/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include <linux/etherdevice.h>
#include <net/mac80211.h>
#include "mvm.h"
#include "iwl-eeprom-parse.h"
#include "fw-api-scan.h"
#define IWL_PLCP_QUIET_THRESH 1
#define IWL_ACTIVE_QUIET_TIME 10
#define IWL_DENSE_EBS_SCAN_RATIO 5
#define IWL_SPARSE_EBS_SCAN_RATIO 1
struct iwl_mvm_scan_params {
u32 max_out_time;
u32 suspend_time;
bool passive_fragmented;
u32 n_channels;
u16 delay;
int n_ssids;
struct cfg80211_ssid *ssids;
struct ieee80211_channel **channels;
u16 interval; /* interval between scans (in secs) */
u32 flags;
u8 *mac_addr;
u8 *mac_addr_mask;
bool no_cck;
bool pass_all;
int n_match_sets;
struct iwl_scan_probe_req preq;
struct cfg80211_match_set *match_sets;
struct _dwell {
u16 passive;
u16 active;
u16 fragmented;
} dwell[IEEE80211_NUM_BANDS];
struct {
u8 iterations;
u8 full_scan_mul; /* not used for UMAC */
} schedule[2];
};
enum iwl_umac_scan_uid_type {
IWL_UMAC_SCAN_UID_REG_SCAN = BIT(0),
IWL_UMAC_SCAN_UID_SCHED_SCAN = BIT(1),
IWL_UMAC_SCAN_UID_ALL = IWL_UMAC_SCAN_UID_REG_SCAN |
IWL_UMAC_SCAN_UID_SCHED_SCAN,
};
static int iwl_umac_scan_stop(struct iwl_mvm *mvm,
enum iwl_umac_scan_uid_type type, bool notify);
static u8 iwl_mvm_scan_rx_ant(struct iwl_mvm *mvm)
{
if (mvm->scan_rx_ant != ANT_NONE)
return mvm->scan_rx_ant;
return iwl_mvm_get_valid_rx_ant(mvm);
}
static inline __le16 iwl_mvm_scan_rx_chain(struct iwl_mvm *mvm)
{
u16 rx_chain;
u8 rx_ant;
rx_ant = iwl_mvm_scan_rx_ant(mvm);
rx_chain = rx_ant << PHY_RX_CHAIN_VALID_POS;
rx_chain |= rx_ant << PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
rx_chain |= rx_ant << PHY_RX_CHAIN_FORCE_SEL_POS;
rx_chain |= 0x1 << PHY_RX_CHAIN_DRIVER_FORCE_POS;
return cpu_to_le16(rx_chain);
}
static __le32 iwl_mvm_scan_rxon_flags(enum ieee80211_band band)
{
if (band == IEEE80211_BAND_2GHZ)
return cpu_to_le32(PHY_BAND_24);
else
return cpu_to_le32(PHY_BAND_5);
}
static inline __le32
iwl_mvm_scan_rate_n_flags(struct iwl_mvm *mvm, enum ieee80211_band band,
bool no_cck)
{
u32 tx_ant;
mvm->scan_last_antenna_idx =
iwl_mvm_next_antenna(mvm, iwl_mvm_get_valid_tx_ant(mvm),
mvm->scan_last_antenna_idx);
tx_ant = BIT(mvm->scan_last_antenna_idx) << RATE_MCS_ANT_POS;
if (band == IEEE80211_BAND_2GHZ && !no_cck)
return cpu_to_le32(IWL_RATE_1M_PLCP | RATE_MCS_CCK_MSK |
tx_ant);
else
return cpu_to_le32(IWL_RATE_6M_PLCP | tx_ant);
}
/*
* If req->n_ssids > 0, it means we should do an active scan.
* In case of active scan w/o directed scan, we receive a zero-length SSID
* just to notify that this scan is active and not passive.
* In order to notify the FW of the number of SSIDs we wish to scan (including
* the zero-length one), we need to set the corresponding bits in chan->type,
* one for each SSID, and set the active bit (first). If the first SSID is
* already included in the probe template, so we need to set only
* req->n_ssids - 1 bits in addition to the first bit.
*/
static u16 iwl_mvm_get_active_dwell(struct iwl_mvm *mvm,
enum ieee80211_band band, int n_ssids)
{
if (mvm->fw->ucode_capa.api[0] & IWL_UCODE_TLV_API_BASIC_DWELL)
return 10;
if (band == IEEE80211_BAND_2GHZ)
return 20 + 3 * (n_ssids + 1);
return 10 + 2 * (n_ssids + 1);
}
static u16 iwl_mvm_get_passive_dwell(struct iwl_mvm *mvm,
enum ieee80211_band band)
{
if (mvm->fw->ucode_capa.api[0] & IWL_UCODE_TLV_API_BASIC_DWELL)
return 110;
return band == IEEE80211_BAND_2GHZ ? 100 + 20 : 100 + 10;
}
static void iwl_mvm_scan_condition_iterator(void *data, u8 *mac,
struct ieee80211_vif *vif)
{
struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif);
int *global_cnt = data;
if (vif->type != NL80211_IFTYPE_P2P_DEVICE && mvmvif->phy_ctxt &&
mvmvif->phy_ctxt->id < MAX_PHYS)
*global_cnt += 1;
}
static void iwl_mvm_scan_calc_dwell(struct iwl_mvm *mvm,
struct ieee80211_vif *vif,
struct iwl_mvm_scan_params *params)
{
int global_cnt = 0;
enum ieee80211_band band;
u8 frag_passive_dwell = 0;
ieee80211_iterate_active_interfaces_atomic(mvm->hw,
IEEE80211_IFACE_ITER_NORMAL,
iwl_mvm_scan_condition_iterator,
&global_cnt);
if (!global_cnt)
goto not_bound;
params->suspend_time = 30;
params->max_out_time = 120;
if (iwl_mvm_low_latency(mvm)) {
if (mvm->fw->ucode_capa.api[0] &
IWL_UCODE_TLV_API_FRAGMENTED_SCAN) {
params->suspend_time = 105;
/*
* If there is more than one active interface make
* passive scan more fragmented.
