |= ACMHW_VOQEN;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"HW_VAR_ACM_CTRL acm set "
"failed: eACI is %d\n", acm);
break;
}
} else {
switch (e_aci) {
case AC0_BE:
acm_ctrl &= (~ACMHW_BEQEN);
break;
case AC2_VI:
acm_ctrl &= (~ACMHW_VIQEN);
break;
case AC3_VO:
acm_ctrl &= (~ACMHW_BEQEN);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process\n");
break;
}
}
RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
"SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
"Write 0x%X\n", acm_ctrl);
rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
break; }
case HW_VAR_RCR:
rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
rtlpci->receive_config = ((u32 *)(val))[0];
break;
case HW_VAR_RETRY_LIMIT: {
u8 retry_limit = ((u8 *)(val))[0];
rtl_write_word(rtlpriv, REG_RL,
retry_limit << RETRY_LIMIT_SHORT_SHIFT |
retry_limit << RETRY_LIMIT_LONG_SHIFT);
break; }
case HW_VAR_DUAL_TSF_RST:
rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
break;
case HW_VAR_EFUSE_BYTES:
rtlefuse->efuse_usedbytes = *((u16 *)val);
break;
case HW_VAR_EFUSE_USAGE:
rtlefuse->efuse_usedpercentage = *((u8 *)val);
break;
case HW_VAR_IO_CMD:
rtl8723be_phy_set_io_cmd(hw, (*(enum io_type *)val));
break;
case HW_VAR_SET_RPWM: {
u8 rpwm_val;
rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
udelay(1);
if (rpwm_val & BIT(7)) {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, (*(u8 *)val));
} else {
rtl_write_byte(rtlpriv, REG_PCIE_HRPWM,
((*(u8 *)val) | BIT(7)));
}
break; }
case HW_VAR_H2C_FW_PWRMODE:
rtl8723be_set_fw_pwrmode_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_FW_PSMODE_STATUS:
ppsc->fw_current_inpsmode = *((bool *)val);
break;
case HW_VAR_RESUME_CLK_ON:
_rtl8723be_set_fw_ps_rf_on(hw);
break;
case HW_VAR_FW_LPS_ACTION: {
bool enter_fwlps = *((bool *)val);
if (enter_fwlps)
_rtl8723be_fwlps_enter(hw);
else
_rtl8723be_fwlps_leave(hw);
break; }
case HW_VAR_H2C_FW_JOINBSSRPT: {
u8 mstatus = (*(u8 *)val);
u8 tmp_regcr, tmp_reg422, bcnvalid_reg;
u8 count = 0, dlbcn_count = 0;
bool recover = false;
if (mstatus == RT_MEDIA_CONNECT) {
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr | BIT(0)));
_rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
tmp_reg422 = rtl_read_byte(rtlpriv,
REG_FWHW_TXQ_CTRL + 2);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422 & (~BIT(6)));
if (tmp_reg422 & BIT(6))
recover = true;
do {
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_TDECTRL + 2);
rtl_write_byte(rtlpriv, REG_TDECTRL + 2,
(bcnvalid_reg | BIT(0)));
_rtl8723be_return_beacon_queue_skb(hw);
rtl8723be_set_fw_rsvdpagepkt(hw, 0);
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_TDECTRL + 2);
count = 0;
while (!(bcnvalid_reg & BIT(0)) && count < 20) {
count++;
udelay(10);
bcnvalid_reg = rtl_read_byte(rtlpriv,
REG_TDECTRL + 2);
}
dlbcn_count++;
} while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5);
if (bcnvalid_reg & BIT(0))
rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
_rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
if (recover) {
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
tmp_reg422);
}
rtl_write_byte(rtlpriv, REG_CR + 1,
(tmp_regcr & ~(BIT(0))));
}
rtl8723be_set_fw_joinbss_report_cmd(hw, (*(u8 *)val));
break; }
case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
rtl8723be_set_p2p_ps_offload_cmd(hw, (*(u8 *)val));
break;
case HW_VAR_AID: {
u16 u2btmp;
u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
u2btmp &= 0xC000;
rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
(u2btmp | mac->assoc_id));
break; }
case HW_VAR_CORRECT_TSF: {
u8 btype_ibss = ((u8 *)(val))[0];
if (btype_ibss)
_rtl8723be_stop_tx_beacon(hw);
_rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
rtl_write_dword(rtlpriv, REG_TSFTR,
(u32) (mac->tsf & 0xffffffff));
rtl_write_dword(rtlpriv, REG_TSFTR + 4,
(u32) ((mac->tsf >> 32) & 0xffffffff));
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
if (btype_ibss)
_rtl8723be_resume_tx_beacon(hw);
break; }
case HW_VAR_KEEP_ALIVE: {
u8 array[2];
array[0] = 0xff;
array[1] = *((u8 *)val);
rtl8723be_fill_h2c_cmd(hw, H2C_8723BE_KEEP_ALIVE_CTRL,
2, array);
break; }
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process %x\n",
variable);
break;
}
}
static bool _rtl8723be_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
int count = 0;
u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
_LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Failed to polling write LLT done at "
"address %d!\n", address);
status = false;
break;
}
} while (++count);
return status;
}
static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
unsigned short i;
u8 txpktbuf_bndy;
u8 maxpage;
bool status;
maxpage = 255;
txpktbuf_bndy = 245;
rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
(0x27FF0000 | txpktbuf_bndy));
rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
rtl_write_byte(rtlpriv, REG_PBP, 0x31);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
for (i = 0; i < (txpktbuf_bndy - 1); i++) {
status = _rtl8723be_llt_write(hw, i, i + 1);
if (!status)
return status;
}
status = _rtl8723be_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
if (!status)
return status;
for (i = txpktbuf_bndy; i < maxpage; i++) {
status = _rtl8723be_llt_write(hw, i, (i + 1));
if (!status)
return status;
}
status = _rtl8723be_llt_write(hw, maxpage, txpktbuf_bndy);
if (!status)
return status;
rtl_write_dword(rtlpriv, REG_RQPN, 0x80e40808);
rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x00);
return true;
}
static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_led *pled0 = &(pcipriv->ledctl.sw_led0);
if (rtlpriv->rtlhal.up_first_time)
return;
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
