/******************************************************************************
*
* Copyright(c) 2003 - 2007 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* James P. Ketrenos <ipw2100-admin@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/wireless.h>
#include <net/mac80211.h>
#include <linux/etherdevice.h>
#define IWL 4965
#include "iwlwifi.h"
#include "iwl-4965.h"
#include "iwl-helpers.h"
#define IWL_DECLARE_RATE_INFO(r, s, ip, in, rp, rn, pp, np) \
[IWL_RATE_##r##M_INDEX] = { IWL_RATE_##r##M_PLCP, \
IWL_RATE_SISO_##s##M_PLCP, \
IWL_RATE_MIMO_##s##M_PLCP, \
IWL_RATE_##r##M_IEEE, \
IWL_RATE_##ip##M_INDEX, \
IWL_RATE_##in##M_INDEX, \
IWL_RATE_##rp##M_INDEX, \
IWL_RATE_##rn##M_INDEX, \
IWL_RATE_##pp##M_INDEX, \
IWL_RATE_##np##M_INDEX }
/*
* Parameter order:
* rate, ht rate, prev rate, next rate, prev tgg rate, next tgg rate
*
* If there isn't a valid next or previous rate then INV is used which
* maps to IWL_RATE_INVALID
*
*/
const struct iwl_rate_info iwl_rates[IWL_RATE_COUNT] = {
IWL_DECLARE_RATE_INFO(1, INV, INV, 2, INV, 2, INV, 2), /* 1mbps */
IWL_DECLARE_RATE_INFO(2, INV, 1, 5, 1, 5, 1, 5), /* 2mbps */
IWL_DECLARE_RATE_INFO(5, INV, 2, 6, 2, 11, 2, 11), /*5.5mbps */
IWL_DECLARE_RATE_INFO(11, INV, 9, 12, 9, 12, 5, 18), /* 11mbps */
IWL_DECLARE_RATE_INFO(6, 6, 5, 9, 5, 11, 5, 11), /* 6mbps */
IWL_DECLARE_RATE_INFO(9, 6, 6, 11, 6, 11, 5, 11), /* 9mbps */
IWL_DECLARE_RATE_INFO(12, 12, 11, 18, 11, 18, 11, 18), /* 12mbps */
IWL_DECLARE_RATE_INFO(18, 18, 12, 24, 12, 24, 11, 24), /* 18mbps */
IWL_DECLARE_RATE_INFO(24, 24, 18, 36, 18, 36, 18, 36), /* 24mbps */
IWL_DECLARE_RATE_INFO(36, 36, 24, 48, 24, 48, 24, 48), /* 36mbps */
IWL_DECLARE_RATE_INFO(48, 48, 36, 54, 36, 54, 36, 54), /* 48mbps */
IWL_DECLARE_RATE_INFO(54, 54, 48, INV, 48, INV, 48, INV),/* 54mbps */
IWL_DECLARE_RATE_INFO(60, 60, 48, INV, 48, INV, 48, INV),/* 60mbps */
};
static int is_fat_channel(__le32 rxon_flags)
{
return (rxon_flags & RXON_FLG_CHANNEL_MODE_PURE_40_MSK) ||
(rxon_flags & RXON_FLG_CHANNEL_MODE_MIXED_MSK);
}
static u8 is_single_stream(struct iwl_priv *priv)
{
#ifdef CONFIG_IWLWIFI_HT
if (!priv->is_ht_enabled || !priv->current_assoc_ht.is_ht ||
(priv->active_rate_ht[1] == 0) ||
(priv->ps_mode == IWL_MIMO_PS_STATIC))
return 1;
#else
return 1;
#endif /*CONFIG_IWLWIFI_HT */
return 0;
}
/*
* Determine how many receiver/antenna chains to use.
* More provides better reception via diversity. Fewer saves power.
* MIMO (dual stream) requires at least 2, but works better with 3.
* This does not determine *which* chains to use, just how many.
*/
static int iwl4965_get_rx_chain_counter(struct iwl_priv *priv,
u8 *idle_state, u8 *rx_state)
{
u8 is_single = is_single_stream(priv);
u8 is_cam = test_bit(STATUS_POWER_PMI, &priv->status) ? 0 : 1;
/* # of Rx chains to use when expecting MIMO. */
if (is_single || (!is_cam && (priv->ps_mode == IWL_MIMO_PS_STATIC)))
*rx_state = 2;
else
*rx_state = 3;
/* # Rx chains when idling and maybe trying to save power */
switch (priv->ps_mode) {
case IWL_MIMO_PS_STATIC:
case IWL_MIMO_PS_DYNAMIC:
*idle_state = (is_cam) ? 2 : 1;
break;
case IWL_MIMO_PS_NONE:
*idle_state = (is_cam) ? *rx_state : 1;
break;
default:
*idle_state = 1;
break;
}
return 0;
}
int iwl_hw_rxq_stop(struct iwl_priv *priv)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
/* stop HW */
iwl_write_restricted(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
rc = iwl_poll_restricted_bit(priv, FH_MEM_RSSR_RX_STATUS_REG,
(1 << 24), 1000);
if (rc < 0)
IWL_ERROR("Can't stop Rx DMA.\n");
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
u8 iwl_hw_find_station(struct iwl_priv *priv, const u8 *addr)
{
int i;
int start = 0;
int ret = IWL_INVALID_STATION;
unsigned long flags;
DECLARE_MAC_BUF(mac);
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) ||
(priv->iw_mode == IEEE80211_IF_TYPE_AP))
start = IWL_STA_ID;
if (is_broadcast_ether_addr(addr))
return IWL4965_BROADCAST_ID;
spin_lock_irqsave(&priv->sta_lock, flags);
for (i = start; i < priv->hw_setting.max_stations; i++)
if ((priv->stations[i].used) &&
(!compare_ether_addr
(priv->stations[i].sta.sta.addr, addr))) {
ret = i;
goto out;
}
IWL_DEBUG_ASSOC_LIMIT("can not find STA %s total %d\n",
print_mac(mac, addr), priv->num_stations);
out:
spin_unlock_irqrestore(&priv->sta_lock, flags);
return ret;
}
static int iwl4965_nic_set_pwr_src(struct iwl_priv *priv, int pwr_max)
{
int rc = 0;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
if (!pwr_max) {
u32 val;
rc = pci_read_config_dword(priv->pci_dev, PCI_POWER_SOURCE,
&val);
if (val & PCI_CFG_PMC_PME_FROM_D3COLD_SUPPORT)
iwl_set_bits_mask_restricted_reg(
priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
~APMG_PS_CTRL_MSK_PWR_SRC);
} else
iwl_set_bits_mask_restricted_reg(
priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~APMG_PS_CTRL_MSK_PWR_SRC);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
static int iwl4965_rx_init(struct iwl_priv *priv, struct iwl_rx_queue *rxq)
{
int rc;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
/* stop HW */
iwl_write_restricted(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
iwl_write_restricted(priv, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
iwl_write_restricted(priv, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
rxq->dma_addr >> 8);
iwl_write_restricted(priv, FH_RSCSR_CHNL0_STTS_WPTR_REG,
(priv->hw_setting.shared_phys +
offsetof(struct iwl_shared, val0)) >> 4);
iwl_write_restricted(priv, FH_MEM_RCSR_CHNL0_CONFIG_REG,
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
IWL_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
/*0x10 << 4 | */
(RX_QUEUE_SIZE_LOG <<
FH_RCSR_RX_CONFIG_RBDCB_SIZE_BITSHIFT));
/*
* iwl_write32(priv,CSR_INT_COAL_REG,0);
*/
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static int iwl4965_kw_init(struct iwl_priv *priv)
{
unsigned long flags;
int rc;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc)
goto out;
iwl_write_restricted(priv, IWL_FH_KW_MEM_ADDR_REG,
priv->kw.dma_addr >> 4);
iwl_release_restricted_access(priv);
out:
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
static int iwl4965_kw_alloc(struct iwl_priv *priv)
{
struct pci_dev *dev = priv->pci_dev;
struct iwl_kw *kw = &priv->kw;
kw->size = IWL4965_KW_SIZE; /* TBW need set somewhere else */
kw->v_addr = pci_alloc_consistent(dev, kw->size, &kw->dma_addr);
if (!kw->v_addr)
return -ENOMEM;
return 0;
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
int iwl4965_set_fat_chan_info(struct iwl_priv *priv, int phymode, u16 channel,
const struct iwl_eeprom_channel *eeprom_ch,
u8 fat_extension_channel)
{
struct iwl_channel_info *ch_info;
ch_info = (struct iwl_channel_info *)
iwl_get_channel_info(priv, phymode, channel);
if (!is_channel_valid(ch_info))
return -1;
IWL_DEBUG_INFO("FAT Ch. %d [%sGHz] %s%s%s%s%s%s(0x%02x"
" %ddBm): Ad-Hoc %ssupported\n",
ch_info->channel,
is_channel_a_band(ch_info) ?
"5.2" : "2.4",
CHECK_AND_PRINT(IBSS),
CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR),
CHECK_AND_PRINT(WIDE),
CHECK_AND_PRINT(NARROW),
CHECK_AND_PRINT(DFS),
eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
&& !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
"" : "not ");
ch_info->fat_eeprom = *eeprom_ch;
ch_info->fat_max_power_avg = eeprom_ch->max_power_avg;
ch_info->fat_curr_txpow = eeprom_ch->max_power_avg;
ch_info->fat_min_power = 0;
ch_info->fat_scan_power = eeprom_ch->max_power_avg;
ch_info->fat_flags = eeprom_ch->flags;
ch_info->fat_extension_channel = fat_extension_channel;
return 0;
}
static void iwl4965_kw_free(struct iwl_priv *priv)
{
struct pci_dev *dev = priv->pci_dev;
struct iwl_kw *kw = &priv->kw;
if (kw->v_addr) {
pci_free_consistent(dev, kw->size, kw->v_addr, kw->dma_addr);
memset(kw, 0, sizeof(*kw));
}
}
/**
* iwl4965_txq_ctx_reset - Reset TX queue context
* Destroys all DMA structures and initialise them again
*
* @param priv
* @return error code
*/
static int iwl4965_txq_ctx_reset(struct iwl_priv *priv)
{
int rc = 0;
int txq_id, slots_num;
unsigned long flags;
iwl4965_kw_free(priv);
iwl_hw_txq_ctx_free(priv);
/* Tx CMD queue */
rc = iwl4965_kw_alloc(priv);
if (rc) {
IWL_ERROR("Keep Warm allocation failed");
goto error_kw;
}
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (unlikely(rc)) {
IWL_ERROR("TX reset failed");
spin_unlock_irqrestore(&priv->lock, flags);
goto error_reset;
}
iwl_write_restricted_reg(priv, SCD_TXFACT, 0);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
rc = iwl4965_kw_init(priv);
if (rc) {
IWL_ERROR("kw_init failed\n");
goto error_reset;
}
/* Tx queue(s) */
for (txq_id = 0; txq_id < priv->hw_setting.max_txq_num; txq_id++) {
slots_num = (txq_id == IWL_CMD_QUEUE_NUM) ?