*/
frag_passive_dwell = 40;
params->max_out_time = frag_passive_dwell;
} else {
params->suspend_time = 120;
params->max_out_time = 120;
}
}
if (frag_passive_dwell && (mvm->fw->ucode_capa.api[0] &
IWL_UCODE_TLV_API_FRAGMENTED_SCAN)) {
/*
* P2P device scan should not be fragmented to avoid negative
* impact on P2P device discovery. Configure max_out_time to be
* equal to dwell time on passive channel. Take a longest
* possible value, one that corresponds to 2GHz band
*/
if (vif->type == NL80211_IFTYPE_P2P_DEVICE) {
u32 passive_dwell =
iwl_mvm_get_passive_dwell(mvm,
IEEE80211_BAND_2GHZ);
params->max_out_time = passive_dwell;
} else {
params->passive_fragmented = true;
}
}
if ((params->flags & NL80211_SCAN_FLAG_LOW_PRIORITY) &&
(params->max_out_time > 200))
params->max_out_time = 200;
not_bound:
for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
if (params->passive_fragmented)
params->dwell[band].fragmented = frag_passive_dwell;
params->dwell[band].passive = iwl_mvm_get_passive_dwell(mvm,
band);
params->dwell[band].active =
iwl_mvm_get_active_dwell(mvm, band, params->n_ssids);
}
IWL_DEBUG_SCAN(mvm,
"scan parameters: max_out_time %d, suspend_time %d, passive_fragmented %d\n",
params->max_out_time, params->suspend_time,
params->passive_fragmented);
IWL_DEBUG_SCAN(mvm,
"dwell[IEEE80211_BAND_2GHZ]: passive %d, active %d, fragmented %d\n",
params->dwell[IEEE80211_BAND_2GHZ].passive,
params->dwell[IEEE80211_BAND_2GHZ].active,
params->dwell[IEEE80211_BAND_2GHZ].fragmented);
IWL_DEBUG_SCAN(mvm,
"dwell[IEEE80211_BAND_5GHZ]: passive %d, active %d, fragmented %d\n",
params->dwell[IEEE80211_BAND_5GHZ].passive,
params->dwell[IEEE80211_BAND_5GHZ].active,
params->dwell[IEEE80211_BAND_5GHZ].fragmented);
}
static inline bool iwl_mvm_rrm_scan_needed(struct iwl_mvm *mvm)
{
/* require rrm scan whenever the fw supports it */
return mvm->fw->ucode_capa.capa[0] &
IWL_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT;
}
static int iwl_mvm_max_scan_ie_fw_cmd_room(struct iwl_mvm *mvm)
{
int max_probe_len;
max_probe_len = SCAN_OFFLOAD_PROBE_REQ_SIZE;
/* we create the 802.11 header and SSID element */
max_probe_len -= 24 + 2;
/* DS parameter set element is added on 2.4GHZ band if required */
if (iwl_mvm_rrm_scan_needed(mvm))
max_probe_len -= 3;
return max_probe_len;
}
int iwl_mvm_max_scan_ie_len(struct iwl_mvm *mvm)
{
int max_ie_len = iwl_mvm_max_scan_ie_fw_cmd_room(mvm);
/* TODO: [BUG] This function should return the maximum allowed size of
* scan IEs, however the LMAC scan api contains both 2GHZ and 5GHZ IEs
* in the same command. So the correct implementation of this function
* is just iwl_mvm_max_scan_ie_fw_cmd_room() / 2. Currently the scan
* command has only 512 bytes and it would leave us with about 240
* bytes for scan IEs, which is clearly not enough. So meanwhile
* we will report an incorrect value. This may result in a failure to
* issue a scan in unified_scan_lmac and unified_sched_scan_lmac
* functions with -ENOBUFS, if a large enough probe will be provided.
*/
return max_ie_len;
}
int iwl_mvm_rx_scan_offload_iter_complete_notif(struct iwl_mvm *mvm,
struct iwl_rx_cmd_buffer *rxb,
struct iwl_device_cmd *cmd)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_lmac_scan_complete_notif *notif = (void *)pkt->data;
IWL_DEBUG_SCAN(mvm,
"Scan offload iteration complete: status=0x%x scanned channels=%d\n",
notif->status, notif->scanned_channels);
return 0;
}
int iwl_mvm_rx_scan_offload_results(struct iwl_mvm *mvm,
struct iwl_rx_cmd_buffer *rxb,
struct iwl_device_cmd *cmd)
{
IWL_DEBUG_SCAN(mvm, "Scheduled scan results\n");
ieee80211_sched_scan_results(mvm->hw);
return 0;
}
int iwl_mvm_rx_scan_offload_complete_notif(struct iwl_mvm *mvm,
struct iwl_rx_cmd_buffer *rxb,
struct iwl_device_cmd *cmd)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_periodic_scan_complete *scan_notif = (void *)pkt->data;
bool aborted = (scan_notif->status == IWL_SCAN_OFFLOAD_ABORTED);
bool ebs_successful = (scan_notif->ebs_status == IWL_SCAN_EBS_SUCCESS);
/* scan status must be locked for proper checking */
lockdep_assert_held(&mvm->mutex);
/* We first check if we were stopping a scan, in which case we
* just clear the stopping flag. Then we check if it was a
* firmware initiated stop, in which case we need to inform
* mac80211.
* Note that we can have a stopping and a running scan
* simultaneously, but we can't have two different types of
* scans stopping or running at the same time (since LMAC
* doesn't support it).
*/
if (mvm->scan_status & IWL_MVM_SCAN_STOPPING_SCHED) {
WARN_ON_ONCE(mvm->scan_status & IWL_MVM_SCAN_STOPPING_REGULAR);
IWL_DEBUG_SCAN(mvm, "Scheduled scan %s, EBS status %s\n",
aborted ? "aborted" : "completed",
ebs_successful ? "successful" : "failed");
mvm->scan_status &= ~IWL_MVM_SCAN_STOPPING_SCHED;
} else if (mvm->scan_status & IWL_MVM_SCAN_STOPPING_REGULAR) {
IWL_DEBUG_SCAN(mvm, "Regular scan %s, EBS status %s\n",
aborted ? "aborted" : "completed",
ebs_successful ? "successful" : "failed");
mvm->scan_status &= ~IWL_MVM_SCAN_STOPPING_REGULAR;
} else if (mvm->scan_status & IWL_MVM_SCAN_SCHED) {
WARN_ON_ONCE(mvm->scan_status & IWL_MVM_SCAN_REGULAR);
IWL_DEBUG_SCAN(mvm, "Scheduled scan %s, EBS status %s (FW)\n",
aborted ? "aborted" : "completed",
ebs_successful ? "successful" : "failed");
mvm->scan_status &= ~IWL_MVM_SCAN_SCHED;
ieee80211_sched_scan_stopped(mvm->hw);
} else if (mvm->scan_status & IWL_MVM_SCAN_REGULAR) {
IWL_DEBUG_SCAN(mvm, "Regular scan %s, EBS status %s (FW)\n",
aborted ? "aborted" : "completed",
ebs_successful ? "successful" : "failed");
mvm->scan_status &= ~IWL_MVM_SCAN_REGULAR;
ieee80211_scan_completed(mvm->hw,
scan_notif->status == IWL_SCAN_OFFLOAD_ABORTED);
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
}
mvm->last_ebs_successful = ebs_successful;
return 0;
}
static int iwl_ssid_exist(u8 *ssid, u8 ssid_len, struct iwl_ssid_ie *ssid_list)
{
int i;
for (i = 0; i < PROBE_OPTION_MAX; i++) {
if (!ssid_list[i].len)
break;
if (ssid_list[i].len == ssid_len &&
!memcmp(ssid_list->ssid, ssid, ssid_len))
return i;
}
return -1;
}
/* We insert the SSIDs in an inverted order, because the FW will
* invert it back.
*/
static void iwl_scan_build_ssids(struct iwl_mvm_scan_params *params,
struct iwl_ssid_ie *ssids,
u32 *ssid_bitmap)
{
int i, j;
int index;
/*
* copy SSIDs from match list.
* iwl_config_sched_scan_profiles() uses the order of these ssids to
* config match list.