rtl8723be_sw_led_on(hw, pled0);
else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
rtl8723be_sw_led_on(hw, pled0);
else
rtl8723be_sw_led_off(hw, pled0);
}
static bool _rtl8723be_init_mac(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
unsigned char bytetmp;
unsigned short wordtmp;
u16 retry = 0;
bool mac_func_enable;
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
/*Auto Power Down to CHIP-off State*/
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_CR);
if (bytetmp == 0xFF)
mac_func_enable = true;
else
mac_func_enable = false;
/* HW Power on sequence */
if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
RTL8723_NIC_ENABLE_FLOW)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"init MAC Fail as power on failure\n");
return false;
}
bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_CR);
bytetmp = 0xff;
rtl_write_byte(rtlpriv, REG_CR, bytetmp);
mdelay(2);
bytetmp = rtl_read_byte(rtlpriv, REG_HWSEQ_CTRL);
bytetmp |= 0x7f;
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp);
mdelay(2);
bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CFG + 3);
if (bytetmp & BIT(0)) {
bytetmp = rtl_read_byte(rtlpriv, 0x7c);
bytetmp |= BIT(6);
rtl_write_byte(rtlpriv, 0x7c, bytetmp);
}
bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
bytetmp |= BIT(3);
rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1);
bytetmp &= ~BIT(4);
rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp);
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+3);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+3, bytetmp | 0x77);
rtl_write_word(rtlpriv, REG_CR, 0x2ff);
if (!mac_func_enable) {
if (!_rtl8723be_llt_table_init(hw))
return false;
}
rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
/* Enable FW Beamformer Interrupt */
bytetmp = rtl_read_byte(rtlpriv, REG_FWIMR + 3);
rtl_write_byte(rtlpriv, REG_FWIMR + 3, bytetmp | BIT(6));
wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
wordtmp &= 0xf;
wordtmp |= 0xF5B1;
rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF);
rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
rtl_write_byte(rtlpriv, 0x4d0, 0x0);
rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_MGQ_DESA,
(u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VOQ_DESA,
(u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_VIQ_DESA,
(u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BEQ_DESA,
(u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_BKQ_DESA,
(u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_HQ_DESA,
(u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
DMA_BIT_MASK(32));
rtl_write_dword(rtlpriv, REG_RX_DESA,
(u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
DMA_BIT_MASK(32));
bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3);
rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0x77);
rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
rtl_write_byte(rtlpriv, REG_SECONDARY_CCA_CTRL, 0x3);
do {
retry++;
bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
} while ((retry < 200) && (bytetmp & BIT(7)));
_rtl8723be_gen_refresh_led_state(hw);
rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
bytetmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, bytetmp & ~BIT(2));
return true;
}
static void _rtl8723be_hw_configure(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 reg_bw_opmode;
u32 reg_ratr, reg_prsr;
reg_bw_opmode = BW_OPMODE_20MHZ;
reg_ratr = RATE_ALL_CCK | RATE_ALL_OFDM_AG |
RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
}
static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
rtl_write_byte(rtlpriv, 0x34b, 0x93);
rtl_write_word(rtlpriv, 0x350, 0x870c);
rtl_write_byte(rtlpriv, 0x352, 0x1);
if (ppsc->support_backdoor)
rtl_write_byte(rtlpriv, 0x349, 0x1b);
else
rtl_write_byte(rtlpriv, 0x349, 0x03);
rtl_write_word(rtlpriv, 0x350, 0x2718);
rtl_write_byte(rtlpriv, 0x352, 0x1);
}
void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 sec_reg_value;
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
rtlpriv->sec.pairwise_enc_algorithm,
rtlpriv->sec.group_enc_algorithm);
if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"not open hw encryption\n");
return;
}
sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
if (rtlpriv->sec.use_defaultkey) {
sec_reg_value |= SCR_TXUSEDK;
sec_reg_value |= SCR_RXUSEDK;
}
sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n",
sec_reg_value);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
}
int rtl8723be_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
bool rtstatus = true;
int err;
u8 tmp_u1b;
unsigned long flags;
/* reenable interrupts to not interfere with other devices */
local_save_flags(flags);
local_irq_enable();
rtlpriv->rtlhal.being_init_adapter = true;
rtlpriv->intf_ops->disable_aspm(hw);
rtstatus = _rtl8723be_init_mac(hw);
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
err = 1;
goto exit;
}
tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CFG);
tmp_u1b &= 0x7F;
rtl_write_byte(rtlpriv, REG_SYS_CFG, tmp_u1b);
err = rtl8723_download_fw(hw, true);
if (err) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Failed to download FW. Init HW without FW now..\n");
err = 1;
rtlhal->fw_ready = false;
goto exit;
} else {
rtlhal->fw_ready = true;
}
rtlhal->last_hmeboxnum = 0;
rtl8723be_phy_mac_config(hw);
/* because last function modify RCR, so we update
* rcr var here, or TP will unstable for receive_config
* is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
* RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
*/
rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
rtl8723be_phy_bb_config(hw);
rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