TFD_CMD_SLOTS : TFD_TX_CMD_SLOTS;
rc = iwl_tx_queue_init(priv, &priv->txq[txq_id], slots_num,
txq_id);
if (rc) {
IWL_ERROR("Tx %d queue init failed\n", txq_id);
goto error;
}
}
return rc;
error:
iwl_hw_txq_ctx_free(priv);
error_reset:
iwl4965_kw_free(priv);
error_kw:
return rc;
}
int iwl_hw_nic_init(struct iwl_priv *priv)
{
int rc;
unsigned long flags;
struct iwl_rx_queue *rxq = &priv->rxq;
u8 rev_id;
u32 val;
u8 val_link;
iwl_power_init_handle(priv);
/* nic_init */
spin_lock_irqsave(&priv->lock, flags);
iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
rc = iwl_poll_bit(priv, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
if (rc < 0) {
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_INFO("Failed to init the card\n");
return rc;
}
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_read_restricted_reg(priv, APMG_CLK_CTRL_REG);
iwl_write_restricted_reg(priv, APMG_CLK_CTRL_REG,
APMG_CLK_VAL_DMA_CLK_RQT |
APMG_CLK_VAL_BSM_CLK_RQT);
iwl_read_restricted_reg(priv, APMG_CLK_CTRL_REG);
udelay(20);
iwl_set_bits_restricted_reg(priv, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
iwl_release_restricted_access(priv);
iwl_write32(priv, CSR_INT_COALESCING, 512 / 32);
spin_unlock_irqrestore(&priv->lock, flags);
/* Determine HW type */
rc = pci_read_config_byte(priv->pci_dev, PCI_REVISION_ID, &rev_id);
if (rc)
return rc;
IWL_DEBUG_INFO("HW Revision ID = 0x%X\n", rev_id);
iwl4965_nic_set_pwr_src(priv, 1);
spin_lock_irqsave(&priv->lock, flags);
if ((rev_id & 0x80) == 0x80 && (rev_id & 0x7f) < 8) {
pci_read_config_dword(priv->pci_dev, PCI_REG_WUM8, &val);
/* Enable No Snoop field */
pci_write_config_dword(priv->pci_dev, PCI_REG_WUM8,
val & ~(1 << 11));
}
spin_unlock_irqrestore(&priv->lock, flags);
/* Read the EEPROM */
rc = iwl_eeprom_init(priv);
if (rc)
return rc;
if (priv->eeprom.calib_version < EEPROM_TX_POWER_VERSION_NEW) {
IWL_ERROR("Older EEPROM detected! Aborting.\n");
return -EINVAL;
}
pci_read_config_byte(priv->pci_dev, PCI_LINK_CTRL, &val_link);
/* disable L1 entry -- workaround for pre-B1 */
pci_write_config_byte(priv->pci_dev, PCI_LINK_CTRL, val_link & ~0x02);
spin_lock_irqsave(&priv->lock, flags);
/* set CSR_HW_CONFIG_REG for uCode use */
iwl_set_bit(priv, CSR_SW_VER, CSR_HW_IF_CONFIG_REG_BIT_KEDRON_R |
CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
rc = iwl_grab_restricted_access(priv);
if (rc < 0) {
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_INFO("Failed to init the card\n");
return rc;
}
iwl_read_restricted_reg(priv, APMG_PS_CTRL_REG);
iwl_set_bits_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
udelay(5);
iwl_clear_bits_restricted_reg(priv, APMG_PS_CTRL_REG,
APMG_PS_CTRL_VAL_RESET_REQ);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
iwl_hw_card_show_info(priv);
/* end nic_init */
/* Allocate the RX queue, or reset if it is already allocated */
if (!rxq->bd) {
rc = iwl_rx_queue_alloc(priv);
if (rc) {
IWL_ERROR("Unable to initialize Rx queue\n");
return -ENOMEM;
}
} else
iwl_rx_queue_reset(priv, rxq);
iwl_rx_replenish(priv);
iwl4965_rx_init(priv, rxq);
spin_lock_irqsave(&priv->lock, flags);
rxq->need_update = 1;
iwl_rx_queue_update_write_ptr(priv, rxq);
spin_unlock_irqrestore(&priv->lock, flags);
rc = iwl4965_txq_ctx_reset(priv);
if (rc)
return rc;
if (priv->eeprom.sku_cap & EEPROM_SKU_CAP_SW_RF_KILL_ENABLE)
IWL_DEBUG_RF_KILL("SW RF KILL supported in EEPROM.\n");
if (priv->eeprom.sku_cap & EEPROM_SKU_CAP_HW_RF_KILL_ENABLE)
IWL_DEBUG_RF_KILL("HW RF KILL supported in EEPROM.\n");
set_bit(STATUS_INIT, &priv->status);
return 0;
}
int iwl_hw_nic_stop_master(struct iwl_priv *priv)
{
int rc = 0;
u32 reg_val;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
/* set stop master bit */
iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
reg_val = iwl_read32(priv, CSR_GP_CNTRL);
if (CSR_GP_CNTRL_REG_FLAG_MAC_POWER_SAVE ==
(reg_val & CSR_GP_CNTRL_REG_MSK_POWER_SAVE_TYPE))
IWL_DEBUG_INFO("Card in power save, master is already "
"stopped\n");
else {
rc = iwl_poll_bit(priv, CSR_RESET,
CSR_RESET_REG_FLAG_MASTER_DISABLED,
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
if (rc < 0) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
}
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_INFO("stop master\n");
return rc;
}
void iwl_hw_txq_ctx_stop(struct iwl_priv *priv)
{
int txq_id;
unsigned long flags;
/* reset TFD queues */
for (txq_id = 0; txq_id < priv->hw_setting.max_txq_num; txq_id++) {
spin_lock_irqsave(&priv->lock, flags);
if (iwl_grab_restricted_access(priv)) {
spin_unlock_irqrestore(&priv->lock, flags);
continue;
}
iwl_write_restricted(priv,
IWL_FH_TCSR_CHNL_TX_CONFIG_REG(txq_id),
0x0);
iwl_poll_restricted_bit(priv, IWL_FH_TSSR_TX_STATUS_REG,
IWL_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE
(txq_id), 200);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
}
iwl_hw_txq_ctx_free(priv);
}
int iwl_hw_nic_reset(struct iwl_priv *priv)
{
int rc = 0;
unsigned long flags;
iwl_hw_nic_stop_master(priv);
spin_lock_irqsave(&priv->lock, flags);
iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
udelay(10);
iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
rc = iwl_poll_bit(priv, CSR_RESET,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25);
udelay(10);
rc = iwl_grab_restricted_access(priv);
if (!rc) {
iwl_write_restricted_reg(priv, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT |
APMG_CLK_VAL_BSM_CLK_RQT);
udelay(10);
iwl_set_bits_restricted_reg(priv, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
iwl_release_restricted_access(priv);
}
clear_bit(STATUS_HCMD_ACTIVE, &priv->status);
wake_up_interruptible(&priv->wait_command_queue);
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
#define REG_RECALIB_PERIOD (60)
/**
* iwl4965_bg_statistics_periodic - Timer callback to queue statistics
*
* This callback is provided in order to queue the statistics_work
* in work_queue context (v. softirq)
*
* This timer function is continually reset to execute within
* REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
* was received. We need to ensure we receive the statistics in order
* to update the temperature used for calibrating the TXPOWER. However,
* we can't send the statistics command from softirq context (which
* is the context which timers run at) so we have to queue off the
* statistics_work to actually send the command to the hardware.
*/
static void iwl4965_bg_statistics_periodic(unsigned long data)
{
struct iwl_priv *priv = (struct iwl_priv *)data;
queue_work(priv->workqueue, &priv->statistics_work);
}
/**
* iwl4965_bg_statistics_work - Send the statistics request to the hardware.
*
* This is queued by iwl_bg_statistics_periodic.
*/
static void iwl4965_bg_statistics_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv,
statistics_work);
if (test_bit(STATUS_EXIT_PENDING, &priv->status))
return;
mutex_lock(&priv->mutex);
iwl_send_statistics_request(priv);
mutex_unlock(&priv->mutex);
}
#define CT_LIMIT_CONST 259
#define TM_CT_KILL_THRESHOLD 110
void iwl4965_rf_kill_ct_config(struct iwl_priv *priv)
{
struct iwl_ct_kill_config cmd;
u32 R1, R2, R3;
u32 temp_th;
u32 crit_temperature;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&priv->lock, flags);
iwl_write32(priv, CSR_UCODE_DRV_GP1_CLR,
CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
spin_unlock_irqrestore(&priv->lock, flags);
if (priv->statistics.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK) {
R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[1]);
R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[1]);
R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[1]);
} else {
R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[0]);
R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[0]);
R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[0]);
}
temp_th = CELSIUS_TO_KELVIN(TM_CT_KILL_THRESHOLD);
crit_temperature = ((temp_th * (R3-R1))/CT_LIMIT_CONST) + R2;
cmd.critical_temperature_R = cpu_to_le32(crit_temperature);
rc = iwl_send_cmd_pdu(priv,
REPLY_CT_KILL_CONFIG_CMD, sizeof(cmd), &cmd);
if (rc)
IWL_ERROR("REPLY_CT_KILL_CONFIG_CMD failed\n");
else
IWL_DEBUG_INFO("REPLY_CT_KILL_CONFIG_CMD succeeded\n");
}
#ifdef CONFIG_IWLWIFI_SENSITIVITY
/* "false alarms" are signals that our DSP tries to lock onto,
* but then determines that they are either noise, or transmissions
* from a distant wireless network (also "noise", really) that get
* "stepped on" by stronger transmissions within our own network.
* This algorithm attempts to set a sensitivity level that is high
* enough to receive all of our own network traffic, but not so
* high that our DSP gets too busy trying to lock onto non-network
* activity/noise. */
static int iwl4965_sens_energy_cck(struct iwl_priv *priv,
u32 norm_fa,
u32 rx_enable_time,
struct statistics_general_data *rx_info)
{
u32 max_nrg_cck = 0;
int i = 0;
u8 max_silence_rssi = 0;
u32 silence_ref = 0;
u8 silence_rssi_a = 0;
u8 silence_rssi_b = 0;
u8 silence_rssi_c = 0;
u32 val;
/* "false_alarms" values below are cross-multiplications to assess the
* numbers of false alarms within the measured period of actual Rx
* (Rx is off when we're txing), vs the min/max expected false alarms
* (some should be expected if rx is sensitive enough) in a
* hypothetical listening period of 200 time units (TU), 204.8 msec:
*
* MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
*
* */
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
struct iwl_sensitivity_data *data = NULL;
data = &(priv->sensitivity_data);
data->nrg_auto_corr_silence_diff = 0;
/* Find max silence rssi among all 3 receivers.
* This is background noise, which may include transmissions from other
* networks, measured during silence before our network's beacon */
silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
ALL_BAND_FILTER)>>8);
silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
ALL_BAND_FILTER)>>8);
silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
ALL_BAND_FILTER)>>8);
val = max(silence_rssi_b, silence_rssi_c);
max_silence_rssi = max(silence_rssi_a, (u8) val);
/* Store silence rssi in 20-beacon history table */
data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
data->nrg_silence_idx++;
if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
data->nrg_silence_idx = 0;
/* Find max silence rssi across 20 beacon history */
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
val = data->nrg_silence_rssi[i];
silence_ref = max(silence_ref, val);
}
IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n",
silence_rssi_a, silence_rssi_b, silence_rssi_c,
silence_ref);
/* Find max rx energy (min value!) among all 3 receivers,
* measured during beacon frame.
* Save it in 10-beacon history table. */
i = data->nrg_energy_idx;
val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
data->nrg_energy_idx++;
if (data->nrg_energy_idx >= 10)
data->nrg_energy_idx = 0;
/* Find min rx energy (max value) across 10 beacon history.
* This is the minimum signal level that we want to receive well.
* Add backoff (margin so we don't miss slightly lower energy frames).
* This establishes an upper bound (min value) for energy threshold. */
max_nrg_cck = data->nrg_value[0];
for (i = 1; i < 10; i++)
max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
max_nrg_cck += 6;
IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
rx_info->beacon_energy_a, rx_info->beacon_energy_b,
rx_info->beacon_energy_c, max_nrg_cck - 6);
/* Count number of consecutive beacons with fewer-than-desired
* false alarms. */
if (false_alarms < min_false_alarms)
data->num_in_cck_no_fa++;
else
data->num_in_cck_no_fa = 0;
IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n",
data->num_in_cck_no_fa);
/* If we got too many false alarms this time, reduce sensitivity */
if (false_alarms > max_false_alarms) {
IWL_DEBUG_CALIB("norm FA %u > max FA %u\n",
false_alarms, max_false_alarms);
IWL_DEBUG_CALIB("... reducing sensitivity\n");
data->nrg_curr_state = IWL_FA_TOO_MANY;
if (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) {
/* Store for "fewer than desired" on later beacon */
data->nrg_silence_ref = silence_ref;
/* increase energy threshold (reduce nrg value)
* to decrease sensitivity */
if (data->nrg_th_cck > (NRG_MAX_CCK + NRG_STEP_CCK))
data->nrg_th_cck = data->nrg_th_cck
- NRG_STEP_CCK;
}
/* increase auto_corr values to decrease sensitivity */
if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
else {
val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
data->auto_corr_cck = min((u32)AUTO_CORR_MAX_CCK, val);
}
val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc = min((u32)AUTO_CORR_MAX_CCK_MRC, val);
/* Else if we got fewer than desired, increase sensitivity */
} else if (false_alarms < min_false_alarms) {
data->nrg_curr_state = IWL_FA_TOO_FEW;
/* Compare silence level with silence level for most recent
* healthy number or too many false alarms */
data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
(s32)silence_ref;
IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n",
false_alarms, min_false_alarms,
data->nrg_auto_corr_silence_diff);
/* Increase value to increase sensitivity, but only if:
* 1a) previous beacon did *not* have *too many* false alarms
* 1b) AND there's a significant difference in Rx levels
* from a previous beacon with too many, or healthy # FAs
* OR 2) We've seen a lot of beacons (100) with too few
* false alarms */
if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
IWL_DEBUG_CALIB("... increasing sensitivity\n");
/* Increase nrg value to increase sensitivity */
val = data->nrg_th_cck + NRG_STEP_CCK;
data->nrg_th_cck = min((u32)NRG_MIN_CCK, val);
/* Decrease auto_corr values to increase sensitivity */
val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
data->auto_corr_cck = max((u32)AUTO_CORR_MIN_CCK, val);
val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
data->auto_corr_cck_mrc =
max((u32)AUTO_CORR_MIN_CCK_MRC, val);
} else
IWL_DEBUG_CALIB("... but not changing sensitivity\n");
/* Else we got a healthy number of false alarms, keep status quo */
} else {
IWL_DEBUG_CALIB(" FA in safe zone\n");
data->nrg_curr_state = IWL_FA_GOOD_RANGE;
/* Store for use in "fewer than desired" with later beacon */
data->nrg_silence_ref = silence_ref;
/* If previous beacon had too many false alarms,
* give it some extra margin by reducing sensitivity again
* (but don't go below measured energy of desired Rx) */
if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
IWL_DEBUG_CALIB("... increasing margin\n");
data->nrg_th_cck -= NRG_MARGIN;
}
}
/* Make sure the energy threshold does not go above the measured
* energy of the desired Rx signals (reduced by backoff margin),
* or else we might start missing Rx frames.
* Lower value is higher energy, so we use max()!