*/
for (i = 0, j = params->n_match_sets - 1;
j >= 0 && i < PROBE_OPTION_MAX;
i++, j--) {
/* skip empty SSID matchsets */
if (!params->match_sets[j].ssid.ssid_len)
continue;
ssids[i].id = WLAN_EID_SSID;
ssids[i].len = params->match_sets[j].ssid.ssid_len;
memcpy(ssids[i].ssid, params->match_sets[j].ssid.ssid,
ssids[i].len);
}
/* add SSIDs from scan SSID list */
*ssid_bitmap = 0;
for (j = params->n_ssids - 1;
j >= 0 && i < PROBE_OPTION_MAX;
i++, j--) {
index = iwl_ssid_exist(params->ssids[j].ssid,
params->ssids[j].ssid_len,
ssids);
if (index < 0) {
if (!params->ssids[j].ssid_len)
continue;
ssids[i].id = WLAN_EID_SSID;
ssids[i].len = params->ssids[j].ssid_len;
memcpy(ssids[i].ssid, params->ssids[j].ssid,
ssids[i].len);
*ssid_bitmap |= BIT(i);
} else {
*ssid_bitmap |= BIT(index);
}
}
}
int iwl_mvm_config_sched_scan_profiles(struct iwl_mvm *mvm,
struct cfg80211_sched_scan_request *req)
{
struct iwl_scan_offload_profile *profile;
struct iwl_scan_offload_profile_cfg *profile_cfg;
struct iwl_scan_offload_blacklist *blacklist;
struct iwl_host_cmd cmd = {
.id = SCAN_OFFLOAD_UPDATE_PROFILES_CMD,
.len[1] = sizeof(*profile_cfg),
.dataflags[0] = IWL_HCMD_DFL_NOCOPY,
.dataflags[1] = IWL_HCMD_DFL_NOCOPY,
};
int blacklist_len;
int i;
int ret;
if (WARN_ON(req->n_match_sets > IWL_SCAN_MAX_PROFILES))
return -EIO;
if (mvm->fw->ucode_capa.flags & IWL_UCODE_TLV_FLAGS_SHORT_BL)
blacklist_len = IWL_SCAN_SHORT_BLACKLIST_LEN;
else
blacklist_len = IWL_SCAN_MAX_BLACKLIST_LEN;
blacklist = kzalloc(sizeof(*blacklist) * blacklist_len, GFP_KERNEL);
if (!blacklist)
return -ENOMEM;
profile_cfg = kzalloc(sizeof(*profile_cfg), GFP_KERNEL);
if (!profile_cfg) {
ret = -ENOMEM;
goto free_blacklist;
}
cmd.data[0] = blacklist;
cmd.len[0] = sizeof(*blacklist) * blacklist_len;
cmd.data[1] = profile_cfg;
/* No blacklist configuration */
profile_cfg->num_profiles = req->n_match_sets;
profile_cfg->active_clients = SCAN_CLIENT_SCHED_SCAN;
profile_cfg->pass_match = SCAN_CLIENT_SCHED_SCAN;
profile_cfg->match_notify = SCAN_CLIENT_SCHED_SCAN;
if (!req->n_match_sets || !req->match_sets[0].ssid.ssid_len)
profile_cfg->any_beacon_notify = SCAN_CLIENT_SCHED_SCAN;
for (i = 0; i < req->n_match_sets; i++) {
profile = &profile_cfg->profiles[i];
profile->ssid_index = i;
/* Support any cipher and auth algorithm */
profile->unicast_cipher = 0xff;
profile->auth_alg = 0xff;
profile->network_type = IWL_NETWORK_TYPE_ANY;
profile->band_selection = IWL_SCAN_OFFLOAD_SELECT_ANY;
profile->client_bitmap = SCAN_CLIENT_SCHED_SCAN;
}
IWL_DEBUG_SCAN(mvm, "Sending scheduled scan profile config\n");
ret = iwl_mvm_send_cmd(mvm, &cmd);
kfree(profile_cfg);
free_blacklist:
kfree(blacklist);
return ret;
}
static bool iwl_mvm_scan_pass_all(struct iwl_mvm *mvm,
struct cfg80211_sched_scan_request *req)
{
if (req->n_match_sets && req->match_sets[0].ssid.ssid_len) {
IWL_DEBUG_SCAN(mvm,
"Sending scheduled scan with filtering, n_match_sets %d\n",
req->n_match_sets);
return false;
}
IWL_DEBUG_SCAN(mvm, "Sending Scheduled scan without filtering\n");
return true;
}
static int iwl_mvm_send_scan_offload_abort(struct iwl_mvm *mvm)
{
int ret;
struct iwl_host_cmd cmd = {
.id = SCAN_OFFLOAD_ABORT_CMD,
};
u32 status;
/* Exit instantly with error when device is not ready
* to receive scan abort command or it does not perform
* scheduled scan currently */
if (!mvm->scan_status)
return -EIO;
ret = iwl_mvm_send_cmd_status(mvm, &cmd, &status);
if (ret)
return ret;
if (status != CAN_ABORT_STATUS) {
/*
* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before the
* microcode has notified us that a scan is completed.
*/
IWL_DEBUG_SCAN(mvm, "SCAN OFFLOAD ABORT ret %d.\n", status);
ret = -ENOENT;
}
return ret;
}
int iwl_mvm_scan_offload_stop(struct iwl_mvm *mvm, bool notify)
{
int ret;
struct iwl_notification_wait wait_scan_done;
static const u8 scan_done_notif[] = { SCAN_OFFLOAD_COMPLETE, };
bool sched = !!(mvm->scan_status & IWL_MVM_SCAN_SCHED);
lockdep_assert_held(&mvm->mutex);
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN)
return iwl_umac_scan_stop(mvm, IWL_UMAC_SCAN_UID_SCHED_SCAN,
notify);
/* FIXME: For now we only check if no scan is set here, since
* we only support LMAC in this flow and it doesn't support
* multiple scans.
*/
if (!mvm->scan_status)
return 0;
if (iwl_mvm_is_radio_killed(mvm)) {
ret = 0;
goto out;
}
iwl_init_notification_wait(&mvm->notif_wait, &wait_scan_done,
scan_done_notif,
ARRAY_SIZE(scan_done_notif),
NULL, NULL);
ret = iwl_mvm_send_scan_offload_abort(mvm);
if (ret) {
IWL_DEBUG_SCAN(mvm, "Send stop %sscan failed %d\n",
sched ? "offloaded " : "", ret);
iwl_remove_notification(&mvm->notif_wait, &wait_scan_done);
goto out;
}
IWL_DEBUG_SCAN(mvm, "Successfully sent stop %sscan\n",
sched ? "scheduled " : "");
ret = iwl_wait_notification(&mvm->notif_wait, &wait_scan_done, 1 * HZ);
out:
/* Clear the scan status so the next scan requests will
* succeed and mark the scan as stopping, so that the Rx
* handler doesn't do anything, as the scan was stopped from
* above. Since the rx handler won't do anything now, we have
* to release the scan reference here.