rtl8723be_phy_rf_config(hw);
rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
RF_CHNLBW, RFREG_OFFSET_MASK);
rtlphy->rfreg_chnlval[0] &= 0xFFF03FF;
rtlphy->rfreg_chnlval[0] |= (BIT(10) | BIT(11));
rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
_rtl8723be_hw_configure(hw);
rtl_cam_reset_all_entry(hw);
rtl8723be_enable_hw_security_config(hw);
ppsc->rfpwr_state = ERFON;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
_rtl8723be_enable_aspm_back_door(hw);
rtlpriv->intf_ops->enable_aspm(hw);
rtl8723be_bt_hw_init(hw);
rtl_set_bbreg(hw, 0x64, BIT(20), 0);
rtl_set_bbreg(hw, 0x64, BIT(24), 0);
rtl_set_bbreg(hw, 0x40, BIT(4), 0);
rtl_set_bbreg(hw, 0x40, BIT(3), 1);
rtl_set_bbreg(hw, 0x944, BIT(0)|BIT(1), 0x3);
rtl_set_bbreg(hw, 0x930, 0xff, 0x77);
rtl_set_bbreg(hw, 0x38, BIT(11), 0x1);
rtl_set_bbreg(hw, 0xb2c, 0xffffffff, 0x80000000);
if (ppsc->rfpwr_state == ERFON) {
rtl8723be_dm_check_txpower_tracking(hw);
rtl8723be_phy_lc_calibrate(hw);
}
tmp_u1b = efuse_read_1byte(hw, 0x1FA);
if (!(tmp_u1b & BIT(0))) {
rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
}
if (!(tmp_u1b & BIT(4))) {
tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
tmp_u1b &= 0x0F;
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
udelay(10);
rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
}
rtl8723be_dm_init(hw);
exit:
local_irq_restore(flags);
rtlpriv->rtlhal.being_init_adapter = false;
return err;
}
static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum version_8723e version = VERSION_UNKNOWN;
u8 count = 0;
u8 value8;
u32 value32;
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0);
value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 2);
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 2, value8 | BIT(0));
value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, value8 | BIT(0));
value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
while (((value8 & BIT(0))) && (count++ < 100)) {
udelay(10);
value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
}
count = 0;
value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
while ((value8 == 0) && (count++ < 50)) {
value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
mdelay(1);
}
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1);
if ((value32 & (CHIP_8723B)) != CHIP_8723B)
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "unkown chip version\n");
else
version = (enum version_8723e) VERSION_TEST_CHIP_1T1R_8723B;
rtlphy->rf_type = RF_1T1R;
value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
if (value8 >= 0x02)
version |= BIT(3);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
"RF_2T2R" : "RF_1T1R");
return version;
}
static int _rtl8723be_set_media_status(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
rtl_write_dword(rtlpriv, REG_BCN_CTRL, 0);
RT_TRACE(rtlpriv, COMP_BEACON, DBG_LOUD,
"clear 0x550 when set HW_VAR_MEDIA_STATUS\n");
if (type == NL80211_IFTYPE_UNSPECIFIED ||
type == NL80211_IFTYPE_STATION) {
_rtl8723be_stop_tx_beacon(hw);
_rtl8723be_enable_bcn_sub_func(hw);
} else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
_rtl8723be_resume_tx_beacon(hw);
_rtl8723be_disable_bcn_sub_func(hw);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"Set HW_VAR_MEDIA_STATUS: "
"No such media status(%x).\n", type);
}
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
bt_msr |= MSR_NOLINK;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
bt_msr |= MSR_ADHOC;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
bt_msr |= MSR_INFRA;
ledaction = LED_CTL_LINK;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
bt_msr |= MSR_AP;
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Set Network type to AP!\n");
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"Network type %d not support!\n", type);
return 1;
}
rtl_write_byte(rtlpriv, (MSR), bt_msr);
rtlpriv->cfg->ops->led_control(hw, ledaction);
if ((bt_msr & 0x03) == MSR_AP)
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
else
rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
return 0;
}
void rtl8723be_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 reg_rcr = rtlpci->receive_config;
if (rtlpriv->psc.rfpwr_state != ERFON)
return;
if (check_bssid) {
reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(®_rcr));
_rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
} else if (!check_bssid) {
reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
(u8 *)(®_rcr));
}
}
int rtl8723be_set_network_type(struct ieee80211_hw *hw,
enum nl80211_iftype type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (_rtl8723be_set_media_status(hw, type))
return -EOPNOTSUPP;
if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
if (type != NL80211_IFTYPE_AP)
rtl8723be_set_check_bssid(hw, true);
} else {
rtl8723be_set_check_bssid(hw, false);
}
return 0;
}
/* don't set REG_EDCA_BE_PARAM here
* because mac80211 will send pkt when scan
*/
void rtl8723be_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl8723_dm_init_edca_turbo(hw);
switch (aci) {
case AC1_BK:
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
break;
case AC0_BE:
break;
case AC2_VI:
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
break;
case AC3_VO:
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
break;
default:
RT_ASSERT(false, "invalid aci: %d !\n", aci);
break;
}
}
void rtl8723be_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
rtlpci->irq_enabled = true;
/* there are some C2H CMDs have been sent
* before system interrupt is enabled, e.g., C2H, CPWM.
* So we need to clear all C2H events that FW has notified,
* otherwise FW won't schedule any commands anymore.