*/
data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck);
data->nrg_prev_state = data->nrg_curr_state;
return 0;
}
static int iwl4965_sens_auto_corr_ofdm(struct iwl_priv *priv,
u32 norm_fa,
u32 rx_enable_time)
{
u32 val;
u32 false_alarms = norm_fa * 200 * 1024;
u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
struct iwl_sensitivity_data *data = NULL;
data = &(priv->sensitivity_data);
/* If we got too many false alarms this time, reduce sensitivity */
if (false_alarms > max_false_alarms) {
IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n",
false_alarms, max_false_alarms);
val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
min((u32)AUTO_CORR_MAX_OFDM, val);
val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
min((u32)AUTO_CORR_MAX_OFDM_MRC, val);
val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
min((u32)AUTO_CORR_MAX_OFDM_X1, val);
val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
min((u32)AUTO_CORR_MAX_OFDM_MRC_X1, val);
}
/* Else if we got fewer than desired, increase sensitivity */
else if (false_alarms < min_false_alarms) {
IWL_DEBUG_CALIB("norm FA %u < min FA %u\n",
false_alarms, min_false_alarms);
val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm =
max((u32)AUTO_CORR_MIN_OFDM, val);
val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc =
max((u32)AUTO_CORR_MIN_OFDM_MRC, val);
val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_x1 =
max((u32)AUTO_CORR_MIN_OFDM_X1, val);
val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
data->auto_corr_ofdm_mrc_x1 =
max((u32)AUTO_CORR_MIN_OFDM_MRC_X1, val);
}
else
IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
min_false_alarms, false_alarms, max_false_alarms);
return 0;
}
static int iwl_sensitivity_callback(struct iwl_priv *priv,
struct iwl_cmd *cmd, struct sk_buff *skb)
{
/* We didn't cache the SKB; let the caller free it */
return 1;
}
/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
static int iwl4965_sensitivity_write(struct iwl_priv *priv, u8 flags)
{
int rc = 0;
struct iwl_sensitivity_cmd cmd ;
struct iwl_sensitivity_data *data = NULL;
struct iwl_host_cmd cmd_out = {
.id = SENSITIVITY_CMD,
.len = sizeof(struct iwl_sensitivity_cmd),
.meta.flags = flags,
.data = &cmd,
};
data = &(priv->sensitivity_data);
memset(&cmd, 0, sizeof(cmd));
cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm);
cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_x1);
cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
cpu_to_le16((u16)data->auto_corr_cck);
cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
cpu_to_le16((u16)data->auto_corr_cck_mrc);
cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] =
cpu_to_le16((u16)data->nrg_th_cck);
cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] =
cpu_to_le16((u16)data->nrg_th_ofdm);
cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
__constant_cpu_to_le16(190);
cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
__constant_cpu_to_le16(390);
cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] =
__constant_cpu_to_le16(62);
IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
data->nrg_th_ofdm);
IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n",
data->auto_corr_cck, data->auto_corr_cck_mrc,
data->nrg_th_cck);
cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
if (flags & CMD_ASYNC)
cmd_out.meta.u.callback = iwl_sensitivity_callback;
/* Don't send command to uCode if nothing has changed */
if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
sizeof(u16)*HD_TABLE_SIZE)) {
IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n");
return 0;
}
/* Copy table for comparison next time */
memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
sizeof(u16)*HD_TABLE_SIZE);
rc = iwl_send_cmd(priv, &cmd_out);
if (!rc) {
IWL_DEBUG_CALIB("SENSITIVITY_CMD succeeded\n");
return rc;
}
return 0;
}
void iwl4965_init_sensitivity(struct iwl_priv *priv, u8 flags, u8 force)
{
int rc = 0;
int i;
struct iwl_sensitivity_data *data = NULL;
IWL_DEBUG_CALIB("Start iwl4965_init_sensitivity\n");
if (force)
memset(&(priv->sensitivity_tbl[0]), 0,
sizeof(u16)*HD_TABLE_SIZE);
/* Clear driver's sensitivity algo data */
data = &(priv->sensitivity_data);
memset(data, 0, sizeof(struct iwl_sensitivity_data));
data->num_in_cck_no_fa = 0;
data->nrg_curr_state = IWL_FA_TOO_MANY;
data->nrg_prev_state = IWL_FA_TOO_MANY;
data->nrg_silence_ref = 0;
data->nrg_silence_idx = 0;
data->nrg_energy_idx = 0;
for (i = 0; i < 10; i++)
data->nrg_value[i] = 0;
for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
data->nrg_silence_rssi[i] = 0;
data->auto_corr_ofdm = 90;
data->auto_corr_ofdm_mrc = 170;
data->auto_corr_ofdm_x1 = 105;
data->auto_corr_ofdm_mrc_x1 = 220;
data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
data->auto_corr_cck_mrc = 200;
data->nrg_th_cck = 100;
data->nrg_th_ofdm = 100;
data->last_bad_plcp_cnt_ofdm = 0;
data->last_fa_cnt_ofdm = 0;
data->last_bad_plcp_cnt_cck = 0;
data->last_fa_cnt_cck = 0;
/* Clear prior Sensitivity command data to force send to uCode */
if (force)
memset(&(priv->sensitivity_tbl[0]), 0,
sizeof(u16)*HD_TABLE_SIZE);
rc |= iwl4965_sensitivity_write(priv, flags);
IWL_DEBUG_CALIB("<<return 0x%X\n", rc);
return;
}
/* Reset differential Rx gains in NIC to prepare for chain noise calibration.
* Called after every association, but this runs only once!
* ... once chain noise is calibrated the first time, it's good forever. */
void iwl4965_chain_noise_reset(struct iwl_priv *priv)
{
struct iwl_chain_noise_data *data = NULL;
int rc = 0;
data = &(priv->chain_noise_data);
if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) {
struct iwl_calibration_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = 0;
cmd.diff_gain_b = 0;
cmd.diff_gain_c = 0;
rc = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
sizeof(cmd), &cmd);
msleep(4);
data->state = IWL_CHAIN_NOISE_ACCUMULATE;
IWL_DEBUG_CALIB("Run chain_noise_calibrate\n");
}
return;
}
/*
* Accumulate 20 beacons of signal and noise statistics for each of
* 3 receivers/antennas/rx-chains, then figure out:
* 1) Which antennas are connected.
* 2) Differential rx gain settings to balance the 3 receivers.
*/
static void iwl4965_noise_calibration(struct iwl_priv *priv,
struct iwl_notif_statistics *stat_resp)
{
struct iwl_chain_noise_data *data = NULL;
int rc = 0;
u32 chain_noise_a;
u32 chain_noise_b;
u32 chain_noise_c;
u32 chain_sig_a;
u32 chain_sig_b;
u32 chain_sig_c;
u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
u32 max_average_sig;
u16 max_average_sig_antenna_i;
u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
u16 i = 0;
u16 chan_num = INITIALIZATION_VALUE;
u32 band = INITIALIZATION_VALUE;
u32 active_chains = 0;
unsigned long flags;
struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general);
data = &(priv->chain_noise_data);
/* Accumulate just the first 20 beacons after the first association,
* then we're done forever. */
if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
if (data->state == IWL_CHAIN_NOISE_ALIVE)
IWL_DEBUG_CALIB("Wait for noise calib reset\n");
return;
}
spin_lock_irqsave(&priv->lock, flags);
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
IWL_DEBUG_CALIB(" << Interference data unavailable\n");
spin_unlock_irqrestore(&priv->lock, flags);
return;
}
band = (priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK) ? 0 : 1;
chan_num = le16_to_cpu(priv->staging_rxon.channel);
/* Make sure we accumulate data for just the associated channel
* (even if scanning). */
if ((chan_num != (le32_to_cpu(stat_resp->flag) >> 16)) ||
((STATISTICS_REPLY_FLG_BAND_24G_MSK ==
(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK)) && band)) {
IWL_DEBUG_CALIB("Stats not from chan=%d, band=%d\n",
chan_num, band);
spin_unlock_irqrestore(&priv->lock, flags);
return;
}
/* Accumulate beacon statistics values across 20 beacons */
chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
IN_BAND_FILTER;
chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
IN_BAND_FILTER;
chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
IN_BAND_FILTER;
chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
spin_unlock_irqrestore(&priv->lock, flags);
data->beacon_count++;
data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
IWL_DEBUG_CALIB("chan=%d, band=%d, beacon=%d\n", chan_num, band,
data->beacon_count);
IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n",
chain_sig_a, chain_sig_b, chain_sig_c);
IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n",
chain_noise_a, chain_noise_b, chain_noise_c);
/* If this is the 20th beacon, determine:
* 1) Disconnected antennas (using signal strengths)
* 2) Differential gain (using silence noise) to balance receivers */
if (data->beacon_count == CAL_NUM_OF_BEACONS) {
/* Analyze signal for disconnected antenna */
average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS;
average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS;
average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS;
if (average_sig[0] >= average_sig[1]) {
max_average_sig = average_sig[0];
max_average_sig_antenna_i = 0;
active_chains = (1 << max_average_sig_antenna_i);
} else {
max_average_sig = average_sig[1];
max_average_sig_antenna_i = 1;
active_chains = (1 << max_average_sig_antenna_i);
}
if (average_sig[2] >= max_average_sig) {
max_average_sig = average_sig[2];
max_average_sig_antenna_i = 2;
active_chains = (1 << max_average_sig_antenna_i);
}
IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n",
average_sig[0], average_sig[1], average_sig[2]);
IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n",
max_average_sig, max_average_sig_antenna_i);
/* Compare signal strengths for all 3 receivers. */
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (i != max_average_sig_antenna_i) {
s32 rssi_delta = (max_average_sig -
average_sig[i]);
/* If signal is very weak, compared with
* strongest, mark it as disconnected. */
if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
data->disconn_array[i] = 1;
else
active_chains |= (1 << i);
IWL_DEBUG_CALIB("i = %d rssiDelta = %d "
"disconn_array[i] = %d\n",
i, rssi_delta, data->disconn_array[i]);
}
}
/*If both chains A & B are disconnected -
* connect B and leave A as is */
if (data->disconn_array[CHAIN_A] &&
data->disconn_array[CHAIN_B]) {
data->disconn_array[CHAIN_B] = 0;
active_chains |= (1 << CHAIN_B);
IWL_DEBUG_CALIB("both A & B chains are disconnected! "
"W/A - declare B as connected\n");
}
IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n",
active_chains);
/* Save for use within RXON, TX, SCAN commands, etc. */
priv->valid_antenna = active_chains;
/* Analyze noise for rx balance */
average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS);
average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS);
average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS);
for (i = 0; i < NUM_RX_CHAINS; i++) {
if (!(data->disconn_array[i]) &&
(average_noise[i] <= min_average_noise)) {
/* This means that chain i is active and has
* lower noise values so far: */
min_average_noise = average_noise[i];
min_average_noise_antenna_i = i;
}
}
data->delta_gain_code[min_average_noise_antenna_i] = 0;
IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n",
average_noise[0], average_noise[1],
average_noise[2]);
IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n",
min_average_noise, min_average_noise_antenna_i);
for (i = 0; i < NUM_RX_CHAINS; i++) {
s32 delta_g = 0;
if (!(data->disconn_array[i]) &&
(data->delta_gain_code[i] ==
CHAIN_NOISE_DELTA_GAIN_INIT_VAL)) {
delta_g = average_noise[i] - min_average_noise;
data->delta_gain_code[i] = (u8)((delta_g *
10) / 15);
if (CHAIN_NOISE_MAX_DELTA_GAIN_CODE <
data->delta_gain_code[i])
data->delta_gain_code[i] =
CHAIN_NOISE_MAX_DELTA_GAIN_CODE;
data->delta_gain_code[i] =
(data->delta_gain_code[i] | (1 << 2));
} else
data->delta_gain_code[i] = 0;
}
IWL_DEBUG_CALIB("delta_gain_codes: a %d b %d c %d\n",
data->delta_gain_code[0],
data->delta_gain_code[1],
data->delta_gain_code[2]);
/* Differential gain gets sent to uCode only once */
if (!data->radio_write) {
struct iwl_calibration_cmd cmd;
data->radio_write = 1;
memset(&cmd, 0, sizeof(cmd));
cmd.opCode = PHY_CALIBRATE_DIFF_GAIN_CMD;
cmd.diff_gain_a = data->delta_gain_code[0];
cmd.diff_gain_b = data->delta_gain_code[1];
cmd.diff_gain_c = data->delta_gain_code[2];
rc = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
sizeof(cmd), &cmd);
if (rc)
IWL_DEBUG_CALIB("fail sending cmd "
"REPLY_PHY_CALIBRATION_CMD \n");
/* TODO we might want recalculate
* rx_chain in rxon cmd */
/* Mark so we run this algo only once! */
data->state = IWL_CHAIN_NOISE_CALIBRATED;
}
data->chain_noise_a = 0;
data->chain_noise_b = 0;
data->chain_noise_c = 0;
data->chain_signal_a = 0;
data->chain_signal_b = 0;
data->chain_signal_c = 0;
data->beacon_count = 0;
}
return;
}
static void iwl4965_sensitivity_calibration(struct iwl_priv *priv,
struct iwl_notif_statistics *resp)
{
int rc = 0;
u32 rx_enable_time;
u32 fa_cck;
u32 fa_ofdm;
u32 bad_plcp_cck;
u32 bad_plcp_ofdm;
u32 norm_fa_ofdm;
u32 norm_fa_cck;
struct iwl_sensitivity_data *data = NULL;
struct statistics_rx_non_phy *rx_info = &(resp->rx.general);
struct statistics_rx *statistics = &(resp->rx);
unsigned long flags;
struct statistics_general_data statis;
data = &(priv->sensitivity_data);
if (!iwl_is_associated(priv)) {
IWL_DEBUG_CALIB("<< - not associated\n");
return;
}
spin_lock_irqsave(&priv->lock, flags);
if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
IWL_DEBUG_CALIB("<< invalid data.\n");
spin_unlock_irqrestore(&priv->lock, flags);
return;
}
/* Extract Statistics: */
rx_enable_time = le32_to_cpu(rx_info->channel_load);
fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt);
fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt);
bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err);
bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err);
statis.beacon_silence_rssi_a =
le32_to_cpu(statistics->general.beacon_silence_rssi_a);
statis.beacon_silence_rssi_b =
le32_to_cpu(statistics->general.beacon_silence_rssi_b);
statis.beacon_silence_rssi_c =
le32_to_cpu(statistics->general.beacon_silence_rssi_c);
statis.beacon_energy_a =
le32_to_cpu(statistics->general.beacon_energy_a);
statis.beacon_energy_b =
le32_to_cpu(statistics->general.beacon_energy_b);
statis.beacon_energy_c =
le32_to_cpu(statistics->general.beacon_energy_c);
spin_unlock_irqrestore(&priv->lock, flags);
IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time);
if (!rx_enable_time) {
IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n");
return;
}
/* These statistics increase monotonically, and do not reset
* at each beacon. Calculate difference from last value, or just
* use the new statistics value if it has reset or wrapped around. */
if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
data->last_bad_plcp_cnt_cck = bad_plcp_cck;
else {
bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
data->last_bad_plcp_cnt_cck += bad_plcp_cck;
}
if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
else {
bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
}
if (data->last_fa_cnt_ofdm > fa_ofdm)
data->last_fa_cnt_ofdm = fa_ofdm;
else {
fa_ofdm -= data->last_fa_cnt_ofdm;
data->last_fa_cnt_ofdm += fa_ofdm;
}
if (data->last_fa_cnt_cck > fa_cck)
data->last_fa_cnt_cck = fa_cck;
else {
fa_cck -= data->last_fa_cnt_cck;
data->last_fa_cnt_cck += fa_cck;
}
/* Total aborted signal locks */
norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
norm_fa_cck = fa_cck + bad_plcp_cck;
IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
iwl4965_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
iwl4965_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
rc |= iwl4965_sensitivity_write(priv, CMD_ASYNC);
return;
}
static void iwl4965_bg_sensitivity_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv,
sensitivity_work);
mutex_lock(&priv->mutex);
if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
test_bit(STATUS_SCANNING, &priv->status)) {
mutex_unlock(&priv->mutex);
return;
}
if (priv->start_calib) {
iwl4965_noise_calibration(priv, &priv->statistics);
if (priv->sensitivity_data.state ==
IWL_SENS_CALIB_NEED_REINIT) {
iwl4965_init_sensitivity(priv, CMD_ASYNC, 0);
priv->sensitivity_data.state = IWL_SENS_CALIB_ALLOWED;
} else
iwl4965_sensitivity_calibration(priv,
&priv->statistics);
}
mutex_unlock(&priv->mutex);
return;
}
#endif /*CONFIG_IWLWIFI_SENSITIVITY*/
static void iwl4965_bg_txpower_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv,
txpower_work);
/* If a scan happened to start before we got here
* then just return; the statistics notification will
* kick off another scheduled work to compensate for
* any temperature delta we missed here. */
if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
test_bit(STATUS_SCANNING, &priv->status))
return;
mutex_lock(&priv->mutex);
/* Regardless of if we are assocaited, we must reconfigure the
* TX power since frames can be sent on non-radar channels while
* not associated */
iwl_hw_reg_send_txpower(priv);
/* Update last_temperature to keep is_calib_needed from running
* when it isn't needed... */
priv->last_temperature = priv->temperature;
mutex_unlock(&priv->mutex);
}
/*
* Acquire priv->lock before calling this function !