*/
if (mvm->scan_status == IWL_MVM_SCAN_REGULAR)
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
if (sched) {
mvm->scan_status &= ~IWL_MVM_SCAN_SCHED;
mvm->scan_status |= IWL_MVM_SCAN_STOPPING_SCHED;
if (notify)
ieee80211_sched_scan_stopped(mvm->hw);
} else {
mvm->scan_status &= ~IWL_MVM_SCAN_REGULAR;
mvm->scan_status |= IWL_MVM_SCAN_STOPPING_REGULAR;
if (notify)
ieee80211_scan_completed(mvm->hw, true);
}
return ret;
}
static void iwl_mvm_scan_fill_tx_cmd(struct iwl_mvm *mvm,
struct iwl_scan_req_tx_cmd *tx_cmd,
bool no_cck)
{
tx_cmd[0].tx_flags = cpu_to_le32(TX_CMD_FLG_SEQ_CTL |
TX_CMD_FLG_BT_DIS);
tx_cmd[0].rate_n_flags = iwl_mvm_scan_rate_n_flags(mvm,
IEEE80211_BAND_2GHZ,
no_cck);
tx_cmd[0].sta_id = mvm->aux_sta.sta_id;
tx_cmd[1].tx_flags = cpu_to_le32(TX_CMD_FLG_SEQ_CTL |
TX_CMD_FLG_BT_DIS);
tx_cmd[1].rate_n_flags = iwl_mvm_scan_rate_n_flags(mvm,
IEEE80211_BAND_5GHZ,
no_cck);
tx_cmd[1].sta_id = mvm->aux_sta.sta_id;
}
static void
iwl_mvm_lmac_scan_cfg_channels(struct iwl_mvm *mvm,
struct ieee80211_channel **channels,
int n_channels, u32 ssid_bitmap,
struct iwl_scan_req_lmac *cmd)
{
struct iwl_scan_channel_cfg_lmac *channel_cfg = (void *)&cmd->data;
int i;
for (i = 0; i < n_channels; i++) {
channel_cfg[i].channel_num =
cpu_to_le16(channels[i]->hw_value);
channel_cfg[i].iter_count = cpu_to_le16(1);
channel_cfg[i].iter_interval = 0;
channel_cfg[i].flags =
cpu_to_le32(IWL_UNIFIED_SCAN_CHANNEL_PARTIAL |
ssid_bitmap);
}
}
static u8 *iwl_mvm_copy_and_insert_ds_elem(struct iwl_mvm *mvm, const u8 *ies,
size_t len, u8 *const pos)
{
static const u8 before_ds_params[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
WLAN_EID_EXT_SUPP_RATES,
};
size_t offs;
u8 *newpos = pos;
if (!iwl_mvm_rrm_scan_needed(mvm)) {
memcpy(newpos, ies, len);
return newpos + len;
}
offs = ieee80211_ie_split(ies, len,
before_ds_params,
ARRAY_SIZE(before_ds_params),
0);
memcpy(newpos, ies, offs);
newpos += offs;
/* Add a placeholder for DS Parameter Set element */
*newpos++ = WLAN_EID_DS_PARAMS;
*newpos++ = 1;
*newpos++ = 0;
memcpy(newpos, ies + offs, len - offs);
newpos += len - offs;
return newpos;
}
static void
iwl_mvm_build_scan_probe(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
struct ieee80211_scan_ies *ies,
struct iwl_mvm_scan_params *params)
{
struct ieee80211_mgmt *frame = (void *)params->preq.buf;
u8 *pos, *newpos;
const u8 *mac_addr = params->flags & NL80211_SCAN_FLAG_RANDOM_ADDR ?
params->mac_addr : NULL;
/*
* Unfortunately, right now the offload scan doesn't support randomising
* within the firmware, so until the firmware API is ready we implement
* it in the driver. This means that the scan iterations won't really be
* random, only when it's restarted, but at least that helps a bit.
*/
if (mac_addr)
get_random_mask_addr(frame->sa, mac_addr,
params->mac_addr_mask);
else
memcpy(frame->sa, vif->addr, ETH_ALEN);
frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
eth_broadcast_addr(frame->da);
eth_broadcast_addr(frame->bssid);
frame->seq_ctrl = 0;
pos = frame->u.probe_req.variable;
*pos++ = WLAN_EID_SSID;
*pos++ = 0;
params->preq.mac_header.offset = 0;
params->preq.mac_header.len = cpu_to_le16(24 + 2);
/* Insert ds parameter set element on 2.4 GHz band */
newpos = iwl_mvm_copy_and_insert_ds_elem(mvm,
ies->ies[IEEE80211_BAND_2GHZ],
ies->len[IEEE80211_BAND_2GHZ],
pos);
params->preq.band_data[0].offset = cpu_to_le16(pos - params->preq.buf);
params->preq.band_data[0].len = cpu_to_le16(newpos - pos);
pos = newpos;
memcpy(pos, ies->ies[IEEE80211_BAND_5GHZ],
ies->len[IEEE80211_BAND_5GHZ]);
params->preq.band_data[1].offset = cpu_to_le16(pos - params->preq.buf);
params->preq.band_data[1].len =
cpu_to_le16(ies->len[IEEE80211_BAND_5GHZ]);
pos += ies->len[IEEE80211_BAND_5GHZ];
memcpy(pos, ies->common_ies, ies->common_ie_len);
params->preq.common_data.offset = cpu_to_le16(pos - params->preq.buf);
params->preq.common_data.len = cpu_to_le16(ies->common_ie_len);
}
static void
iwl_mvm_build_generic_scan_cmd(struct iwl_mvm *mvm,
struct iwl_scan_req_lmac *cmd,
struct iwl_mvm_scan_params *params)
{
memset(cmd, 0, ksize(cmd));
cmd->active_dwell = params->dwell[IEEE80211_BAND_2GHZ].active;
cmd->passive_dwell = params->dwell[IEEE80211_BAND_2GHZ].passive;
if (params->passive_fragmented)
cmd->fragmented_dwell =
params->dwell[IEEE80211_BAND_2GHZ].fragmented;
cmd->rx_chain_select = iwl_mvm_scan_rx_chain(mvm);
cmd->max_out_time = cpu_to_le32(params->max_out_time);
cmd->suspend_time = cpu_to_le32(params->suspend_time);
cmd->scan_prio = cpu_to_le32(IWL_SCAN_PRIORITY_HIGH);
cmd->iter_num = cpu_to_le32(1);
}
static inline bool iwl_mvm_scan_fits(struct iwl_mvm *mvm, int n_ssids,
struct ieee80211_scan_ies *ies,
int n_channels)
{
return ((n_ssids <= PROBE_OPTION_MAX) &&
(n_channels <= mvm->fw->ucode_capa.n_scan_channels) &
(ies->common_ie_len +
ies->len[NL80211_BAND_2GHZ] +
ies->len[NL80211_BAND_5GHZ] <=
iwl_mvm_max_scan_ie_fw_cmd_room(mvm)));
}
static inline bool iwl_mvm_scan_use_ebs(struct iwl_mvm *mvm, int n_iterations)
{
const struct iwl_ucode_capabilities *capa = &mvm->fw->ucode_capa;
/* We can only use EBS if:
* 1. the feature is supported;
* 2. the last EBS was successful;
* 3. if only single scan, the single scan EBS API is supported.