*/
rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
/*enable system interrupt*/
rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
}
void rtl8723be_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
rtlpci->irq_enabled = false;
synchronize_irq(rtlpci->pdev->irq);
}
static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 u1b_tmp;
/* Combo (PCIe + USB) Card and PCIe-MF Card */
/* 1. Run LPS WL RFOFF flow */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW);
/* 2. 0x1F[7:0] = 0 */
/* turn off RF */
rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) &&
rtlhal->fw_ready)
rtl8723be_firmware_selfreset(hw);
/* Reset MCU. Suggested by Filen. */
u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
/* g. MCUFWDL 0x80[1:0]= 0 */
/* reset MCU ready status */
rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
/* HW card disable configuration. */
rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW);
/* Reset MCU IO Wrapper */
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0))));
u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0));
/* 7. RSV_CTRL 0x1C[7:0] = 0x0E */
/* lock ISO/CLK/Power control register */
rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
}
void rtl8723be_card_disable(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
enum nl80211_iftype opmode;
mac->link_state = MAC80211_NOLINK;
opmode = NL80211_IFTYPE_UNSPECIFIED;
_rtl8723be_set_media_status(hw, opmode);
if (rtlpriv->rtlhal.driver_is_goingto_unload ||
ppsc->rfoff_reason > RF_CHANGE_BY_PS)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
_rtl8723be_poweroff_adapter(hw);
/* after power off we should do iqk again */
rtlpriv->phy.iqk_initialized = false;
}
void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw,
u32 *p_inta, u32 *p_intb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
rtl_write_dword(rtlpriv, ISR, *p_inta);
*p_intb = rtl_read_dword(rtlpriv, REG_HISRE) &
rtlpci->irq_mask[1];
rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
}
void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval, atim_window;
bcn_interval = mac->beacon_interval;
atim_window = 2; /*FIX MERGE */
rtl8723be_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
rtl_write_byte(rtlpriv, 0x606, 0x30);
rtl8723be_enable_interrupt(hw);
}
void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 bcn_interval = mac->beacon_interval;
RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
"beacon_interval:%d\n", bcn_interval);
rtl8723be_disable_interrupt(hw);
rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
rtl8723be_enable_interrupt(hw);
}
void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw,
u32 add_msr, u32 rm_msr)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
"add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
if (add_msr)
rtlpci->irq_mask[0] |= add_msr;
if (rm_msr)
rtlpci->irq_mask[0] &= (~rm_msr);
rtl8723be_disable_interrupt(hw);
rtl8723be_enable_interrupt(hw);
}
static u8 _rtl8723be_get_chnl_group(u8 chnl)
{
u8 group;
if (chnl < 3)
group = 0;
else if (chnl < 9)
group = 1;
else
group = 2;
return group;
}
static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw,
struct txpower_info_2g *pw2g,
struct txpower_info_5g *pw5g,
bool autoload_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 path, addr = EEPROM_TX_PWR_INX, group, cnt = 0;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"hal_ReadPowerValueFromPROM8723BE(): "
"PROMContent[0x%x]= 0x%x\n",
(addr + 1), hwinfo[addr + 1]);
if (0xFF == hwinfo[addr + 1]) /*YJ, add, 120316*/
autoload_fail = true;
if (autoload_fail) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"auto load fail : Use Default value!\n");
for (path = 0; path < MAX_RF_PATH; path++) {
/* 2.4G default value */
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pw2g->index_cck_base[path][group] = 0x2D;
pw2g->index_bw40_base[path][group] = 0x2D;
}
for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
if (cnt == 0) {
pw2g->bw20_diff[path][0] = 0x02;
pw2g->ofdm_diff[path][0] = 0x04;
} else {
pw2g->bw20_diff[path][cnt] = 0xFE;
pw2g->bw40_diff[path][cnt] = 0xFE;
pw2g->cck_diff[path][cnt] = 0xFE;
pw2g->ofdm_diff[path][cnt] = 0xFE;
}
}
}
return;
}
for (path = 0; path < MAX_RF_PATH; path++) {
/*2.4G default value*/
for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
pw2g->index_cck_base[path][group] = hwinfo[addr++];
if (pw2g->index_cck_base[path][group] == 0xFF)
pw2g->index_cck_base[path][group] = 0x2D;
}
for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
pw2g->index_bw40_base[path][group] = hwinfo[addr++];
if (pw2g->index_bw40_base[path][group] == 0xFF)
pw2g->index_bw40_base[path][group] = 0x2D;
}
for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
if (cnt == 0) {
pw2g->bw40_diff[path][cnt] = 0;
if (hwinfo[addr] == 0xFF) {
pw2g->bw20_diff[path][cnt] = 0x02;
} else {
pw2g->bw20_diff[path][cnt] =
(hwinfo[addr] & 0xf0) >> 4;
/*bit sign number to 8 bit sign number*/
if (pw2g->bw20_diff[path][cnt] & BIT(3))
pw2g->bw20_diff[path][cnt] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pw2g->ofdm_diff[path][cnt] = 0x04;
} else {
pw2g->ofdm_diff[path][cnt] =
(hwinfo[addr] & 0x0f);
/*bit sign number to 8 bit sign number*/
if (pw2g->ofdm_diff[path][cnt] & BIT(3))
pw2g->ofdm_diff[path][cnt] |=