*/
static void iwl4965_set_wr_ptrs(struct iwl_priv *priv, int txq_id, u32 index)
{
iwl_write_restricted(priv, HBUS_TARG_WRPTR,
(index & 0xff) | (txq_id << 8));
iwl_write_restricted_reg(priv, SCD_QUEUE_RDPTR(txq_id), index);
}
/*
* Acquire priv->lock before calling this function !
*/
static void iwl4965_tx_queue_set_status(struct iwl_priv *priv,
struct iwl_tx_queue *txq,
int tx_fifo_id, int scd_retry)
{
int txq_id = txq->q.id;
int active = test_bit(txq_id, &priv->txq_ctx_active_msk)?1:0;
iwl_write_restricted_reg(priv, SCD_QUEUE_STATUS_BITS(txq_id),
(active << SCD_QUEUE_STTS_REG_POS_ACTIVE) |
(tx_fifo_id << SCD_QUEUE_STTS_REG_POS_TXF) |
(scd_retry << SCD_QUEUE_STTS_REG_POS_WSL) |
(scd_retry << SCD_QUEUE_STTS_REG_POS_SCD_ACK) |
SCD_QUEUE_STTS_REG_MSK);
txq->sched_retry = scd_retry;
IWL_DEBUG_INFO("%s %s Queue %d on AC %d\n",
active ? "Activete" : "Deactivate",
scd_retry ? "BA" : "AC", txq_id, tx_fifo_id);
}
static const u16 default_queue_to_tx_fifo[] = {
IWL_TX_FIFO_AC3,
IWL_TX_FIFO_AC2,
IWL_TX_FIFO_AC1,
IWL_TX_FIFO_AC0,
IWL_CMD_FIFO_NUM,
IWL_TX_FIFO_HCCA_1,
IWL_TX_FIFO_HCCA_2
};
static inline void iwl4965_txq_ctx_activate(struct iwl_priv *priv, int txq_id)
{
set_bit(txq_id, &priv->txq_ctx_active_msk);
}
static inline void iwl4965_txq_ctx_deactivate(struct iwl_priv *priv, int txq_id)
{
clear_bit(txq_id, &priv->txq_ctx_active_msk);
}
int iwl4965_alive_notify(struct iwl_priv *priv)
{
u32 a;
int i = 0;
unsigned long flags;
int rc;
spin_lock_irqsave(&priv->lock, flags);
#ifdef CONFIG_IWLWIFI_SENSITIVITY
memset(&(priv->sensitivity_data), 0,
sizeof(struct iwl_sensitivity_data));
memset(&(priv->chain_noise_data), 0,
sizeof(struct iwl_chain_noise_data));
for (i = 0; i < NUM_RX_CHAINS; i++)
priv->chain_noise_data.delta_gain_code[i] =
CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
#endif /* CONFIG_IWLWIFI_SENSITIVITY*/
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
priv->scd_base_addr = iwl_read_restricted_reg(priv, SCD_SRAM_BASE_ADDR);
a = priv->scd_base_addr + SCD_CONTEXT_DATA_OFFSET;
for (; a < priv->scd_base_addr + SCD_TX_STTS_BITMAP_OFFSET; a += 4)
iwl_write_restricted_mem(priv, a, 0);
for (; a < priv->scd_base_addr + SCD_TRANSLATE_TBL_OFFSET; a += 4)
iwl_write_restricted_mem(priv, a, 0);
for (; a < sizeof(u16) * priv->hw_setting.max_txq_num; a += 4)
iwl_write_restricted_mem(priv, a, 0);
iwl_write_restricted_reg(priv, SCD_DRAM_BASE_ADDR,
(priv->hw_setting.shared_phys +
offsetof(struct iwl_shared, queues_byte_cnt_tbls)) >> 10);
iwl_write_restricted_reg(priv, SCD_QUEUECHAIN_SEL, 0);
/* initiate the queues */
for (i = 0; i < priv->hw_setting.max_txq_num; i++) {
iwl_write_restricted_reg(priv, SCD_QUEUE_RDPTR(i), 0);
iwl_write_restricted(priv, HBUS_TARG_WRPTR, 0 | (i << 8));
iwl_write_restricted_mem(priv, priv->scd_base_addr +
SCD_CONTEXT_QUEUE_OFFSET(i),
(SCD_WIN_SIZE <<
SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) &
SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK);
iwl_write_restricted_mem(priv, priv->scd_base_addr +
SCD_CONTEXT_QUEUE_OFFSET(i) +
sizeof(u32),
(SCD_FRAME_LIMIT <<
SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK);
}
iwl_write_restricted_reg(priv, SCD_INTERRUPT_MASK,
(1 << priv->hw_setting.max_txq_num) - 1);
iwl_write_restricted_reg(priv, SCD_TXFACT,
SCD_TXFACT_REG_TXFIFO_MASK(0, 7));
iwl4965_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0);
/* map qos queues to fifos one-to-one */
for (i = 0; i < ARRAY_SIZE(default_queue_to_tx_fifo); i++) {
int ac = default_queue_to_tx_fifo[i];
iwl4965_txq_ctx_activate(priv, i);
iwl4965_tx_queue_set_status(priv, &priv->txq[i], ac, 0);
}
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
int iwl_hw_set_hw_setting(struct iwl_priv *priv)
{
priv->hw_setting.shared_virt =
pci_alloc_consistent(priv->pci_dev,
sizeof(struct iwl_shared),
&priv->hw_setting.shared_phys);
if (!priv->hw_setting.shared_virt)
return -1;
memset(priv->hw_setting.shared_virt, 0, sizeof(struct iwl_shared));
priv->hw_setting.max_txq_num = iwl_param_queues_num;
priv->hw_setting.ac_queue_count = AC_NUM;
priv->hw_setting.tx_cmd_len = sizeof(struct iwl_tx_cmd);
priv->hw_setting.max_rxq_size = RX_QUEUE_SIZE;
priv->hw_setting.max_rxq_log = RX_QUEUE_SIZE_LOG;
priv->hw_setting.max_stations = IWL4965_STATION_COUNT;
priv->hw_setting.bcast_sta_id = IWL4965_BROADCAST_ID;
return 0;
}
/**
* iwl_hw_txq_ctx_free - Free TXQ Context
*
* Destroy all TX DMA queues and structures
*/
void iwl_hw_txq_ctx_free(struct iwl_priv *priv)
{
int txq_id;
/* Tx queues */
for (txq_id = 0; txq_id < priv->hw_setting.max_txq_num; txq_id++)
iwl_tx_queue_free(priv, &priv->txq[txq_id]);
iwl4965_kw_free(priv);
}
/**
* iwl_hw_txq_free_tfd - Free one TFD, those at index [txq->q.read_ptr]
*
* Does NOT advance any indexes
*/
int iwl_hw_txq_free_tfd(struct iwl_priv *priv, struct iwl_tx_queue *txq)
{
struct iwl_tfd_frame *bd_tmp = (struct iwl_tfd_frame *)&txq->bd[0];
struct iwl_tfd_frame *bd = &bd_tmp[txq->q.read_ptr];
struct pci_dev *dev = priv->pci_dev;
int i;
int counter = 0;
int index, is_odd;
/* classify bd */
if (txq->q.id == IWL_CMD_QUEUE_NUM)
/* nothing to cleanup after for host commands */
return 0;
/* sanity check */
counter = IWL_GET_BITS(*bd, num_tbs);
if (counter > MAX_NUM_OF_TBS) {
IWL_ERROR("Too many chunks: %i\n", counter);
/* @todo issue fatal error, it is quite serious situation */
return 0;
}
/* unmap chunks if any */
for (i = 0; i < counter; i++) {
index = i / 2;
is_odd = i & 0x1;
if (is_odd)
pci_unmap_single(
dev,
IWL_GET_BITS(bd->pa[index], tb2_addr_lo16) |
(IWL_GET_BITS(bd->pa[index],
tb2_addr_hi20) << 16),
IWL_GET_BITS(bd->pa[index], tb2_len),
PCI_DMA_TODEVICE);
else if (i > 0)
pci_unmap_single(dev,
le32_to_cpu(bd->pa[index].tb1_addr),
IWL_GET_BITS(bd->pa[index], tb1_len),
PCI_DMA_TODEVICE);
if (txq->txb[txq->q.read_ptr].skb[i]) {
struct sk_buff *skb = txq->txb[txq->q.read_ptr].skb[i];
dev_kfree_skb(skb);
txq->txb[txq->q.read_ptr].skb[i] = NULL;
}
}
return 0;
}
int iwl_hw_reg_set_txpower(struct iwl_priv *priv, s8 power)
{
IWL_ERROR("TODO: Implement iwl_hw_reg_set_txpower!\n");
return -EINVAL;
}
static s32 iwl4965_math_div_round(s32 num, s32 denom, s32 *res)
{
s32 sign = 1;
if (num < 0) {
sign = -sign;
num = -num;
}
if (denom < 0) {
sign = -sign;
denom = -denom;
}
*res = 1;
*res = ((num * 2 + denom) / (denom * 2)) * sign;
return 1;
}
static s32 iwl4965_get_voltage_compensation(s32 eeprom_voltage,
s32 current_voltage)
{
s32 comp = 0;
if ((TX_POWER_IWL_ILLEGAL_VOLTAGE == eeprom_voltage) ||
(TX_POWER_IWL_ILLEGAL_VOLTAGE == current_voltage))
return 0;
iwl4965_math_div_round(current_voltage - eeprom_voltage,
TX_POWER_IWL_VOLTAGE_CODES_PER_03V, &comp);
if (current_voltage > eeprom_voltage)
comp *= 2;
if ((comp < -2) || (comp > 2))
comp = 0;
return comp;
}
static const struct iwl_channel_info *
iwl4965_get_channel_txpower_info(struct iwl_priv *priv, u8 phymode, u16 channel)
{
const struct iwl_channel_info *ch_info;
ch_info = iwl_get_channel_info(priv, phymode, channel);
if (!is_channel_valid(ch_info))
return NULL;
return ch_info;
}
static s32 iwl4965_get_tx_atten_grp(u16 channel)
{
if (channel >= CALIB_IWL_TX_ATTEN_GR5_FCH &&
channel <= CALIB_IWL_TX_ATTEN_GR5_LCH)
return CALIB_CH_GROUP_5;
if (channel >= CALIB_IWL_TX_ATTEN_GR1_FCH &&
channel <= CALIB_IWL_TX_ATTEN_GR1_LCH)
return CALIB_CH_GROUP_1;
if (channel >= CALIB_IWL_TX_ATTEN_GR2_FCH &&
channel <= CALIB_IWL_TX_ATTEN_GR2_LCH)
return CALIB_CH_GROUP_2;
if (channel >= CALIB_IWL_TX_ATTEN_GR3_FCH &&
channel <= CALIB_IWL_TX_ATTEN_GR3_LCH)
return CALIB_CH_GROUP_3;
if (channel >= CALIB_IWL_TX_ATTEN_GR4_FCH &&
channel <= CALIB_IWL_TX_ATTEN_GR4_LCH)
return CALIB_CH_GROUP_4;
IWL_ERROR("Can't find txatten group for channel %d.\n", channel);
return -1;
}
static u32 iwl4965_get_sub_band(const struct iwl_priv *priv, u32 channel)
{
s32 b = -1;
for (b = 0; b < EEPROM_TX_POWER_BANDS; b++) {
if (priv->eeprom.calib_info.band_info[b].ch_from == 0)
continue;
if ((channel >= priv->eeprom.calib_info.band_info[b].ch_from)
&& (channel <= priv->eeprom.calib_info.band_info[b].ch_to))
break;
}
return b;
}
static s32 iwl4965_interpolate_value(s32 x, s32 x1, s32 y1, s32 x2, s32 y2)
{
s32 val;
if (x2 == x1)
return y1;
else {
iwl4965_math_div_round((x2 - x) * (y1 - y2), (x2 - x1), &val);
return val + y2;
}
}
static int iwl4965_interpolate_chan(struct iwl_priv *priv, u32 channel,
struct iwl_eeprom_calib_ch_info *chan_info)
{
s32 s = -1;
u32 c;
u32 m;
const struct iwl_eeprom_calib_measure *m1;
const struct iwl_eeprom_calib_measure *m2;
struct iwl_eeprom_calib_measure *omeas;
u32 ch_i1;
u32 ch_i2;
s = iwl4965_get_sub_band(priv, channel);
if (s >= EEPROM_TX_POWER_BANDS) {
IWL_ERROR("Tx Power can not find channel %d ", channel);
return -1;
}
ch_i1 = priv->eeprom.calib_info.band_info[s].ch1.ch_num;
ch_i2 = priv->eeprom.calib_info.band_info[s].ch2.ch_num;
chan_info->ch_num = (u8) channel;
IWL_DEBUG_TXPOWER("channel %d subband %d factory cal ch %d & %d\n",
channel, s, ch_i1, ch_i2);
for (c = 0; c < EEPROM_TX_POWER_TX_CHAINS; c++) {
for (m = 0; m < EEPROM_TX_POWER_MEASUREMENTS; m++) {
m1 = &(priv->eeprom.calib_info.band_info[s].ch1.