*/
return ((capa->flags & IWL_UCODE_TLV_FLAGS_EBS_SUPPORT) &&
mvm->last_ebs_successful &&
(n_iterations > 1 ||
(capa->api[0] & IWL_UCODE_TLV_API_SINGLE_SCAN_EBS)));
}
static int iwl_mvm_scan_total_iterations(struct iwl_mvm_scan_params *params)
{
return params->schedule[0].iterations + params->schedule[1].iterations;
}
static int iwl_mvm_scan_lmac_flags(struct iwl_mvm *mvm,
struct iwl_mvm_scan_params *params)
{
int flags = 0;
if (params->n_ssids == 0)
flags |= IWL_MVM_LMAC_SCAN_FLAG_PASSIVE;
if (params->n_ssids == 1 && params->ssids[0].ssid_len != 0)
flags |= IWL_MVM_LMAC_SCAN_FLAG_PRE_CONNECTION;
if (params->passive_fragmented)
flags |= IWL_MVM_LMAC_SCAN_FLAG_FRAGMENTED;
if (iwl_mvm_rrm_scan_needed(mvm))
flags |= IWL_MVM_LMAC_SCAN_FLAGS_RRM_ENABLED;
if (params->pass_all)
flags |= IWL_MVM_LMAC_SCAN_FLAG_PASS_ALL;
else
flags |= IWL_MVM_LMAC_SCAN_FLAG_MATCH;
#ifdef CONFIG_IWLWIFI_DEBUGFS
if (mvm->scan_iter_notif_enabled)
flags |= IWL_MVM_LMAC_SCAN_FLAG_ITER_COMPLETE;
#endif
return flags;
}
static int iwl_mvm_scan_lmac(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
struct iwl_mvm_scan_params *params)
{
struct iwl_scan_req_lmac *cmd = mvm->scan_cmd;
struct iwl_scan_probe_req *preq =
(void *)(cmd->data + sizeof(struct iwl_scan_channel_cfg_lmac) *
mvm->fw->ucode_capa.n_scan_channels);
u32 ssid_bitmap = 0;
int n_iterations = iwl_mvm_scan_total_iterations(params);
lockdep_assert_held(&mvm->mutex);
iwl_mvm_build_generic_scan_cmd(mvm, cmd, params);
cmd->n_channels = (u8)params->n_channels;
cmd->delay = cpu_to_le32(params->delay);
cmd->scan_flags = cpu_to_le32(iwl_mvm_scan_lmac_flags(mvm, params));
cmd->flags = iwl_mvm_scan_rxon_flags(params->channels[0]->band);
cmd->filter_flags = cpu_to_le32(MAC_FILTER_ACCEPT_GRP |
MAC_FILTER_IN_BEACON);
iwl_mvm_scan_fill_tx_cmd(mvm, cmd->tx_cmd, params->no_cck);
iwl_scan_build_ssids(params, cmd->direct_scan, &ssid_bitmap);
/* this API uses bits 1-20 instead of 0-19 */
ssid_bitmap <<= 1;
cmd->schedule[0].delay = cpu_to_le16(params->interval);
cmd->schedule[0].iterations = params->schedule[0].iterations;
cmd->schedule[0].full_scan_mul = params->schedule[0].full_scan_mul;
cmd->schedule[1].delay = cpu_to_le16(params->interval);
cmd->schedule[1].iterations = params->schedule[1].iterations;
cmd->schedule[1].full_scan_mul = params->schedule[1].iterations;
if (iwl_mvm_scan_use_ebs(mvm, n_iterations)) {
cmd->channel_opt[0].flags =
cpu_to_le16(IWL_SCAN_CHANNEL_FLAG_EBS |
IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD);
cmd->channel_opt[0].non_ebs_ratio =
cpu_to_le16(IWL_DENSE_EBS_SCAN_RATIO);
cmd->channel_opt[1].flags =
cpu_to_le16(IWL_SCAN_CHANNEL_FLAG_EBS |
IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD);
cmd->channel_opt[1].non_ebs_ratio =
cpu_to_le16(IWL_SPARSE_EBS_SCAN_RATIO);
}
iwl_mvm_lmac_scan_cfg_channels(mvm, params->channels,
params->n_channels, ssid_bitmap, cmd);
*preq = params->preq;
return 0;
}
int iwl_mvm_cancel_scan(struct iwl_mvm *mvm)
{
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN)
return iwl_umac_scan_stop(mvm, IWL_UMAC_SCAN_UID_REG_SCAN,
true);
if (!(mvm->scan_status & IWL_MVM_SCAN_REGULAR))
return 0;
if (iwl_mvm_is_radio_killed(mvm)) {
ieee80211_scan_completed(mvm->hw, true);
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
mvm->scan_status &= ~IWL_MVM_SCAN_REGULAR;
return 0;
}
return iwl_mvm_scan_offload_stop(mvm, true);
}
/* UMAC scan API */
struct iwl_umac_scan_done {
struct iwl_mvm *mvm;
enum iwl_umac_scan_uid_type type;
};
static int rate_to_scan_rate_flag(unsigned int rate)
{
static const int rate_to_scan_rate[IWL_RATE_COUNT] = {
[IWL_RATE_1M_INDEX] = SCAN_CONFIG_RATE_1M,
[IWL_RATE_2M_INDEX] = SCAN_CONFIG_RATE_2M,
[IWL_RATE_5M_INDEX] = SCAN_CONFIG_RATE_5M,
[IWL_RATE_11M_INDEX] = SCAN_CONFIG_RATE_11M,
[IWL_RATE_6M_INDEX] = SCAN_CONFIG_RATE_6M,
[IWL_RATE_9M_INDEX] = SCAN_CONFIG_RATE_9M,
[IWL_RATE_12M_INDEX] = SCAN_CONFIG_RATE_12M,
[IWL_RATE_18M_INDEX] = SCAN_CONFIG_RATE_18M,
[IWL_RATE_24M_INDEX] = SCAN_CONFIG_RATE_24M,
[IWL_RATE_36M_INDEX] = SCAN_CONFIG_RATE_36M,
[IWL_RATE_48M_INDEX] = SCAN_CONFIG_RATE_48M,
[IWL_RATE_54M_INDEX] = SCAN_CONFIG_RATE_54M,
};
return rate_to_scan_rate[rate];
}
static __le32 iwl_mvm_scan_config_rates(struct iwl_mvm *mvm)
{
struct ieee80211_supported_band *band;
unsigned int rates = 0;
int i;
band = &mvm->nvm_data->bands[IEEE80211_BAND_2GHZ];
for (i = 0; i < band->n_bitrates; i++)
rates |= rate_to_scan_rate_flag(band->bitrates[i].hw_value);
band = &mvm->nvm_data->bands[IEEE80211_BAND_5GHZ];
for (i = 0; i < band->n_bitrates; i++)
rates |= rate_to_scan_rate_flag(band->bitrates[i].hw_value);
/* Set both basic rates and supported rates */
rates |= SCAN_CONFIG_SUPPORTED_RATE(rates);
return cpu_to_le32(rates);
}
int iwl_mvm_config_scan(struct iwl_mvm *mvm)
{
struct iwl_scan_config *scan_config;
struct ieee80211_supported_band *band;
int num_channels =
mvm->nvm_data->bands[IEEE80211_BAND_2GHZ].n_channels +
mvm->nvm_data->bands[IEEE80211_BAND_5GHZ].n_channels;
int ret, i, j = 0, cmd_size, data_size;
struct iwl_host_cmd cmd = {
.id = SCAN_CFG_CMD,
};
if (WARN_ON(num_channels > mvm->fw->ucode_capa.n_scan_channels))
return -ENOBUFS;
cmd_size = sizeof(*scan_config) + mvm->fw->ucode_capa.n_scan_channels;
scan_config = kzalloc(cmd_size, GFP_KERNEL);
if (!scan_config)
return -ENOMEM;
data_size = cmd_size - sizeof(struct iwl_mvm_umac_cmd_hdr);
scan_config->hdr.size = cpu_to_le16(data_size);
scan_config->flags = cpu_to_le32(SCAN_CONFIG_FLAG_ACTIVATE |
SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
SCAN_CONFIG_FLAG_SET_TX_CHAINS |
SCAN_CONFIG_FLAG_SET_RX_CHAINS |
SCAN_CONFIG_FLAG_SET_ALL_TIMES |
SCAN_CONFIG_FLAG_SET_LEGACY_RATES |
SCAN_CONFIG_FLAG_SET_MAC_ADDR |
SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|
SCAN_CONFIG_N_CHANNELS(num_channels));