0xF0;
}
pw2g->cck_diff[path][cnt] = 0;
addr++;
} else {
if (hwinfo[addr] == 0xFF) {
pw2g->bw40_diff[path][cnt] = 0xFE;
} else {
pw2g->bw40_diff[path][cnt] =
(hwinfo[addr] & 0xf0) >> 4;
if (pw2g->bw40_diff[path][cnt] & BIT(3))
pw2g->bw40_diff[path][cnt] |=
0xF0;
}
if (hwinfo[addr] == 0xFF) {
pw2g->bw20_diff[path][cnt] = 0xFE;
} else {
pw2g->bw20_diff[path][cnt] =
(hwinfo[addr] & 0x0f);
if (pw2g->bw20_diff[path][cnt] & BIT(3))
pw2g->bw20_diff[path][cnt] |=
0xF0;
}
addr++;
if (hwinfo[addr] == 0xFF) {
pw2g->ofdm_diff[path][cnt] = 0xFE;
} else {
pw2g->ofdm_diff[path][cnt] =
(hwinfo[addr] & 0xf0) >> 4;
if (pw2g->ofdm_diff[path][cnt] & BIT(3))
pw2g->ofdm_diff[path][cnt] |=
0xF0;
}
if (hwinfo[addr] == 0xFF) {
pw2g->cck_diff[path][cnt] = 0xFE;
} else {
pw2g->cck_diff[path][cnt] =
(hwinfo[addr] & 0x0f);
if (pw2g->cck_diff[path][cnt] & BIT(3))
pw2g->cck_diff[path][cnt] |=
0xF0;
}
addr++;
}
}
/*5G default value*/
for (group = 0; group < MAX_CHNL_GROUP_5G; group++) {
pw5g->index_bw40_base[path][group] = hwinfo[addr++];
if (pw5g->index_bw40_base[path][group] == 0xFF)
pw5g->index_bw40_base[path][group] = 0xFE;
}
for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
if (cnt == 0) {
pw5g->bw40_diff[path][cnt] = 0;
if (hwinfo[addr] == 0xFF) {
pw5g->bw20_diff[path][cnt] = 0;
} else {
pw5g->bw20_diff[path][0] =
(hwinfo[addr] & 0xf0) >> 4;
if (pw5g->bw20_diff[path][cnt] & BIT(3))
pw5g->bw20_diff[path][cnt] |=
0xF0;
}
if (hwinfo[addr] == 0xFF) {
pw5g->ofdm_diff[path][cnt] = 0x04;
} else {
pw5g->ofdm_diff[path][0] =
(hwinfo[addr] & 0x0f);
if (pw5g->ofdm_diff[path][cnt] & BIT(3))
pw5g->ofdm_diff[path][cnt] |=
0xF0;
}
addr++;
} else {
if (hwinfo[addr] == 0xFF) {
pw5g->bw40_diff[path][cnt] = 0xFE;
} else {
pw5g->bw40_diff[path][cnt] =
(hwinfo[addr] & 0xf0) >> 4;
if (pw5g->bw40_diff[path][cnt] & BIT(3))
pw5g->bw40_diff[path][cnt] |= 0xF0;
}
if (hwinfo[addr] == 0xFF) {
pw5g->bw20_diff[path][cnt] = 0xFE;
} else {
pw5g->bw20_diff[path][cnt] =
(hwinfo[addr] & 0x0f);
if (pw5g->bw20_diff[path][cnt] & BIT(3))
pw5g->bw20_diff[path][cnt] |= 0xF0;
}
addr++;
}
}
if (hwinfo[addr] == 0xFF) {
pw5g->ofdm_diff[path][1] = 0xFE;
pw5g->ofdm_diff[path][2] = 0xFE;
} else {
pw5g->ofdm_diff[path][1] = (hwinfo[addr] & 0xf0) >> 4;
pw5g->ofdm_diff[path][2] = (hwinfo[addr] & 0x0f);
}
addr++;
if (hwinfo[addr] == 0xFF)
pw5g->ofdm_diff[path][3] = 0xFE;
else
pw5g->ofdm_diff[path][3] = (hwinfo[addr] & 0x0f);
addr++;
for (cnt = 1; cnt < MAX_TX_COUNT; cnt++) {
if (pw5g->ofdm_diff[path][cnt] == 0xFF)
pw5g->ofdm_diff[path][cnt] = 0xFE;
else if (pw5g->ofdm_diff[path][cnt] & BIT(3))
pw5g->ofdm_diff[path][cnt] |= 0xF0;
}
}
}
static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
bool autoload_fail,
u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct txpower_info_2g pw2g;
struct txpower_info_5g pw5g;
u8 rf_path, index;
u8 i;
_rtl8723be_read_power_value_fromprom(hw, &pw2g, &pw5g, autoload_fail,
hwinfo);
for (rf_path = 0; rf_path < 2; rf_path++) {
for (i = 0; i < 14; i++) {
index = _rtl8723be_get_chnl_group(i+1);
rtlefuse->txpwrlevel_cck[rf_path][i] =
pw2g.index_cck_base[rf_path][index];
rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
pw2g.index_bw40_base[rf_path][index];
}
for (i = 0; i < MAX_TX_COUNT; i++) {
rtlefuse->txpwr_ht20diff[rf_path][i] =
pw2g.bw20_diff[rf_path][i];
rtlefuse->txpwr_ht40diff[rf_path][i] =
pw2g.bw40_diff[rf_path][i];
rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
pw2g.ofdm_diff[rf_path][i];
}
for (i = 0; i < 14; i++) {
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"RF(%d)-Ch(%d) [CCK / HT40_1S ] = "
"[0x%x / 0x%x ]\n", rf_path, i,
rtlefuse->txpwrlevel_cck[rf_path][i],
rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
}
}
if (!autoload_fail)
rtlefuse->eeprom_thermalmeter =
hwinfo[EEPROM_THERMAL_METER_88E];
else
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
rtlefuse->apk_thermalmeterignore = true;
rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
}
rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
if (!autoload_fail) {
rtlefuse->eeprom_regulatory =
hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/
if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
rtlefuse->eeprom_regulatory = 0;
} else {
rtlefuse->eeprom_regulatory = 0;
}
RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
}
static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw,
bool pseudo_test)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u16 i, usvalue;
u8 hwinfo[HWSET_MAX_SIZE];
u16 eeprom_id;
bool is_toshiba_smid1 = false;
bool is_toshiba_smid2 = false;
bool is_samsung_smid = false;
bool is_lenovo_smid = false;
u16 toshiba_smid1[] = {
0x6151, 0x6152, 0x6154, 0x6155, 0x6177, 0x6178, 0x6179, 0x6180,
0x7151, 0x7152, 0x7154, 0x7155, 0x7177, 0x7178, 0x7179, 0x7180,
0x8151, 0x8152, 0x8154, 0x8155, 0x8181, 0x8182, 0x8184, 0x8185,
0x9151, 0x9152, 0x9154, 0x9155, 0x9181, 0x9182, 0x9184, 0x9185
};
u16 toshiba_smid2[] = {
0x6181, 0x6184, 0x6185, 0x7181, 0x7182, 0x7184, 0x7185, 0x8181,
0x8182, 0x8184, 0x8185, 0x9181, 0x9182, 0x9184, 0x9185
};
u16 samsung_smid[] = {
0x6191, 0x6192, 0x6193, 0x7191, 0x7192, 0x7193, 0x8191, 0x8192,
0x8193, 0x9191, 0x9192, 0x9193
};
u16 lenovo_smid[] = {
0x8195, 0x9195, 0x7194, 0x8200, 0x8201, 0x8202, 0x9199, 0x9200
};
if (pseudo_test) {