measurements[c][m]);
m2 = &(priv->eeprom.calib_info.band_info[s].ch2.
measurements[c][m]);
omeas = &(chan_info->measurements[c][m]);
omeas->actual_pow =
(u8) iwl4965_interpolate_value(channel, ch_i1,
m1->actual_pow,
ch_i2,
m2->actual_pow);
omeas->gain_idx =
(u8) iwl4965_interpolate_value(channel, ch_i1,
m1->gain_idx, ch_i2,
m2->gain_idx);
omeas->temperature =
(u8) iwl4965_interpolate_value(channel, ch_i1,
m1->temperature,
ch_i2,
m2->temperature);
omeas->pa_det =
(s8) iwl4965_interpolate_value(channel, ch_i1,
m1->pa_det, ch_i2,
m2->pa_det);
IWL_DEBUG_TXPOWER
("chain %d meas %d AP1=%d AP2=%d AP=%d\n", c, m,
m1->actual_pow, m2->actual_pow, omeas->actual_pow);
IWL_DEBUG_TXPOWER
("chain %d meas %d NI1=%d NI2=%d NI=%d\n", c, m,
m1->gain_idx, m2->gain_idx, omeas->gain_idx);
IWL_DEBUG_TXPOWER
("chain %d meas %d PA1=%d PA2=%d PA=%d\n", c, m,
m1->pa_det, m2->pa_det, omeas->pa_det);
IWL_DEBUG_TXPOWER
("chain %d meas %d T1=%d T2=%d T=%d\n", c, m,
m1->temperature, m2->temperature,
omeas->temperature);
}
}
return 0;
}
/* bit-rate-dependent table to prevent Tx distortion, in half-dB units,
* for OFDM 6, 12, 18, 24, 36, 48, 54, 60 MBit, and CCK all rates. */
static s32 back_off_table[] = {
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 20 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM SISO 40 MHz */
10, 10, 10, 10, 10, 15, 17, 20, /* OFDM MIMO 40 MHz */
10 /* CCK */
};
/* Thermal compensation values for txpower for various frequency ranges ...
* ratios from 3:1 to 4.5:1 of degrees (Celsius) per half-dB gain adjust */
static struct iwl_txpower_comp_entry {
s32 degrees_per_05db_a;
s32 degrees_per_05db_a_denom;
} tx_power_cmp_tble[CALIB_CH_GROUP_MAX] = {
{9, 2}, /* group 0 5.2, ch 34-43 */
{4, 1}, /* group 1 5.2, ch 44-70 */
{4, 1}, /* group 2 5.2, ch 71-124 */
{4, 1}, /* group 3 5.2, ch 125-200 */
{3, 1} /* group 4 2.4, ch all */
};
static s32 get_min_power_index(s32 rate_power_index, u32 band)
{
if (!band) {
if ((rate_power_index & 7) <= 4)
return MIN_TX_GAIN_INDEX_52GHZ_EXT;
}
return MIN_TX_GAIN_INDEX;
}
struct gain_entry {
u8 dsp;
u8 radio;
};
static const struct gain_entry gain_table[2][108] = {
/* 5.2GHz power gain index table */
{
{123, 0x3F}, /* highest txpower */
{117, 0x3F},
{110, 0x3F},
{104, 0x3F},
{98, 0x3F},
{110, 0x3E},
{104, 0x3E},
{98, 0x3E},
{110, 0x3D},
{104, 0x3D},
{98, 0x3D},
{110, 0x3C},
{104, 0x3C},
{98, 0x3C},
{110, 0x3B},
{104, 0x3B},
{98, 0x3B},
{110, 0x3A},
{104, 0x3A},
{98, 0x3A},
{110, 0x39},
{104, 0x39},
{98, 0x39},
{110, 0x38},
{104, 0x38},
{98, 0x38},
{110, 0x37},
{104, 0x37},
{98, 0x37},
{110, 0x36},
{104, 0x36},
{98, 0x36},
{110, 0x35},
{104, 0x35},
{98, 0x35},
{110, 0x34},
{104, 0x34},
{98, 0x34},
{110, 0x33},
{104, 0x33},
{98, 0x33},
{110, 0x32},
{104, 0x32},
{98, 0x32},
{110, 0x31},
{104, 0x31},
{98, 0x31},
{110, 0x30},
{104, 0x30},
{98, 0x30},
{110, 0x25},
{104, 0x25},
{98, 0x25},
{110, 0x24},
{104, 0x24},
{98, 0x24},
{110, 0x23},
{104, 0x23},
{98, 0x23},
{110, 0x22},
{104, 0x18},
{98, 0x18},
{110, 0x17},
{104, 0x17},
{98, 0x17},
{110, 0x16},
{104, 0x16},
{98, 0x16},
{110, 0x15},
{104, 0x15},
{98, 0x15},
{110, 0x14},
{104, 0x14},
{98, 0x14},
{110, 0x13},
{104, 0x13},
{98, 0x13},
{110, 0x12},
{104, 0x08},
{98, 0x08},
{110, 0x07},
{104, 0x07},
{98, 0x07},
{110, 0x06},
{104, 0x06},
{98, 0x06},
{110, 0x05},
{104, 0x05},
{98, 0x05},
{110, 0x04},
{104, 0x04},
{98, 0x04},
{110, 0x03},
{104, 0x03},
{98, 0x03},
{110, 0x02},
{104, 0x02},
{98, 0x02},
{110, 0x01},
{104, 0x01},
{98, 0x01},
{110, 0x00},
{104, 0x00},
{98, 0x00},
{93, 0x00},
{88, 0x00},
{83, 0x00},
{78, 0x00},
},
/* 2.4GHz power gain index table */
{
{110, 0x3f}, /* highest txpower */
{104, 0x3f},
{98, 0x3f},
{110, 0x3e},
{104, 0x3e},
{98, 0x3e},
{110, 0x3d},
{104, 0x3d},
{98, 0x3d},
{110, 0x3c},
{104, 0x3c},
{98, 0x3c},
{110, 0x3b},
{104, 0x3b},
{98, 0x3b},
{110, 0x3a},
{104, 0x3a},
{98, 0x3a},
{110, 0x39},
{104, 0x39},
{98, 0x39},
{110, 0x38},
{104, 0x38},
{98, 0x38},
{110, 0x37},
{104, 0x37},
{98, 0x37},
{110, 0x36},
{104, 0x36},
{98, 0x36},
{110, 0x35},
{104, 0x35},
{98, 0x35},
{110, 0x34},
{104, 0x34},
{98, 0x34},
{110, 0x33},
{104, 0x33},
{98, 0x33},
{110, 0x32},
{104, 0x32},
{98, 0x32},
{110, 0x31},
{104, 0x31},
{98, 0x31},
{110, 0x30},
{104, 0x30},
{98, 0x30},
{110, 0x6},
{104, 0x6},
{98, 0x6},
{110, 0x5},
{104, 0x5},
{98, 0x5},
{110, 0x4},
{104, 0x4},
{98, 0x4},
{110, 0x3},
{104, 0x3},
{98, 0x3},
{110, 0x2},
{104, 0x2},
{98, 0x2},
{110, 0x1},
{104, 0x1},
{98, 0x1},
{110, 0x0},
{104, 0x0},
{98, 0x0},
{97, 0},
{96, 0},
{95, 0},
{94, 0},
{93, 0},
{92, 0},
{91, 0},
{90, 0},
{89, 0},
{88, 0},
{87, 0},
{86, 0},
{85, 0},
{84, 0},
{83, 0},
{82, 0},
{81, 0},
{80, 0},
{79, 0},
{78, 0},
{77, 0},
{76, 0},
{75, 0},
{74, 0},
{73, 0},
{72, 0},
{71, 0},
{70, 0},
{69, 0},
{68, 0},
{67, 0},
{66, 0},
{65, 0},
{64, 0},
{63, 0},
{62, 0},
{61, 0},
{60, 0},
{59, 0},
}
};
static int iwl4965_fill_txpower_tbl(struct iwl_priv *priv, u8 band, u16 channel,
u8 is_fat, u8 ctrl_chan_high,
struct iwl_tx_power_db *tx_power_tbl)
{
u8 saturation_power;
s32 target_power;
s32 user_target_power;
s32 power_limit;
s32 current_temp;
s32 reg_limit;
s32 current_regulatory;
s32 txatten_grp = CALIB_CH_GROUP_MAX;
int i;
int c;
const struct iwl_channel_info *ch_info = NULL;
struct iwl_eeprom_calib_ch_info ch_eeprom_info;
const struct iwl_eeprom_calib_measure *measurement;
s16 voltage;
s32 init_voltage;
s32 voltage_compensation;
s32 degrees_per_05db_num;
s32 degrees_per_05db_denom;
s32 factory_temp;
s32 temperature_comp[2];
s32 factory_gain_index[2];
s32 factory_actual_pwr[2];
s32 power_index;
/* Sanity check requested level (dBm) */
if (priv->user_txpower_limit < IWL_TX_POWER_TARGET_POWER_MIN) {
IWL_WARNING("Requested user TXPOWER %d below limit.\n",
priv->user_txpower_limit);
return -EINVAL;
}
if (priv->user_txpower_limit > IWL_TX_POWER_TARGET_POWER_MAX) {
IWL_WARNING("Requested user TXPOWER %d above limit.\n",
priv->user_txpower_limit);
return -EINVAL;
}
/* user_txpower_limit is in dBm, convert to half-dBm (half-dB units
* are used for indexing into txpower table) */
user_target_power = 2 * priv->user_txpower_limit;
/* Get current (RXON) channel, band, width */
ch_info =
iwl4965_get_channel_txpower_info(priv, priv->phymode, channel);
IWL_DEBUG_TXPOWER("chan %d band %d is_fat %d\n", channel, band,
is_fat);
if (!ch_info)
return -EINVAL;
/* get txatten group, used to select 1) thermal txpower adjustment
* and 2) mimo txpower balance between Tx chains. */
txatten_grp = iwl4965_get_tx_atten_grp(channel);
if (txatten_grp < 0)
return -EINVAL;
IWL_DEBUG_TXPOWER("channel %d belongs to txatten group %d\n",
channel, txatten_grp);
if (is_fat) {
if (ctrl_chan_high)
channel -= 2;
else
channel += 2;
}
/* hardware txpower limits ...
* saturation (clipping distortion) txpowers are in half-dBm */
if (band)
saturation_power = priv->eeprom.calib_info.saturation_power24;
else
saturation_power = priv->eeprom.calib_info.saturation_power52;
if (saturation_power < IWL_TX_POWER_SATURATION_MIN ||
saturation_power > IWL_TX_POWER_SATURATION_MAX) {
if (band)
saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_24;
else
saturation_power = IWL_TX_POWER_DEFAULT_SATURATION_52;
}
/* regulatory txpower limits ... reg_limit values are in half-dBm,
* max_power_avg values are in dBm, convert * 2 */
if (is_fat)
reg_limit = ch_info->fat_max_power_avg * 2;
else
reg_limit = ch_info->max_power_avg * 2;
if ((reg_limit < IWL_TX_POWER_REGULATORY_MIN) ||
(reg_limit > IWL_TX_POWER_REGULATORY_MAX)) {
if (band)
reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_24;
else
reg_limit = IWL_TX_POWER_DEFAULT_REGULATORY_52;
}
/* Interpolate txpower calibration values for this channel,
* based on factory calibration tests on spaced channels. */
iwl4965_interpolate_chan(priv, channel, &ch_eeprom_info);
/* calculate tx gain adjustment based on power supply voltage */
voltage = priv->eeprom.calib_info.voltage;
init_voltage = (s32)le32_to_cpu(priv->card_alive_init.voltage);
voltage_compensation =
iwl4965_get_voltage_compensation(voltage, init_voltage);
IWL_DEBUG_TXPOWER("curr volt %d eeprom volt %d volt comp %d\n",
init_voltage,
voltage, voltage_compensation);
/* get current temperature (Celsius) */
current_temp = max(priv->temperature, IWL_TX_POWER_TEMPERATURE_MIN);
current_temp = min(priv->temperature, IWL_TX_POWER_TEMPERATURE_MAX);
current_temp = KELVIN_TO_CELSIUS(current_temp);
/* select thermal txpower adjustment params, based on channel group
* (same frequency group used for mimo txatten adjustment) */
degrees_per_05db_num =
tx_power_cmp_tble[txatten_grp].degrees_per_05db_a;
degrees_per_05db_denom =
tx_power_cmp_tble[txatten_grp].degrees_per_05db_a_denom;
/* get per-chain txpower values from factory measurements */
for (c = 0; c < 2; c++) {
measurement = &ch_eeprom_info.measurements[c][1];
/* txgain adjustment (in half-dB steps) based on difference
* between factory and current temperature */
factory_temp = measurement->temperature;
iwl4965_math_div_round((current_temp - factory_temp) *
degrees_per_05db_denom,
degrees_per_05db_num,
&temperature_comp[c]);
factory_gain_index[c] = measurement->gain_idx;
factory_actual_pwr[c] = measurement->actual_pow;
IWL_DEBUG_TXPOWER("chain = %d\n", c);
IWL_DEBUG_TXPOWER("fctry tmp %d, "
"curr tmp %d, comp %d steps\n",
factory_temp, current_temp,
temperature_comp[c]);
IWL_DEBUG_TXPOWER("fctry idx %d, fctry pwr %d\n",
factory_gain_index[c],
factory_actual_pwr[c]);
}
/* for each of 33 bit-rates (including 1 for CCK) */
for (i = 0; i < POWER_TABLE_NUM_ENTRIES; i++) {
u8 is_mimo_rate;
union iwl_tx_power_dual_stream tx_power;
/* for mimo, reduce each chain's txpower by half
* (3dB, 6 steps), so total output power is regulatory
* compliant. */
if (i & 0x8) {
current_regulatory = reg_limit -
IWL_TX_POWER_MIMO_REGULATORY_COMPENSATION;
is_mimo_rate = 1;
} else {
current_regulatory = reg_limit;
is_mimo_rate = 0;
}
/* find txpower limit, either hardware or regulatory */
power_limit = saturation_power - back_off_table[i];
if (power_limit > current_regulatory)
power_limit = current_regulatory;
/* reduce user's txpower request if necessary
* for this rate on this channel */
target_power = user_target_power;
if (target_power > power_limit)
target_power = power_limit;
IWL_DEBUG_TXPOWER("rate %d sat %d reg %d usr %d tgt %d\n",
i, saturation_power - back_off_table[i],
current_regulatory, user_target_power,
target_power);
/* for each of 2 Tx chains (radio transmitters) */
for (c = 0; c < 2; c++) {
s32 atten_value;
if (is_mimo_rate)
atten_value =
(s32)le32_to_cpu(priv->card_alive_init.