scan_config->tx_chains = cpu_to_le32(iwl_mvm_get_valid_tx_ant(mvm));
scan_config->rx_chains = cpu_to_le32(iwl_mvm_scan_rx_ant(mvm));
scan_config->legacy_rates = iwl_mvm_scan_config_rates(mvm);
scan_config->out_of_channel_time = cpu_to_le32(170);
scan_config->suspend_time = cpu_to_le32(30);
scan_config->dwell_active = 20;
scan_config->dwell_passive = 110;
scan_config->dwell_fragmented = 20;
memcpy(&scan_config->mac_addr, &mvm->addresses[0].addr, ETH_ALEN);
scan_config->bcast_sta_id = mvm->aux_sta.sta_id;
scan_config->channel_flags = IWL_CHANNEL_FLAG_EBS |
IWL_CHANNEL_FLAG_ACCURATE_EBS |
IWL_CHANNEL_FLAG_EBS_ADD |
IWL_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE;
band = &mvm->nvm_data->bands[IEEE80211_BAND_2GHZ];
for (i = 0; i < band->n_channels; i++, j++)
scan_config->channel_array[j] = band->channels[i].hw_value;
band = &mvm->nvm_data->bands[IEEE80211_BAND_5GHZ];
for (i = 0; i < band->n_channels; i++, j++)
scan_config->channel_array[j] = band->channels[i].hw_value;
cmd.data[0] = scan_config;
cmd.len[0] = cmd_size;
cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
IWL_DEBUG_SCAN(mvm, "Sending UMAC scan config\n");
ret = iwl_mvm_send_cmd(mvm, &cmd);
kfree(scan_config);
return ret;
}
static int iwl_mvm_find_scan_uid(struct iwl_mvm *mvm, u32 uid)
{
int i;
for (i = 0; i < mvm->max_scans; i++)
if (mvm->scan_uid[i] == uid)
return i;
return i;
}
static int iwl_mvm_find_free_scan_uid(struct iwl_mvm *mvm)
{
return iwl_mvm_find_scan_uid(mvm, 0);
}
static bool iwl_mvm_find_scan_type(struct iwl_mvm *mvm,
enum iwl_umac_scan_uid_type type)
{
int i;
for (i = 0; i < mvm->max_scans; i++)
if (mvm->scan_uid[i] & type)
return true;
return false;
}
static int iwl_mvm_find_first_scan(struct iwl_mvm *mvm,
enum iwl_umac_scan_uid_type type)
{
int i;
for (i = 0; i < mvm->max_scans; i++)
if (mvm->scan_uid[i] & type)
return i;
return i;
}
static u32 iwl_generate_scan_uid(struct iwl_mvm *mvm,
enum iwl_umac_scan_uid_type type)
{
u32 uid;
/* make sure exactly one bit is on in scan type */
WARN_ON(hweight8(type) != 1);
/*
* Make sure scan uids are unique. If one scan lasts long time while
* others are completing frequently, the seq number will wrap up and
* we may have more than one scan with the same uid.
*/
do {
uid = type | (mvm->scan_seq_num <<
IWL_UMAC_SCAN_UID_SEQ_OFFSET);
mvm->scan_seq_num++;
} while (iwl_mvm_find_scan_uid(mvm, uid) < mvm->max_scans);
IWL_DEBUG_SCAN(mvm, "Generated scan UID %u\n", uid);
return uid;
}
static void
iwl_mvm_build_generic_umac_scan_cmd(struct iwl_mvm *mvm,
struct iwl_scan_req_umac *cmd,
struct iwl_mvm_scan_params *params)
{
memset(cmd, 0, ksize(cmd));
cmd->hdr.size = cpu_to_le16(iwl_mvm_scan_size(mvm) -
sizeof(struct iwl_mvm_umac_cmd_hdr));
cmd->active_dwell = params->dwell[IEEE80211_BAND_2GHZ].active;
cmd->passive_dwell = params->dwell[IEEE80211_BAND_2GHZ].passive;
if (params->passive_fragmented)
cmd->fragmented_dwell =
params->dwell[IEEE80211_BAND_2GHZ].fragmented;
cmd->max_out_time = cpu_to_le32(params->max_out_time);
cmd->suspend_time = cpu_to_le32(params->suspend_time);
cmd->scan_priority = cpu_to_le32(IWL_SCAN_PRIORITY_HIGH);
}
static void
iwl_mvm_umac_scan_cfg_channels(struct iwl_mvm *mvm,
struct ieee80211_channel **channels,
int n_channels, u32 ssid_bitmap,
struct iwl_scan_req_umac *cmd)
{
struct iwl_scan_channel_cfg_umac *channel_cfg = (void *)&cmd->data;
int i;
for (i = 0; i < n_channels; i++) {
channel_cfg[i].flags = cpu_to_le32(ssid_bitmap);
channel_cfg[i].channel_num = channels[i]->hw_value;
channel_cfg[i].iter_count = 1;
channel_cfg[i].iter_interval = 0;
}
}
static u32 iwl_mvm_scan_umac_flags(struct iwl_mvm *mvm,
struct iwl_mvm_scan_params *params)
{
int flags = 0;
if (params->n_ssids == 0)
flags = IWL_UMAC_SCAN_GEN_FLAGS_PASSIVE;
if (params->n_ssids == 1 && params->ssids[0].ssid_len != 0)
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT;
if (params->passive_fragmented)
flags |= IWL_UMAC_SCAN_GEN_FLAGS_FRAGMENTED;
if (iwl_mvm_rrm_scan_needed(mvm))
flags |= IWL_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED;
if (params->pass_all)
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PASS_ALL;
else
flags |= IWL_UMAC_SCAN_GEN_FLAGS_MATCH;
if (iwl_mvm_scan_total_iterations(params) > 1)
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PERIODIC;
return flags;
}
static int iwl_mvm_scan_umac(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
struct iwl_mvm_scan_params *params)
{
struct iwl_scan_req_umac *cmd = mvm->scan_cmd;
struct iwl_scan_req_umac_tail *sec_part = (void *)&cmd->data +
sizeof(struct iwl_scan_channel_cfg_umac) *
mvm->fw->ucode_capa.n_scan_channels;
u32 uid;
u32 ssid_bitmap = 0;
int n_iterations = iwl_mvm_scan_total_iterations(params);
int uid_idx;
lockdep_assert_held(&mvm->mutex);
uid_idx = iwl_mvm_find_free_scan_uid(mvm);
if (uid_idx >= mvm->max_scans)
return -EBUSY;
iwl_mvm_build_generic_umac_scan_cmd(mvm, cmd, params);
if (n_iterations == 1) {
cmd->ooc_priority = cpu_to_le32(IWL_SCAN_PRIORITY_HIGH);
uid = iwl_generate_scan_uid(mvm, IWL_UMAC_SCAN_UID_REG_SCAN);
} else {
cmd->ooc_priority = cpu_to_le32(IWL_SCAN_PRIORITY_LOW);
uid = iwl_generate_scan_uid(mvm, IWL_UMAC_SCAN_UID_SCHED_SCAN);
}
mvm->scan_uid[uid_idx] = uid;
cmd->uid = cpu_to_le32(uid);
cmd->general_flags = cpu_to_le32(iwl_mvm_scan_umac_flags(mvm, params));
if (iwl_mvm_scan_use_ebs(mvm, n_iterations))
cmd->channel_flags = IWL_SCAN_CHANNEL_FLAG_EBS |
IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD;
cmd->n_channels = params->n_channels;
iwl_scan_build_ssids(params, sec_part->direct_scan, &ssid_bitmap);
iwl_mvm_umac_scan_cfg_channels(mvm, params->channels,
params->n_channels, ssid_bitmap, cmd);
/* With UMAC we can have only one schedule, so use the sum of
* the iterations (with a a maximum of 255).