/* needs to be added */
return;
}
if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
rtl_efuse_shadow_map_update(hw);
memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
HWSET_MAX_SIZE);
} else if (rtlefuse->epromtype == EEPROM_93C46) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"RTL819X Not boot from eeprom, check it !!");
}
RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
hwinfo, HWSET_MAX_SIZE);
eeprom_id = *((u16 *)&hwinfo[0]);
if (eeprom_id != RTL8723BE_EEPROM_ID) {
RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
"EEPROM ID(%#x) is invalid!!\n", eeprom_id);
rtlefuse->autoload_failflag = true;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
}
if (rtlefuse->autoload_failflag)
return;
rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROMId = 0x%4x\n", eeprom_id);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
for (i = 0; i < 6; i += 2) {
usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
*((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "dev_addr: %pM\n",
rtlefuse->dev_addr);
/*parse xtal*/
rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_8723BE];
if (rtlefuse->crystalcap == 0xFF)
rtlefuse->crystalcap = 0x20;
_rtl8723be_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
hwinfo);
rtl8723be_read_bt_coexist_info_from_hwpg(hw,
rtlefuse->autoload_failflag,
hwinfo);
rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
rtlefuse->txpwr_fromeprom = true;
rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
"EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
/* set channel plan to world wide 13 */
rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
if (rtlhal->oem_id == RT_CID_DEFAULT) {
/* Does this one have a Toshiba SMID from group 1? */
for (i = 0; i < sizeof(toshiba_smid1) / sizeof(u16); i++) {
if (rtlefuse->eeprom_smid == toshiba_smid1[i]) {
is_toshiba_smid1 = true;
break;
}
}
/* Does this one have a Toshiba SMID from group 2? */
for (i = 0; i < sizeof(toshiba_smid2) / sizeof(u16); i++) {
if (rtlefuse->eeprom_smid == toshiba_smid2[i]) {
is_toshiba_smid2 = true;
break;
}
}
/* Does this one have a Samsung SMID? */
for (i = 0; i < sizeof(samsung_smid) / sizeof(u16); i++) {
if (rtlefuse->eeprom_smid == samsung_smid[i]) {
is_samsung_smid = true;
break;
}
}
/* Does this one have a Lenovo SMID? */
for (i = 0; i < sizeof(lenovo_smid) / sizeof(u16); i++) {
if (rtlefuse->eeprom_smid == lenovo_smid[i]) {
is_lenovo_smid = true;
break;
}
}
switch (rtlefuse->eeprom_oemid) {
case EEPROM_CID_DEFAULT:
if (rtlefuse->eeprom_did == 0x8176) {
if (rtlefuse->eeprom_svid == 0x10EC &&
is_toshiba_smid1) {
rtlhal->oem_id = RT_CID_TOSHIBA;
} else if (rtlefuse->eeprom_svid == 0x1025) {
rtlhal->oem_id = RT_CID_819X_ACER;
} else if (rtlefuse->eeprom_svid == 0x10EC &&
is_samsung_smid) {
rtlhal->oem_id = RT_CID_819X_SAMSUNG;
} else if (rtlefuse->eeprom_svid == 0x10EC &&
is_lenovo_smid) {
rtlhal->oem_id = RT_CID_819X_LENOVO;
} else if ((rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x8197) ||
(rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x9196)) {
rtlhal->oem_id = RT_CID_819X_CLEVO;
} else if ((rtlefuse->eeprom_svid == 0x1028 &&
rtlefuse->eeprom_smid == 0x8194) ||
(rtlefuse->eeprom_svid == 0x1028 &&
rtlefuse->eeprom_smid == 0x8198) ||
(rtlefuse->eeprom_svid == 0x1028 &&
rtlefuse->eeprom_smid == 0x9197) ||
(rtlefuse->eeprom_svid == 0x1028 &&
rtlefuse->eeprom_smid == 0x9198)) {
rtlhal->oem_id = RT_CID_819X_DELL;
} else if ((rtlefuse->eeprom_svid == 0x103C &&
rtlefuse->eeprom_smid == 0x1629)) {
rtlhal->oem_id = RT_CID_819X_HP;
} else if ((rtlefuse->eeprom_svid == 0x1A32 &&
rtlefuse->eeprom_smid == 0x2315)) {
rtlhal->oem_id = RT_CID_819X_QMI;
} else if ((rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x8203)) {
rtlhal->oem_id = RT_CID_819X_PRONETS;
} else if ((rtlefuse->eeprom_svid == 0x1043 &&
rtlefuse->eeprom_smid == 0x84B5)) {
rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
} else if (rtlefuse->eeprom_did == 0x8178) {
if (rtlefuse->eeprom_svid == 0x10EC &&
is_toshiba_smid2)
rtlhal->oem_id = RT_CID_TOSHIBA;
else if (rtlefuse->eeprom_svid == 0x1025)
rtlhal->oem_id = RT_CID_819X_ACER;
else if ((rtlefuse->eeprom_svid == 0x10EC &&
rtlefuse->eeprom_smid == 0x8186))
rtlhal->oem_id = RT_CID_819X_PRONETS;
else if ((rtlefuse->eeprom_svid == 0x1043 &&
rtlefuse->eeprom_smid == 0x84B6))
rtlhal->oem_id =
RT_CID_819X_EDIMAX_ASUS;
else
rtlhal->oem_id = RT_CID_DEFAULT;
} else {
rtlhal->oem_id = RT_CID_DEFAULT;
}
break;
case EEPROM_CID_TOSHIBA:
rtlhal->oem_id = RT_CID_TOSHIBA;
break;
case EEPROM_CID_CCX:
rtlhal->oem_id = RT_CID_CCX;
break;
case EEPROM_CID_QMI:
rtlhal->oem_id = RT_CID_819X_QMI;
break;
case EEPROM_CID_WHQL:
break;
default:
rtlhal->oem_id = RT_CID_DEFAULT;
break;
}
}
}
static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
pcipriv->ledctl.led_opendrain = true;
switch (rtlhal->oem_id) {
case RT_CID_819X_HP:
pcipriv->ledctl.led_opendrain = true;
break;
case RT_CID_819X_LENOVO:
case RT_CID_DEFAULT:
case RT_CID_TOSHIBA:
case RT_CID_CCX:
case RT_CID_819X_ACER:
case RT_CID_WHQL:
default:
break;
}
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
"RT Customized ID: 0x%02X\n", rtlhal->oem_id);
}
void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_u1b;
rtlhal->version = _rtl8723be_read_chip_version(hw);