tx_atten[txatten_grp][c]);
else
atten_value = 0;
/* calculate index; higher index means lower txpower */
power_index = (u8) (factory_gain_index[c] -
(target_power -
factory_actual_pwr[c]) -
temperature_comp[c] -
voltage_compensation +
atten_value);
/* IWL_DEBUG_TXPOWER("calculated txpower index %d\n",
power_index); */
if (power_index < get_min_power_index(i, band))
power_index = get_min_power_index(i, band);
/* adjust 5 GHz index to support negative indexes */
if (!band)
power_index += 9;
/* CCK, rate 32, reduce txpower for CCK */
if (i == POWER_TABLE_CCK_ENTRY)
power_index +=
IWL_TX_POWER_CCK_COMPENSATION_C_STEP;
/* stay within the table! */
if (power_index > 107) {
IWL_WARNING("txpower index %d > 107\n",
power_index);
power_index = 107;
}
if (power_index < 0) {
IWL_WARNING("txpower index %d < 0\n",
power_index);
power_index = 0;
}
/* fill txpower command for this rate/chain */
tx_power.s.radio_tx_gain[c] =
gain_table[band][power_index].radio;
tx_power.s.dsp_predis_atten[c] =
gain_table[band][power_index].dsp;
IWL_DEBUG_TXPOWER("chain %d mimo %d index %d "
"gain 0x%02x dsp %d\n",
c, atten_value, power_index,
tx_power.s.radio_tx_gain[c],
tx_power.s.dsp_predis_atten[c]);
}/* for each chain */
tx_power_tbl->power_tbl[i].dw = cpu_to_le32(tx_power.dw);
}/* for each rate */
return 0;
}
/**
* iwl_hw_reg_send_txpower - Configure the TXPOWER level user limit
*
* Uses the active RXON for channel, band, and characteristics (fat, high)
* The power limit is taken from priv->user_txpower_limit.
*/
int iwl_hw_reg_send_txpower(struct iwl_priv *priv)
{
struct iwl_txpowertable_cmd cmd = { 0 };
int rc = 0;
u8 band = 0;
u8 is_fat = 0;
u8 ctrl_chan_high = 0;
if (test_bit(STATUS_SCANNING, &priv->status)) {
/* If this gets hit a lot, switch it to a BUG() and catch
* the stack trace to find out who is calling this during
* a scan. */
IWL_WARNING("TX Power requested while scanning!\n");
return -EAGAIN;
}
band = ((priv->phymode == MODE_IEEE80211B) ||
(priv->phymode == MODE_IEEE80211G));
is_fat = is_fat_channel(priv->active_rxon.flags);
if (is_fat &&
(priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
ctrl_chan_high = 1;
cmd.band = band;
cmd.channel = priv->active_rxon.channel;
rc = iwl4965_fill_txpower_tbl(priv, band,
le16_to_cpu(priv->active_rxon.channel),
is_fat, ctrl_chan_high, &cmd.tx_power);
if (rc)
return rc;
rc = iwl_send_cmd_pdu(priv, REPLY_TX_PWR_TABLE_CMD, sizeof(cmd), &cmd);
return rc;
}
int iwl_hw_channel_switch(struct iwl_priv *priv, u16 channel)
{
int rc;
u8 band = 0;
u8 is_fat = 0;
u8 ctrl_chan_high = 0;
struct iwl_channel_switch_cmd cmd = { 0 };
const struct iwl_channel_info *ch_info;
band = ((priv->phymode == MODE_IEEE80211B) ||
(priv->phymode == MODE_IEEE80211G));
ch_info = iwl_get_channel_info(priv, priv->phymode, channel);
is_fat = is_fat_channel(priv->staging_rxon.flags);
if (is_fat &&
(priv->active_rxon.flags & RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK))
ctrl_chan_high = 1;
cmd.band = band;
cmd.expect_beacon = 0;
cmd.channel = cpu_to_le16(channel);
cmd.rxon_flags = priv->active_rxon.flags;
cmd.rxon_filter_flags = priv->active_rxon.filter_flags;
cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
if (ch_info)
cmd.expect_beacon = is_channel_radar(ch_info);
else
cmd.expect_beacon = 1;
rc = iwl4965_fill_txpower_tbl(priv, band, channel, is_fat,
ctrl_chan_high, &cmd.tx_power);
if (rc) {
IWL_DEBUG_11H("error:%d fill txpower_tbl\n", rc);
return rc;
}
rc = iwl_send_cmd_pdu(priv, REPLY_CHANNEL_SWITCH, sizeof(cmd), &cmd);
return rc;
}
#define RTS_HCCA_RETRY_LIMIT 3
#define RTS_DFAULT_RETRY_LIMIT 60
void iwl_hw_build_tx_cmd_rate(struct iwl_priv *priv,
struct iwl_cmd *cmd,
struct ieee80211_tx_control *ctrl,
struct ieee80211_hdr *hdr, int sta_id,
int is_hcca)
{
u8 rate;
u8 rts_retry_limit = 0;
u8 data_retry_limit = 0;
__le32 tx_flags;
u16 fc = le16_to_cpu(hdr->frame_control);
tx_flags = cmd->cmd.tx.tx_flags;
rate = iwl_rates[ctrl->tx_rate].plcp;
rts_retry_limit = (is_hcca) ?
RTS_HCCA_RETRY_LIMIT : RTS_DFAULT_RETRY_LIMIT;
if (ieee80211_is_probe_response(fc)) {
data_retry_limit = 3;
if (data_retry_limit < rts_retry_limit)
rts_retry_limit = data_retry_limit;
} else
data_retry_limit = IWL_DEFAULT_TX_RETRY;
if (priv->data_retry_limit != -1)
data_retry_limit = priv->data_retry_limit;
if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_AUTH:
case IEEE80211_STYPE_DEAUTH:
case IEEE80211_STYPE_ASSOC_REQ:
case IEEE80211_STYPE_REASSOC_REQ:
if (tx_flags & TX_CMD_FLG_RTS_MSK) {
tx_flags &= ~TX_CMD_FLG_RTS_MSK;
tx_flags |= TX_CMD_FLG_CTS_MSK;
}
break;
default:
break;
}
}
cmd->cmd.tx.rts_retry_limit = rts_retry_limit;
cmd->cmd.tx.data_retry_limit = data_retry_limit;
cmd->cmd.tx.rate_n_flags = iwl_hw_set_rate_n_flags(rate, 0);
cmd->cmd.tx.tx_flags = tx_flags;
}
int iwl_hw_get_rx_read(struct iwl_priv *priv)
{
struct iwl_shared *shared_data = priv->hw_setting.shared_virt;
return IWL_GET_BITS(*shared_data, rb_closed_stts_rb_num);
}
int iwl_hw_get_temperature(struct iwl_priv *priv)
{
return priv->temperature;
}
unsigned int iwl_hw_get_beacon_cmd(struct iwl_priv *priv,
struct iwl_frame *frame, u8 rate)
{
struct iwl_tx_beacon_cmd *tx_beacon_cmd;
unsigned int frame_size;
tx_beacon_cmd = &frame->u.beacon;
memset(tx_beacon_cmd, 0, sizeof(*tx_beacon_cmd));
tx_beacon_cmd->tx.sta_id = IWL4965_BROADCAST_ID;
tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
frame_size = iwl_fill_beacon_frame(priv,
tx_beacon_cmd->frame,
BROADCAST_ADDR,
sizeof(frame->u) - sizeof(*tx_beacon_cmd));
BUG_ON(frame_size > MAX_MPDU_SIZE);
tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
if ((rate == IWL_RATE_1M_PLCP) || (rate >= IWL_RATE_2M_PLCP))
tx_beacon_cmd->tx.rate_n_flags =
iwl_hw_set_rate_n_flags(rate, RATE_MCS_CCK_MSK);
else
tx_beacon_cmd->tx.rate_n_flags =
iwl_hw_set_rate_n_flags(rate, 0);
tx_beacon_cmd->tx.tx_flags = (TX_CMD_FLG_SEQ_CTL_MSK |
TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK);
return (sizeof(*tx_beacon_cmd) + frame_size);
}
int iwl_hw_tx_queue_init(struct iwl_priv *priv, struct iwl_tx_queue *txq)
{
int rc;
unsigned long flags;
int txq_id = txq->q.id;
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl_write_restricted(priv, FH_MEM_CBBC_QUEUE(txq_id),
txq->q.dma_addr >> 8);
iwl_write_restricted(
priv, IWL_FH_TCSR_CHNL_TX_CONFIG_REG(txq_id),
IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWL_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE_VAL);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
static inline u8 iwl4965_get_dma_hi_address(dma_addr_t addr)
{
return sizeof(addr) > sizeof(u32) ? (addr >> 16) >> 16 : 0;
}
int iwl_hw_txq_attach_buf_to_tfd(struct iwl_priv *priv, void *ptr,
dma_addr_t addr, u16 len)
{
int index, is_odd;
struct iwl_tfd_frame *tfd = ptr;
u32 num_tbs = IWL_GET_BITS(*tfd, num_tbs);
if ((num_tbs >= MAX_NUM_OF_TBS) || (num_tbs < 0)) {
IWL_ERROR("Error can not send more than %d chunks\n",
MAX_NUM_OF_TBS);
return -EINVAL;
}
index = num_tbs / 2;
is_odd = num_tbs & 0x1;
if (!is_odd) {
tfd->pa[index].tb1_addr = cpu_to_le32(addr);
IWL_SET_BITS(tfd->pa[index], tb1_addr_hi,
iwl4965_get_dma_hi_address(addr));
IWL_SET_BITS(tfd->pa[index], tb1_len, len);
} else {
IWL_SET_BITS(tfd->pa[index], tb2_addr_lo16,
(u32) (addr & 0xffff));
IWL_SET_BITS(tfd->pa[index], tb2_addr_hi20, addr >> 16);
IWL_SET_BITS(tfd->pa[index], tb2_len, len);
}
IWL_SET_BITS(*tfd, num_tbs, num_tbs + 1);
return 0;
}
void iwl_hw_card_show_info(struct iwl_priv *priv)
{
u16 hw_version = priv->eeprom.board_revision_4965;
IWL_DEBUG_INFO("4965ABGN HW Version %u.%u.%u\n",
((hw_version >> 8) & 0x0F),
((hw_version >> 8) >> 4), (hw_version & 0x00FF));
IWL_DEBUG_INFO("4965ABGN PBA Number %.16s\n",
priv->eeprom.board_pba_number_4965);
}
#define IWL_TX_CRC_SIZE 4
#define IWL_TX_DELIMITER_SIZE 4
int iwl4965_tx_queue_update_wr_ptr(struct iwl_priv *priv,
struct iwl_tx_queue *txq, u16 byte_cnt)
{
int len;
int txq_id = txq->q.id;
struct iwl_shared *shared_data = priv->hw_setting.shared_virt;
if (txq->need_update == 0)
return 0;
len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
tfd_offset[txq->q.write_ptr], byte_cnt, len);
if (txq->q.write_ptr < IWL4965_MAX_WIN_SIZE)
IWL_SET_BITS16(shared_data->queues_byte_cnt_tbls[txq_id].
tfd_offset[IWL4965_QUEUE_SIZE + txq->q.write_ptr],
byte_cnt, len);
return 0;
}
/* Set up Rx receiver/antenna/chain usage in "staging" RXON image.
* This should not be used for scan command ... it puts data in wrong place. */
void iwl4965_set_rxon_chain(struct iwl_priv *priv)
{
u8 is_single = is_single_stream(priv);
u8 idle_state, rx_state;
priv->staging_rxon.rx_chain = 0;
rx_state = idle_state = 3;
/* Tell uCode which antennas are actually connected.
* Before first association, we assume all antennas are connected.