*/
sec_part->schedule[0].iter_count =
(n_iterations > 255) ? 255 : n_iterations;
sec_part->schedule[0].interval = cpu_to_le16(params->interval);
sec_part->delay = cpu_to_le16(params->delay);
sec_part->preq = params->preq;
return 0;
}
static int iwl_mvm_num_scans(struct iwl_mvm *mvm)
{
return hweight32(mvm->scan_status & IWL_MVM_SCAN_MASK);
}
static int iwl_mvm_check_running_scans(struct iwl_mvm *mvm, int type)
{
/* This looks a bit arbitrary, but the idea is that if we run
* out of possible simultaneous scans and the userspace is
* trying to run a scan type that is already running, we
* return -EBUSY. But if the userspace wants to start a
* different type of scan, we stop the opposite type to make
* space for the new request. The reason is backwards
* compatibility with old wpa_supplicant that wouldn't stop a
* scheduled scan before starting a normal scan.
*/
if (iwl_mvm_num_scans(mvm) < mvm->max_scans)
return 0;
/* Use a switch, even though this is a bitmask, so that more
* than one bits set will fall in default and we will warn.
*/
switch (type) {
case IWL_MVM_SCAN_REGULAR:
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR_MASK)
return -EBUSY;
return iwl_mvm_scan_offload_stop(mvm, true);
case IWL_MVM_SCAN_SCHED:
if (mvm->scan_status & IWL_MVM_SCAN_SCHED_MASK)
return -EBUSY;
return iwl_mvm_cancel_scan(mvm);
case IWL_MVM_SCAN_NETDETECT:
/* No need to stop anything for net-detect since the
* firmware is restarted anyway. This way, any sched
* scans that were running will be restarted when we
* resume.
*/
return 0;
default:
WARN_ON(1);
break;
}
return -EIO;
}
int iwl_mvm_reg_scan_start(struct iwl_mvm *mvm, struct ieee80211_vif *vif,
struct cfg80211_scan_request *req,
struct ieee80211_scan_ies *ies)
{
struct iwl_host_cmd hcmd = {
.len = { iwl_mvm_scan_size(mvm), },
.data = { mvm->scan_cmd, },
.dataflags = { IWL_HCMD_DFL_NOCOPY, },
};
struct iwl_mvm_scan_params params = {};
int ret;
lockdep_assert_held(&mvm->mutex);
if (iwl_mvm_is_lar_supported(mvm) && !mvm->lar_regdom_set) {
IWL_ERR(mvm, "scan while LAR regdomain is not set\n");
return -EBUSY;
}
ret = iwl_mvm_check_running_scans(mvm, IWL_MVM_SCAN_REGULAR);
if (ret)
return ret;
iwl_mvm_ref(mvm, IWL_MVM_REF_SCAN);
/* we should have failed registration if scan_cmd was NULL */
if (WARN_ON(!mvm->scan_cmd))
return -ENOMEM;
if (!iwl_mvm_scan_fits(mvm, req->n_ssids, ies, req->n_channels))
return -ENOBUFS;
params.n_ssids = req->n_ssids;
params.flags = req->flags;
params.n_channels = req->n_channels;
params.delay = 0;
params.interval = 0;
params.ssids = req->ssids;
params.channels = req->channels;
params.mac_addr = req->mac_addr;
params.mac_addr_mask = req->mac_addr_mask;
params.no_cck = req->no_cck;
params.pass_all = true;
params.n_match_sets = 0;
params.match_sets = NULL;
params.schedule[0].iterations = 1;
params.schedule[0].full_scan_mul = 0;
params.schedule[1].iterations = 0;
params.schedule[1].full_scan_mul = 0;
iwl_mvm_scan_calc_dwell(mvm, vif, ¶ms);
iwl_mvm_build_scan_probe(mvm, vif, ies, ¶ms);
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN) {
hcmd.id = SCAN_REQ_UMAC;
ret = iwl_mvm_scan_umac(mvm, vif, ¶ms);
} else {
hcmd.id = SCAN_OFFLOAD_REQUEST_CMD;
ret = iwl_mvm_scan_lmac(mvm, vif, ¶ms);
}
if (ret)
return ret;
ret = iwl_mvm_send_cmd(mvm, &hcmd);
if (!ret) {
IWL_DEBUG_SCAN(mvm, "Scan request was sent successfully\n");
mvm->scan_status |= IWL_MVM_SCAN_REGULAR;
} else {
/* If the scan failed, it usually means that the FW was unable
* to allocate the time events. Warn on it, but maybe we
* should try to send the command again with different params.
*/
IWL_ERR(mvm, "Scan failed! ret %d\n", ret);
}
if (ret)
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
return ret;
}
int iwl_mvm_sched_scan_start(struct iwl_mvm *mvm,
struct ieee80211_vif *vif,
struct cfg80211_sched_scan_request *req,
struct ieee80211_scan_ies *ies,
int type)
{
struct iwl_host_cmd hcmd = {
.len = { iwl_mvm_scan_size(mvm), },
.data = { mvm->scan_cmd, },
.dataflags = { IWL_HCMD_DFL_NOCOPY, },
};
struct iwl_mvm_scan_params params = {};
int ret;
lockdep_assert_held(&mvm->mutex);
if (iwl_mvm_is_lar_supported(mvm) && !mvm->lar_regdom_set) {
IWL_ERR(mvm, "sched-scan while LAR regdomain is not set\n");
return -EBUSY;
}
ret = iwl_mvm_check_running_scans(mvm, type);
if (ret)
return ret;
/* we should have failed registration if scan_cmd was NULL */
if (WARN_ON(!mvm->scan_cmd))
return -ENOMEM;
if (!iwl_mvm_scan_fits(mvm, req->n_ssids, ies, req->n_channels))
return -ENOBUFS;
params.n_ssids = req->n_ssids;
params.flags = req->flags;
params.n_channels = req->n_channels;
params.ssids = req->ssids;
params.channels = req->channels;
params.mac_addr = req->mac_addr;
params.mac_addr_mask = req->mac_addr_mask;
params.no_cck = false;
params.pass_all = iwl_mvm_scan_pass_all(mvm, req);
params.n_match_sets = req->n_match_sets;
params.match_sets = req->match_sets;
params.schedule[0].iterations = IWL_FAST_SCHED_SCAN_ITERATIONS;
params.schedule[0].full_scan_mul = 1;
params.schedule[1].iterations = 0xff;
params.schedule[1].full_scan_mul = IWL_FULL_SCAN_MULTIPLIER;
if (req->interval > U16_MAX) {
IWL_DEBUG_SCAN(mvm,
"interval value is > 16-bits, set to max possible\n");
params.interval = U16_MAX;
} else {
params.interval = req->interval / MSEC_PER_SEC;
}
/* In theory, LMAC scans can handle a 32-bit delay, but since
* waiting for over 18 hours to start the scan is a bit silly
* and to keep it aligned with UMAC scans (which only support
* 16-bit delays), trim it down to 16-bits.
*/
if (req->delay > U16_MAX) {
IWL_DEBUG_SCAN(mvm,
"delay value is > 16-bits, set to max possible\n");
params.delay = U16_MAX;
} else {
params.delay = req->delay;
}
iwl_mvm_scan_calc_dwell(mvm, vif, ¶ms);
ret = iwl_mvm_config_sched_scan_profiles(mvm, req);
if (ret)
return ret;
iwl_mvm_build_scan_probe(mvm, vif, ies, ¶ms);
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN) {
hcmd.id = SCAN_REQ_UMAC;
ret = iwl_mvm_scan_umac(mvm, vif, ¶ms);
} else {
hcmd.id = SCAN_OFFLOAD_REQUEST_CMD;
ret = iwl_mvm_scan_lmac(mvm, vif, ¶ms);
}
if (ret)
return ret;
ret = iwl_mvm_send_cmd(mvm, &hcmd);
if (!ret) {
IWL_DEBUG_SCAN(mvm,
"Sched scan request was sent successfully\n");
mvm->scan_status |= type;
} else {
/* If the scan failed, it usually means that the FW was unable
* to allocate the time events. Warn on it, but maybe we
* should try to send the command again with different params.