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
if (tmp_u1b & BIT(4)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
rtlefuse->epromtype = EEPROM_93C46;
} else {
RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
}
if (tmp_u1b & BIT(5)) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
rtlefuse->autoload_failflag = false;
_rtl8723be_read_adapter_info(hw, false);
} else {
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
}
_rtl8723be_hal_customized_behavior(hw);
}
static void rtl8723be_update_hal_rate_table(struct ieee80211_hw *hw,
struct ieee80211_sta *sta)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u32 ratr_value;
u8 ratr_index = 0;
u8 nmode = mac->ht_enable;
u8 mimo_ps = IEEE80211_SMPS_OFF;
u16 shortgi_rate;
u32 tmp_ratr_value;
u8 curtxbw_40mhz = mac->bw_40;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = mac->mode;
if (rtlhal->current_bandtype == BAND_ON_5G)
ratr_value = sta->supp_rates[1] << 4;
else
ratr_value = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_value = 0xfff;
ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
if (ratr_value & 0x0000000c)
ratr_value &= 0x0000000d;
else
ratr_value &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_value &= 0x00000FF5;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
nmode = 1;
if (mimo_ps == IEEE80211_SMPS_STATIC) {
ratr_value &= 0x0007F005;
} else {
u32 ratr_mask;
if (get_rf_type(rtlphy) == RF_1T2R ||
get_rf_type(rtlphy) == RF_1T1R)
ratr_mask = 0x000ff005;
else
ratr_mask = 0x0f0ff005;
ratr_value &= ratr_mask;
}
break;
default:
if (rtlphy->rf_type == RF_1T2R)
ratr_value &= 0x000ff0ff;
else
ratr_value &= 0x0f0ff0ff;
break;
}
if ((rtlpriv->btcoexist.bt_coexistence) &&
(rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) &&
(rtlpriv->btcoexist.bt_cur_state) &&
(rtlpriv->btcoexist.bt_ant_isolation) &&
((rtlpriv->btcoexist.bt_service == BT_SCO) ||
(rtlpriv->btcoexist.bt_service == BT_BUSY)))
ratr_value &= 0x0fffcfc0;
else
ratr_value &= 0x0FFFFFFF;
if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz))) {
ratr_value |= 0x10000000;
tmp_ratr_value = (ratr_value >> 12);
for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
if ((1 << shortgi_rate) & tmp_ratr_value)
break;
}
shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
(shortgi_rate << 4) | (shortgi_rate);
}
rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
}
static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw,
u8 rate_index)
{
u8 ret = 0;
switch (rate_index) {
case RATR_INX_WIRELESS_NGB:
ret = 1;
break;
case RATR_INX_WIRELESS_N:
case RATR_INX_WIRELESS_NG:
ret = 5;
break;
case RATR_INX_WIRELESS_NB:
ret = 3;
break;
case RATR_INX_WIRELESS_GB:
ret = 6;
break;
case RATR_INX_WIRELESS_G:
ret = 7;
break;
case RATR_INX_WIRELESS_B:
ret = 8;
break;
default:
ret = 0;
break;
}
return ret;
}
static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_sta_info *sta_entry = NULL;
u32 ratr_bitmap;
u8 ratr_index;
u8 curtxbw_40mhz = (sta->ht_cap.cap &
IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1 : 0;
u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
1 : 0;
enum wireless_mode wirelessmode = 0;
bool shortgi = false;
u8 rate_mask[7];
u8 macid = 0;
u8 mimo_ps = IEEE80211_SMPS_OFF;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
wirelessmode = sta_entry->wireless_mode;
if (mac->opmode == NL80211_IFTYPE_STATION ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
curtxbw_40mhz = mac->bw_40;
else if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_ADHOC)
macid = sta->aid + 1;
ratr_bitmap = sta->supp_rates[0];
if (mac->opmode == NL80211_IFTYPE_ADHOC)
ratr_bitmap = 0xfff;
ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
sta->ht_cap.mcs.rx_mask[0] << 12);
switch (wirelessmode) {
case WIRELESS_MODE_B:
ratr_index = RATR_INX_WIRELESS_B;
if (ratr_bitmap & 0x0000000c)
ratr_bitmap &= 0x0000000d;
else
ratr_bitmap &= 0x0000000f;
break;
case WIRELESS_MODE_G:
ratr_index = RATR_INX_WIRELESS_GB;
if (rssi_level == 1)
ratr_bitmap &= 0x00000f00;
else if (rssi_level == 2)
ratr_bitmap &= 0x00000ff0;
else
ratr_bitmap &= 0x00000ff5;
break;
case WIRELESS_MODE_A:
ratr_index = RATR_INX_WIRELESS_A;
ratr_bitmap &= 0x00000ff0;
break;
case WIRELESS_MODE_N_24G:
case WIRELESS_MODE_N_5G:
ratr_index = RATR_INX_WIRELESS_NGB;
if (mimo_ps == IEEE80211_SMPS_STATIC ||
mimo_ps == IEEE80211_SMPS_DYNAMIC) {
if (rssi_level == 1)
ratr_bitmap &= 0x00070000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0007f000;
else
ratr_bitmap &= 0x0007f005;
} else {
if (rtlphy->rf_type == RF_1T1R) {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x000f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x000ff000;
else
ratr_bitmap &= 0x000ff005;
}
} else {
if (curtxbw_40mhz) {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff015;
} else {
if (rssi_level == 1)
ratr_bitmap &= 0x0f8f0000;
else if (rssi_level == 2)
ratr_bitmap &= 0x0f8ff000;
else
ratr_bitmap &= 0x0f8ff005;
}
}
}
if ((curtxbw_40mhz && curshortgi_40mhz) ||
(!curtxbw_40mhz && curshortgi_20mhz)) {
if (macid == 0)
shortgi = true;
else if (macid == 1)
shortgi = false;
}
break;
default:
ratr_index = RATR_INX_WIRELESS_NGB;
if (rtlphy->rf_type == RF_1T2R)
ratr_bitmap &= 0x000ff0ff;
else
ratr_bitmap &= 0x0f0ff0ff;
break;
}
sta_entry->ratr_index = ratr_index;