* Just after first association, iwl4965_noise_calibration()
* checks which antennas actually *are* connected. */
priv->staging_rxon.rx_chain |=
cpu_to_le16(priv->valid_antenna << RXON_RX_CHAIN_VALID_POS);
/* How many receivers should we use? */
iwl4965_get_rx_chain_counter(priv, &idle_state, &rx_state);
priv->staging_rxon.rx_chain |=
cpu_to_le16(rx_state << RXON_RX_CHAIN_MIMO_CNT_POS);
priv->staging_rxon.rx_chain |=
cpu_to_le16(idle_state << RXON_RX_CHAIN_CNT_POS);
if (!is_single && (rx_state >= 2) &&
!test_bit(STATUS_POWER_PMI, &priv->status))
priv->staging_rxon.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK;
else
priv->staging_rxon.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK;
IWL_DEBUG_ASSOC("rx chain %X\n", priv->staging_rxon.rx_chain);
}
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
/*
get the traffic load value for tid
*/
static u32 iwl4965_tl_get_load(struct iwl_priv *priv, u8 tid)
{
u32 load = 0;
u32 current_time = jiffies_to_msecs(jiffies);
u32 time_diff;
s32 index;
unsigned long flags;
struct iwl_traffic_load *tid_ptr = NULL;
if (tid >= TID_MAX_LOAD_COUNT)
return 0;
tid_ptr = &(priv->lq_mngr.agg_ctrl.traffic_load[tid]);
current_time -= current_time % TID_ROUND_VALUE;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
if (!(tid_ptr->queue_count))
goto out;
time_diff = TIME_WRAP_AROUND(tid_ptr->time_stamp, current_time);
index = time_diff / TID_QUEUE_CELL_SPACING;
if (index >= TID_QUEUE_MAX_SIZE) {
u32 oldest_time = current_time - TID_MAX_TIME_DIFF;
while (tid_ptr->queue_count &&
(tid_ptr->time_stamp < oldest_time)) {
tid_ptr->total -= tid_ptr->packet_count[tid_ptr->head];
tid_ptr->packet_count[tid_ptr->head] = 0;
tid_ptr->time_stamp += TID_QUEUE_CELL_SPACING;
tid_ptr->queue_count--;
tid_ptr->head++;
if (tid_ptr->head >= TID_QUEUE_MAX_SIZE)
tid_ptr->head = 0;
}
}
load = tid_ptr->total;
out:
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
return load;
}
/*
increment traffic load value for tid and also remove
any old values if passed the certian time period
*/
static void iwl4965_tl_add_packet(struct iwl_priv *priv, u8 tid)
{
u32 current_time = jiffies_to_msecs(jiffies);
u32 time_diff;
s32 index;
unsigned long flags;
struct iwl_traffic_load *tid_ptr = NULL;
if (tid >= TID_MAX_LOAD_COUNT)
return;
tid_ptr = &(priv->lq_mngr.agg_ctrl.traffic_load[tid]);
current_time -= current_time % TID_ROUND_VALUE;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
if (!(tid_ptr->queue_count)) {
tid_ptr->total = 1;
tid_ptr->time_stamp = current_time;
tid_ptr->queue_count = 1;
tid_ptr->head = 0;
tid_ptr->packet_count[0] = 1;
goto out;
}
time_diff = TIME_WRAP_AROUND(tid_ptr->time_stamp, current_time);
index = time_diff / TID_QUEUE_CELL_SPACING;
if (index >= TID_QUEUE_MAX_SIZE) {
u32 oldest_time = current_time - TID_MAX_TIME_DIFF;
while (tid_ptr->queue_count &&
(tid_ptr->time_stamp < oldest_time)) {
tid_ptr->total -= tid_ptr->packet_count[tid_ptr->head];
tid_ptr->packet_count[tid_ptr->head] = 0;
tid_ptr->time_stamp += TID_QUEUE_CELL_SPACING;
tid_ptr->queue_count--;
tid_ptr->head++;
if (tid_ptr->head >= TID_QUEUE_MAX_SIZE)
tid_ptr->head = 0;
}
}
index = (tid_ptr->head + index) % TID_QUEUE_MAX_SIZE;
tid_ptr->packet_count[index] = tid_ptr->packet_count[index] + 1;
tid_ptr->total = tid_ptr->total + 1;
if ((index + 1) > tid_ptr->queue_count)
tid_ptr->queue_count = index + 1;
out:
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
}
#define MMAC_SCHED_MAX_NUMBER_OF_HT_BACK_FLOWS 7
enum HT_STATUS {
BA_STATUS_FAILURE = 0,
BA_STATUS_INITIATOR_DELBA,
BA_STATUS_RECIPIENT_DELBA,
BA_STATUS_RENEW_ADDBA_REQUEST,
BA_STATUS_ACTIVE,
};
static u8 iwl4964_tl_ba_avail(struct iwl_priv *priv)
{
int i;
struct iwl_lq_mngr *lq;
u8 count = 0;
u16 msk;
lq = (struct iwl_lq_mngr *)&(priv->lq_mngr);
for (i = 0; i < TID_MAX_LOAD_COUNT ; i++) {
msk = 1 << i;
if ((lq->agg_ctrl.granted_ba & msk) ||
(lq->agg_ctrl.wait_for_agg_status & msk))
count++;
}
if (count < MMAC_SCHED_MAX_NUMBER_OF_HT_BACK_FLOWS)
return 1;
return 0;
}
static void iwl4965_ba_status(struct iwl_priv *priv,
u8 tid, enum HT_STATUS status);
static int iwl4965_perform_addba(struct iwl_priv *priv, u8 tid, u32 length,
u32 ba_timeout)
{
int rc;
rc = ieee80211_start_BA_session(priv->hw, priv->bssid, tid);
if (rc)
iwl4965_ba_status(priv, tid, BA_STATUS_FAILURE);
return rc;
}
static int iwl4965_perform_delba(struct iwl_priv *priv, u8 tid)
{
int rc;
rc = ieee80211_stop_BA_session(priv->hw, priv->bssid, tid);
if (rc)
iwl4965_ba_status(priv, tid, BA_STATUS_FAILURE);
return rc;
}
static void iwl4965_turn_on_agg_for_tid(struct iwl_priv *priv,
struct iwl_lq_mngr *lq,
u8 auto_agg, u8 tid)
{
u32 tid_msk = (1 << tid);
unsigned long flags;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
/*
if ((auto_agg) && (!lq->enable_counter)){
lq->agg_ctrl.next_retry = 0;
lq->agg_ctrl.tid_retry = 0;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
return;
}
*/
if (!(lq->agg_ctrl.granted_ba & tid_msk) &&
(lq->agg_ctrl.requested_ba & tid_msk)) {
u8 available_queues;
u32 load;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
available_queues = iwl4964_tl_ba_avail(priv);
load = iwl4965_tl_get_load(priv, tid);
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
if (!available_queues) {
if (auto_agg)
lq->agg_ctrl.tid_retry |= tid_msk;
else {
lq->agg_ctrl.requested_ba &= ~tid_msk;
lq->agg_ctrl.wait_for_agg_status &= ~tid_msk;
}
} else if ((auto_agg) &&
((load <= lq->agg_ctrl.tid_traffic_load_threshold) ||
((lq->agg_ctrl.wait_for_agg_status & tid_msk))))
lq->agg_ctrl.tid_retry |= tid_msk;
else {
lq->agg_ctrl.wait_for_agg_status |= tid_msk;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
iwl4965_perform_addba(priv, tid, 0x40,
lq->agg_ctrl.ba_timeout);
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
}
}
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
}
static void iwl4965_turn_on_agg(struct iwl_priv *priv, u8 tid)
{
struct iwl_lq_mngr *lq;
unsigned long flags;
lq = (struct iwl_lq_mngr *)&(priv->lq_mngr);
if ((tid < TID_MAX_LOAD_COUNT))
iwl4965_turn_on_agg_for_tid(priv, lq, lq->agg_ctrl.auto_agg,
tid);
else if (tid == TID_ALL_SPECIFIED) {
if (lq->agg_ctrl.requested_ba) {
for (tid = 0; tid < TID_MAX_LOAD_COUNT; tid++)
iwl4965_turn_on_agg_for_tid(priv, lq,
lq->agg_ctrl.auto_agg, tid);
} else {
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
lq->agg_ctrl.tid_retry = 0;
lq->agg_ctrl.next_retry = 0;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
}
}
}
void iwl4965_turn_off_agg(struct iwl_priv *priv, u8 tid)
{
u32 tid_msk;
struct iwl_lq_mngr *lq;
unsigned long flags;
lq = (struct iwl_lq_mngr *)&(priv->lq_mngr);
if ((tid < TID_MAX_LOAD_COUNT)) {
tid_msk = 1 << tid;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
lq->agg_ctrl.wait_for_agg_status |= tid_msk;
lq->agg_ctrl.requested_ba &= ~tid_msk;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
iwl4965_perform_delba(priv, tid);
} else if (tid == TID_ALL_SPECIFIED) {
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
for (tid = 0; tid < TID_MAX_LOAD_COUNT; tid++) {
tid_msk = 1 << tid;
lq->agg_ctrl.wait_for_agg_status |= tid_msk;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
iwl4965_perform_delba(priv, tid);
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
}
lq->agg_ctrl.requested_ba = 0;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
}
}
static void iwl4965_ba_status(struct iwl_priv *priv,
u8 tid, enum HT_STATUS status)
{
struct iwl_lq_mngr *lq;
u32 tid_msk = (1 << tid);
unsigned long flags;
lq = (struct iwl_lq_mngr *)&(priv->lq_mngr);
if ((tid >= TID_MAX_LOAD_COUNT))
goto out;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
switch (status) {
case BA_STATUS_ACTIVE:
if (!(lq->agg_ctrl.granted_ba & tid_msk))
lq->agg_ctrl.granted_ba |= tid_msk;
break;
default:
if ((lq->agg_ctrl.granted_ba & tid_msk))
lq->agg_ctrl.granted_ba &= ~tid_msk;
break;
}
lq->agg_ctrl.wait_for_agg_status &= ~tid_msk;
if (status != BA_STATUS_ACTIVE) {
if (lq->agg_ctrl.auto_agg) {
lq->agg_ctrl.tid_retry |= tid_msk;
lq->agg_ctrl.next_retry =
jiffies + msecs_to_jiffies(500);
} else
lq->agg_ctrl.requested_ba &= ~tid_msk;
}
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
out:
return;
}
static void iwl4965_bg_agg_work(struct work_struct *work)
{
struct iwl_priv *priv = container_of(work, struct iwl_priv,
agg_work);
u32 tid;
u32 retry_tid;
u32 tid_msk;
unsigned long flags;
struct iwl_lq_mngr *lq = (struct iwl_lq_mngr *)&(priv->lq_mngr);
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
retry_tid = lq->agg_ctrl.tid_retry;
lq->agg_ctrl.tid_retry = 0;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
if (retry_tid == TID_ALL_SPECIFIED)
iwl4965_turn_on_agg(priv, TID_ALL_SPECIFIED);
else {
for (tid = 0; tid < TID_MAX_LOAD_COUNT; tid++) {
tid_msk = (1 << tid);
if (retry_tid & tid_msk)
iwl4965_turn_on_agg(priv, tid);
}
}
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
if (lq->agg_ctrl.tid_retry)
lq->agg_ctrl.next_retry = jiffies + msecs_to_jiffies(500);
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
return;
}
#endif /*CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
int iwl4965_tx_cmd(struct iwl_priv *priv, struct iwl_cmd *out_cmd,
u8 sta_id, dma_addr_t txcmd_phys,
struct ieee80211_hdr *hdr, u8 hdr_len,
struct ieee80211_tx_control *ctrl, void *sta_in)
{
struct iwl_tx_cmd cmd;
struct iwl_tx_cmd *tx = (struct iwl_tx_cmd *)&out_cmd->cmd.payload[0];
dma_addr_t scratch_phys;
u8 unicast = 0;
u8 is_data = 1;
u16 fc;
u16 rate_flags;
int rate_index = min(ctrl->tx_rate & 0xffff, IWL_RATE_COUNT - 1);
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
__le16 *qc;
#endif /*CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
unicast = !is_multicast_ether_addr(hdr->addr1);
fc = le16_to_cpu(hdr->frame_control);
if ((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
is_data = 0;
memcpy(&cmd, &(out_cmd->cmd.tx), sizeof(struct iwl_tx_cmd));
memset(tx, 0, sizeof(struct iwl_tx_cmd));
memcpy(tx->hdr, hdr, hdr_len);
tx->len = cmd.len;
tx->driver_txop = cmd.driver_txop;
tx->stop_time.life_time = cmd.stop_time.life_time;
tx->tx_flags = cmd.tx_flags;
tx->sta_id = cmd.sta_id;
tx->tid_tspec = cmd.tid_tspec;
tx->timeout.pm_frame_timeout = cmd.timeout.pm_frame_timeout;
tx->next_frame_len = cmd.next_frame_len;
tx->sec_ctl = cmd.sec_ctl;
memcpy(&(tx->key[0]), &(cmd.key[0]), 16);
tx->tx_flags = cmd.tx_flags;
tx->rts_retry_limit = cmd.rts_retry_limit;
tx->data_retry_limit = cmd.data_retry_limit;
scratch_phys = txcmd_phys + sizeof(struct iwl_cmd_header) +
offsetof(struct iwl_tx_cmd, scratch);
tx->dram_lsb_ptr = cpu_to_le32(scratch_phys);
tx->dram_msb_ptr = iwl4965_get_dma_hi_address(scratch_phys);
/* Hard coded to start at the highest retry fallback position
* until the 4965 specific rate control algorithm is tied in */
tx->initial_rate_index = LINK_QUAL_MAX_RETRY_NUM - 1;
/* Alternate between antenna A and B for successive frames */
if (priv->use_ant_b_for_management_frame) {
priv->use_ant_b_for_management_frame = 0;
rate_flags = RATE_MCS_ANT_B_MSK;
} else {
priv->use_ant_b_for_management_frame = 1;
rate_flags = RATE_MCS_ANT_A_MSK;
}
if (!unicast || !is_data) {
if ((rate_index >= IWL_FIRST_CCK_RATE) &&
(rate_index <= IWL_LAST_CCK_RATE))
rate_flags |= RATE_MCS_CCK_MSK;
} else {
tx->initial_rate_index = 0;
tx->tx_flags |= TX_CMD_FLG_STA_RATE_MSK;
}
tx->rate_n_flags = iwl_hw_set_rate_n_flags(iwl_rates[rate_index].plcp,
rate_flags);
if (ieee80211_is_back_request(fc))
tx->tx_flags |= TX_CMD_FLG_ACK_MSK |
TX_CMD_FLG_IMM_BA_RSP_MASK;
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
qc = ieee80211_get_qos_ctrl(hdr);
if (qc &&
(priv->iw_mode != IEEE80211_IF_TYPE_IBSS)) {
u8 tid = 0;
tid = (u8) (le16_to_cpu(*qc) & 0xF);
if (tid < TID_MAX_LOAD_COUNT)
iwl4965_tl_add_packet(priv, tid);
}
if (priv->lq_mngr.agg_ctrl.next_retry &&
(time_after(priv->lq_mngr.agg_ctrl.next_retry, jiffies))) {
unsigned long flags;
spin_lock_irqsave(&priv->lq_mngr.lock, flags);
priv->lq_mngr.agg_ctrl.next_retry = 0;
spin_unlock_irqrestore(&priv->lq_mngr.lock, flags);
schedule_work(&priv->agg_work);
}
#endif
#endif
return 0;
}
/**
* sign_extend - Sign extend a value using specified bit as sign-bit
*
* Example: sign_extend(9, 3) would return -7 as bit3 of 1001b is 1
* and bit0..2 is 001b which when sign extended to 1111111111111001b is -7.