*/
IWL_ERR(mvm, "Sched scan failed! ret %d\n", ret);
}
return ret;
}
int iwl_mvm_rx_umac_scan_complete_notif(struct iwl_mvm *mvm,
struct iwl_rx_cmd_buffer *rxb,
struct iwl_device_cmd *cmd)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_umac_scan_complete *notif = (void *)pkt->data;
u32 uid = __le32_to_cpu(notif->uid);
bool sched = !!(uid & IWL_UMAC_SCAN_UID_SCHED_SCAN);
int uid_idx = iwl_mvm_find_scan_uid(mvm, uid);
/*
* Scan uid may be set to zero in case of scan abort request from above.
*/
if (uid_idx >= mvm->max_scans)
return 0;
IWL_DEBUG_SCAN(mvm,
"Scan completed, uid %u type %s, status %s, EBS status %s\n",
uid, sched ? "sched" : "regular",
notif->status == IWL_SCAN_OFFLOAD_COMPLETED ?
"completed" : "aborted",
notif->ebs_status == IWL_SCAN_EBS_SUCCESS ?
"success" : "failed");
if (notif->ebs_status)
mvm->last_ebs_successful = false;
mvm->scan_uid[uid_idx] = 0;
if (!sched) {
ieee80211_scan_completed(mvm->hw,
notif->status ==
IWL_SCAN_OFFLOAD_ABORTED);
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
} else if (!iwl_mvm_find_scan_type(mvm, IWL_UMAC_SCAN_UID_SCHED_SCAN)) {
ieee80211_sched_scan_stopped(mvm->hw);
} else {
IWL_DEBUG_SCAN(mvm, "Another sched scan is running\n");
}
return 0;
}
static bool iwl_scan_umac_done_check(struct iwl_notif_wait_data *notif_wait,
struct iwl_rx_packet *pkt, void *data)
{
struct iwl_umac_scan_done *scan_done = data;
struct iwl_umac_scan_complete *notif = (void *)pkt->data;
u32 uid = __le32_to_cpu(notif->uid);
int uid_idx = iwl_mvm_find_scan_uid(scan_done->mvm, uid);
if (WARN_ON(pkt->hdr.cmd != SCAN_COMPLETE_UMAC))
return false;
if (uid_idx >= scan_done->mvm->max_scans)
return false;
/*
* Clear scan uid of scans that was aborted from above and completed
* in FW so the RX handler does nothing. Set last_ebs_successful here if
* needed.
*/
scan_done->mvm->scan_uid[uid_idx] = 0;
if (notif->ebs_status)
scan_done->mvm->last_ebs_successful = false;
return !iwl_mvm_find_scan_type(scan_done->mvm, scan_done->type);
}
static int iwl_umac_scan_abort_one(struct iwl_mvm *mvm, u32 uid)
{
struct iwl_umac_scan_abort cmd = {
.hdr.size = cpu_to_le16(sizeof(struct iwl_umac_scan_abort) -
sizeof(struct iwl_mvm_umac_cmd_hdr)),
.uid = cpu_to_le32(uid),
};
lockdep_assert_held(&mvm->mutex);
IWL_DEBUG_SCAN(mvm, "Sending scan abort, uid %u\n", uid);
return iwl_mvm_send_cmd_pdu(mvm, SCAN_ABORT_UMAC, 0, sizeof(cmd), &cmd);
}
static int iwl_umac_scan_stop(struct iwl_mvm *mvm,
enum iwl_umac_scan_uid_type type, bool notify)
{
struct iwl_notification_wait wait_scan_done;
static const u8 scan_done_notif[] = { SCAN_COMPLETE_UMAC, };
struct iwl_umac_scan_done scan_done = {
.mvm = mvm,
.type = type,
};
int i, ret = -EIO;
iwl_init_notification_wait(&mvm->notif_wait, &wait_scan_done,
scan_done_notif,
ARRAY_SIZE(scan_done_notif),
iwl_scan_umac_done_check, &scan_done);
IWL_DEBUG_SCAN(mvm, "Preparing to stop scan, type %x\n", type);
for (i = 0; i < mvm->max_scans; i++) {
if (mvm->scan_uid[i] & type) {
int err;
if (iwl_mvm_is_radio_killed(mvm) &&
(type & IWL_UMAC_SCAN_UID_REG_SCAN)) {
ieee80211_scan_completed(mvm->hw, true);
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
break;
}
err = iwl_umac_scan_abort_one(mvm, mvm->scan_uid[i]);
if (!err)
ret = 0;
}
}
if (ret) {
IWL_DEBUG_SCAN(mvm, "Couldn't stop scan\n");
iwl_remove_notification(&mvm->notif_wait, &wait_scan_done);
return ret;
}
ret = iwl_wait_notification(&mvm->notif_wait, &wait_scan_done, 1 * HZ);
if (ret)
return ret;
if (notify) {
if (type & IWL_UMAC_SCAN_UID_SCHED_SCAN)
ieee80211_sched_scan_stopped(mvm->hw);
if (type & IWL_UMAC_SCAN_UID_REG_SCAN) {
ieee80211_scan_completed(mvm->hw, true);
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
}
}
return ret;
}
int iwl_mvm_scan_size(struct iwl_mvm *mvm)
{
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN)
return sizeof(struct iwl_scan_req_umac) +
sizeof(struct iwl_scan_channel_cfg_umac) *
mvm->fw->ucode_capa.n_scan_channels +
sizeof(struct iwl_scan_req_umac_tail);
return sizeof(struct iwl_scan_req_lmac) +
sizeof(struct iwl_scan_channel_cfg_lmac) *
mvm->fw->ucode_capa.n_scan_channels +
sizeof(struct iwl_scan_probe_req);
}
/*
* This function is used in nic restart flow, to inform mac80211 about scans
* that was aborted by restart flow or by an assert.
*/
void iwl_mvm_report_scan_aborted(struct iwl_mvm *mvm)
{
if (mvm->fw->ucode_capa.capa[0] & IWL_UCODE_TLV_CAPA_UMAC_SCAN) {
u32 uid, i;
uid = iwl_mvm_find_first_scan(mvm, IWL_UMAC_SCAN_UID_REG_SCAN);
if (uid < mvm->max_scans) {
ieee80211_scan_completed(mvm->hw, true);
mvm->scan_uid[uid] = 0;
}
uid = iwl_mvm_find_first_scan(mvm,
IWL_UMAC_SCAN_UID_SCHED_SCAN);
if (uid < mvm->max_scans && !mvm->restart_fw) {
ieee80211_sched_scan_stopped(mvm->hw);
mvm->scan_uid[uid] = 0;
}
/* We shouldn't have any UIDs still set. Loop over all the
* UIDs to make sure there's nothing left there and warn if
* any is found.
*/
for (i = 0; i < mvm->max_scans; i++) {
if (WARN_ONCE(mvm->scan_uid[i],
"UMAC scan UID %d was not cleaned\n",
mvm->scan_uid[i]))
mvm->scan_uid[i] = 0;
}
} else {
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR)
ieee80211_scan_completed(mvm->hw, true);
/* Sched scan will be restarted by mac80211 in
* restart_hw, so do not report if FW is about to be
* restarted.
*/
if ((mvm->scan_status & IWL_MVM_SCAN_SCHED) && !mvm->restart_fw)
ieee80211_sched_scan_stopped(mvm->hw);
}
}