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"ratr_bitmap :%x\n", ratr_bitmap);
*(u32 *)&rate_mask = EF4BYTE((ratr_bitmap & 0x0fffffff) |
(ratr_index << 28));
rate_mask[0] = macid;
rate_mask[1] = _rtl8723be_mrate_idx_to_arfr_id(hw, ratr_index) |
(shortgi ? 0x80 : 0x00);
rate_mask[2] = curtxbw_40mhz;
/* if (prox_priv->proxim_modeinfo->power_output > 0)
* rate_mask[2] |= BIT(6);
*/
rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff);
rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8);
rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16);
rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24);
RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
"Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n",
ratr_index, ratr_bitmap,
rate_mask[0], rate_mask[1],
rate_mask[2], rate_mask[3],
rate_mask[4], rate_mask[5],
rate_mask[6]);
rtl8723be_fill_h2c_cmd(hw, H2C_8723BE_RA_MASK, 7, rate_mask);
_rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
}
void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u8 rssi_level)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->dm.useramask)
rtl8723be_update_hal_rate_mask(hw, sta, rssi_level);
else
rtl8723be_update_hal_rate_table(hw, sta);
}
void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 sifs_timer;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
(u8 *)&mac->slot_time);
if (!mac->ht_enable)
sifs_timer = 0x0a0a;
else
sifs_timer = 0x0e0e;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
}
bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_phy *rtlphy = &(rtlpriv->phy);
enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
u8 u1tmp;
bool actuallyset = false;
if (rtlpriv->rtlhal.being_init_adapter)
return false;
if (ppsc->swrf_processing)
return false;
spin_lock(&rtlpriv->locks.rf_ps_lock);
if (ppsc->rfchange_inprogress) {
spin_unlock(&rtlpriv->locks.rf_ps_lock);
return false;
} else {
ppsc->rfchange_inprogress = true;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
cur_rfstate = ppsc->rfpwr_state;
rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2,
rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2) & ~(BIT(1)));
u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2);
if (rtlphy->polarity_ctl)
e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON;
else
e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF;
if (ppsc->hwradiooff &&
(e_rfpowerstate_toset == ERFON)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio ON, RF ON\n");
e_rfpowerstate_toset = ERFON;
ppsc->hwradiooff = false;
actuallyset = true;
} else if (!ppsc->hwradiooff &&
(e_rfpowerstate_toset == ERFOFF)) {
RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
"GPIOChangeRF - HW Radio OFF, RF OFF\n");
e_rfpowerstate_toset = ERFOFF;
ppsc->hwradiooff = true;
actuallyset = true;
}
if (actuallyset) {
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
} else {
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
spin_lock(&rtlpriv->locks.rf_ps_lock);
ppsc->rfchange_inprogress = false;
spin_unlock(&rtlpriv->locks.rf_ps_lock);
}
*valid = 1;
return !ppsc->hwradiooff;
}
void rtl8723be_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"switch case not process\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
RT_TRACE(rtlpriv, COMP_SEC,
DBG_EMERG,
"Can not find free"
" hw security cam "
"entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry, entry_id is %d\n",
entry_id);
if (mac->opmode == NL80211_IFTYPE_AP)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[key_index]);
} else {
RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
bool auto_load_fail, u8 *hwinfo)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value;
u32 tmpu_32;
if (!auto_load_fail) {
tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL);
if (tmpu_32 & BIT(18))
rtlpriv->btcoexist.btc_info.btcoexist = 1;
else
rtlpriv->btcoexist.btc_info.btcoexist = 0;
value = hwinfo[RF_OPTION4];
rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
rtlpriv->btcoexist.btc_info.ant_num = (value & 0x1);
} else {
rtlpriv->btcoexist.btc_info.btcoexist = 0;
rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
rtlpriv->btcoexist.btc_info.ant_num = ANT_X2;
}
}
void rtl8723be_bt_reg_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* 0:Low, 1:High, 2:From Efuse. */
rtlpriv->btcoexist.reg_bt_iso = 2;
/* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
rtlpriv->btcoexist.reg_bt_sco = 3;
/* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
rtlpriv->btcoexist.reg_bt_sco = 0;
}
void rtl8723be_bt_hw_init(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv);
}
void rtl8723be_suspend(struct ieee80211_hw *hw)
{
}
void rtl8723be_resume(struct ieee80211_hw *hw)
{
}
/* Turn on AAP (RCR:bit 0) for promicuous mode. */
void rtl8723be_allow_all_destaddr(struct ieee80211_hw *hw, bool allow_all_da,
bool write_into_reg)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
if (allow_all_da) /* Set BIT0 */
rtlpci->receive_config |= RCR_AAP;
else /* Clear BIT0 */
rtlpci->receive_config &= ~RCR_AAP;
if (write_into_reg)
rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
RT_TRACE(rtlpriv, COMP_TURBO | COMP_INIT, DBG_LOUD,
"receive_config = 0x%08X, write_into_reg =%d\n",
rtlpci->receive_config, write_into_reg);
}