*
* @param oper value to sign extend
* @param index 0 based bit index (0<=index<32) to sign bit
*/
static s32 sign_extend(u32 oper, int index)
{
u8 shift = 31 - index;
return (s32)(oper << shift) >> shift;
}
/**
* iwl4965_get_temperature - return the calibrated temperature (in Kelvin)
* @statistics: Provides the temperature reading from the uCode
*
* A return of <0 indicates bogus data in the statistics
*/
int iwl4965_get_temperature(const struct iwl_priv *priv)
{
s32 temperature;
s32 vt;
s32 R1, R2, R3;
u32 R4;
if (test_bit(STATUS_TEMPERATURE, &priv->status) &&
(priv->statistics.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK)) {
IWL_DEBUG_TEMP("Running FAT temperature calibration\n");
R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[1]);
R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[1]);
R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[1]);
R4 = le32_to_cpu(priv->card_alive_init.therm_r4[1]);
} else {
IWL_DEBUG_TEMP("Running temperature calibration\n");
R1 = (s32)le32_to_cpu(priv->card_alive_init.therm_r1[0]);
R2 = (s32)le32_to_cpu(priv->card_alive_init.therm_r2[0]);
R3 = (s32)le32_to_cpu(priv->card_alive_init.therm_r3[0]);
R4 = le32_to_cpu(priv->card_alive_init.therm_r4[0]);
}
/*
* Temperature is only 23 bits so sign extend out to 32
*
* NOTE If we haven't received a statistics notification yet
* with an updated temperature, use R4 provided to us in the
* ALIVE response. */
if (!test_bit(STATUS_TEMPERATURE, &priv->status))
vt = sign_extend(R4, 23);
else
vt = sign_extend(
le32_to_cpu(priv->statistics.general.temperature), 23);
IWL_DEBUG_TEMP("Calib values R[1-3]: %d %d %d R4: %d\n",
R1, R2, R3, vt);
if (R3 == R1) {
IWL_ERROR("Calibration conflict R1 == R3\n");
return -1;
}
/* Calculate temperature in degrees Kelvin, adjust by 97%.
* Add offset to center the adjustment around 0 degrees Centigrade. */
temperature = TEMPERATURE_CALIB_A_VAL * (vt - R2);
temperature /= (R3 - R1);
temperature = (temperature * 97) / 100 +
TEMPERATURE_CALIB_KELVIN_OFFSET;
IWL_DEBUG_TEMP("Calibrated temperature: %dK, %dC\n", temperature,
KELVIN_TO_CELSIUS(temperature));
return temperature;
}
/* Adjust Txpower only if temperature variance is greater than threshold. */
#define IWL_TEMPERATURE_THRESHOLD 3
/**
* iwl4965_is_temp_calib_needed - determines if new calibration is needed
*
* If the temperature changed has changed sufficiently, then a recalibration
* is needed.
*
* Assumes caller will replace priv->last_temperature once calibration
* executed.
*/
static int iwl4965_is_temp_calib_needed(struct iwl_priv *priv)
{
int temp_diff;
if (!test_bit(STATUS_STATISTICS, &priv->status)) {
IWL_DEBUG_TEMP("Temperature not updated -- no statistics.\n");
return 0;
}
temp_diff = priv->temperature - priv->last_temperature;
/* get absolute value */
if (temp_diff < 0) {
IWL_DEBUG_POWER("Getting cooler, delta %d, \n", temp_diff);
temp_diff = -temp_diff;
} else if (temp_diff == 0)
IWL_DEBUG_POWER("Same temp, \n");
else
IWL_DEBUG_POWER("Getting warmer, delta %d, \n", temp_diff);
if (temp_diff < IWL_TEMPERATURE_THRESHOLD) {
IWL_DEBUG_POWER("Thermal txpower calib not needed\n");
return 0;
}
IWL_DEBUG_POWER("Thermal txpower calib needed\n");
return 1;
}
/* Calculate noise level, based on measurements during network silence just
* before arriving beacon. This measurement can be done only if we know
* exactly when to expect beacons, therefore only when we're associated. */
static void iwl4965_rx_calc_noise(struct iwl_priv *priv)
{
struct statistics_rx_non_phy *rx_info
= &(priv->statistics.rx.general);
int num_active_rx = 0;
int total_silence = 0;
int bcn_silence_a =
le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER;
int bcn_silence_b =
le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER;
int bcn_silence_c =
le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER;
if (bcn_silence_a) {
total_silence += bcn_silence_a;
num_active_rx++;
}
if (bcn_silence_b) {
total_silence += bcn_silence_b;
num_active_rx++;
}
if (bcn_silence_c) {
total_silence += bcn_silence_c;
num_active_rx++;
}
/* Average among active antennas */
if (num_active_rx)
priv->last_rx_noise = (total_silence / num_active_rx) - 107;
else
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
IWL_DEBUG_CALIB("inband silence a %u, b %u, c %u, dBm %d\n",
bcn_silence_a, bcn_silence_b, bcn_silence_c,
priv->last_rx_noise);
}
void iwl_hw_rx_statistics(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
int change;
s32 temp;
IWL_DEBUG_RX("Statistics notification received (%d vs %d).\n",
(int)sizeof(priv->statistics), pkt->len);
change = ((priv->statistics.general.temperature !=
pkt->u.stats.general.temperature) ||
((priv->statistics.flag &
STATISTICS_REPLY_FLG_FAT_MODE_MSK) !=
(pkt->u.stats.flag & STATISTICS_REPLY_FLG_FAT_MODE_MSK)));
memcpy(&priv->statistics, &pkt->u.stats, sizeof(priv->statistics));
set_bit(STATUS_STATISTICS, &priv->status);
/* Reschedule the statistics timer to occur in
* REG_RECALIB_PERIOD seconds to ensure we get a
* thermal update even if the uCode doesn't give
* us one */
mod_timer(&priv->statistics_periodic, jiffies +
msecs_to_jiffies(REG_RECALIB_PERIOD * 1000));
if (unlikely(!test_bit(STATUS_SCANNING, &priv->status)) &&
(pkt->hdr.cmd == STATISTICS_NOTIFICATION)) {
iwl4965_rx_calc_noise(priv);
#ifdef CONFIG_IWLWIFI_SENSITIVITY
queue_work(priv->workqueue, &priv->sensitivity_work);
#endif
}
/* If the hardware hasn't reported a change in
* temperature then don't bother computing a
* calibrated temperature value */
if (!change)
return;
temp = iwl4965_get_temperature(priv);
if (temp < 0)
return;
if (priv->temperature != temp) {
if (priv->temperature)
IWL_DEBUG_TEMP("Temperature changed "
"from %dC to %dC\n",
KELVIN_TO_CELSIUS(priv->temperature),
KELVIN_TO_CELSIUS(temp));
else
IWL_DEBUG_TEMP("Temperature "
"initialized to %dC\n",
KELVIN_TO_CELSIUS(temp));
}
priv->temperature = temp;
set_bit(STATUS_TEMPERATURE, &priv->status);
if (unlikely(!test_bit(STATUS_SCANNING, &priv->status)) &&
iwl4965_is_temp_calib_needed(priv))
queue_work(priv->workqueue, &priv->txpower_work);
}
static void iwl4965_handle_data_packet(struct iwl_priv *priv, int is_data,
int include_phy,
struct iwl_rx_mem_buffer *rxb,
struct ieee80211_rx_status *stats)
{
struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data;
struct iwl4965_rx_phy_res *rx_start = (include_phy) ?
(struct iwl4965_rx_phy_res *)&(pkt->u.raw[0]) : NULL;
struct ieee80211_hdr *hdr;
u16 len;
__le32 *rx_end;
unsigned int skblen;
u32 ampdu_status;
if (!include_phy && priv->last_phy_res[0])
rx_start = (struct iwl4965_rx_phy_res *)&priv->last_phy_res[1];
if (!rx_start) {
IWL_ERROR("MPDU frame without a PHY data\n");
return;
}
if (include_phy) {
hdr = (struct ieee80211_hdr *)((u8 *) & rx_start[1] +
rx_start->cfg_phy_cnt);
len = le16_to_cpu(rx_start->byte_count);
rx_end = (__le32 *) ((u8 *) & pkt->u.raw[0] +
sizeof(struct iwl4965_rx_phy_res) +
rx_start->cfg_phy_cnt + len);
} else {
struct iwl4965_rx_mpdu_res_start *amsdu =
(struct iwl4965_rx_mpdu_res_start *)pkt->u.raw;
hdr = (struct ieee80211_hdr *)(pkt->u.raw +
sizeof(struct iwl4965_rx_mpdu_res_start));
len = le16_to_cpu(amsdu->byte_count);
rx_start->byte_count = amsdu->byte_count;
rx_end = (__le32 *) (((u8 *) hdr) + len);
}
if (len > IWL_RX_BUF_SIZE || len < 16) {
IWL_WARNING("byte count out of range [16,4K]"
" : %d\n", len);
return;
}
ampdu_status = le32_to_cpu(*rx_end);
skblen = ((u8 *) rx_end - (u8 *) & pkt->u.raw[0]) + sizeof(u32);
/* start from MAC */
skb_reserve(rxb->skb, (void *)hdr - (void *)pkt);
skb_put(rxb->skb, len); /* end where data ends */
/* We only process data packets if the interface is open */
if (unlikely(!priv->is_open)) {
IWL_DEBUG_DROP_LIMIT
("Dropping packet while interface is not open.\n");
return;
}
if (priv->iw_mode == IEEE80211_IF_TYPE_MNTR) {
if (iwl_param_hwcrypto)
iwl_set_decrypted_flag(priv, rxb->skb,
ampdu_status, stats);
iwl_handle_data_packet_monitor(priv, rxb, hdr, len, stats, 0);
return;
}
stats->flag = 0;
hdr = (struct ieee80211_hdr *)rxb->skb->data;
if (iwl_param_hwcrypto)
iwl_set_decrypted_flag(priv, rxb->skb, ampdu_status, stats);
ieee80211_rx_irqsafe(priv->hw, rxb->skb, stats);
priv->alloc_rxb_skb--;
rxb->skb = NULL;
#ifdef LED
priv->led_packets += len;
iwl_setup_activity_timer(priv);
#endif
}
/* Calc max signal level (dBm) among 3 possible receivers */
static int iwl4965_calc_rssi(struct iwl4965_rx_phy_res *rx_resp)
{
/* data from PHY/DSP regarding signal strength, etc.,
* contents are always there, not configurable by host. */
struct iwl4965_rx_non_cfg_phy *ncphy =
(struct iwl4965_rx_non_cfg_phy *)rx_resp->non_cfg_phy;
u32 agc = (le16_to_cpu(ncphy->agc_info) & IWL_AGC_DB_MASK)
>> IWL_AGC_DB_POS;
u32 valid_antennae =
(le16_to_cpu(rx_resp->phy_flags) & RX_PHY_FLAGS_ANTENNAE_MASK)
>> RX_PHY_FLAGS_ANTENNAE_OFFSET;
u8 max_rssi = 0;
u32 i;
/* Find max rssi among 3 possible receivers.
* These values are measured by the digital signal processor (DSP).
* They should stay fairly constant even as the signal strength varies,
* if the radio's automatic gain control (AGC) is working right.
* AGC value (see below) will provide the "interesting" info. */
for (i = 0; i < 3; i++)
if (valid_antennae & (1 << i))
max_rssi = max(ncphy->rssi_info[i << 1], max_rssi);
IWL_DEBUG_STATS("Rssi In A %d B %d C %d Max %d AGC dB %d\n",
ncphy->rssi_info[0], ncphy->rssi_info[2], ncphy->rssi_info[4],
max_rssi, agc);
/* dBm = max_rssi dB - agc dB - constant.
* Higher AGC (higher radio gain) means lower signal. */
return (max_rssi - agc - IWL_RSSI_OFFSET);
}
#ifdef CONFIG_IWLWIFI_HT
/* Parsed Information Elements */
struct ieee802_11_elems {
u8 *ds_params;
u8 ds_params_len;
u8 *tim;
u8 tim_len;
u8 *ibss_params;
u8 ibss_params_len;
u8 *erp_info;
u8 erp_info_len;
u8 *ht_cap_param;
u8 ht_cap_param_len;
u8 *ht_extra_param;
u8 ht_extra_param_len;
};
static int parse_elems(u8 *start, size_t len, struct ieee802_11_elems *elems)
{
size_t left = len;
u8 *pos = start;
int unknown = 0;
memset(elems, 0, sizeof(*elems));
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left)
return -1;
switch (id) {
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_TIM:
elems->tim = pos;
elems->tim_len = elen;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_HT_CAPABILITY:
elems->ht_cap_param = pos;
elems->ht_cap_param_len = elen;
break;
case WLAN_EID_HT_EXTRA_INFO:
elems->ht_extra_param = pos;
elems->ht_extra_param_len = elen;
break;
default:
unknown++;
break;
}
left -= elen;
pos += elen;
}
return 0;
}
#endif /* CONFIG_IWLWIFI_HT */
static void iwl4965_sta_modify_ps_wake(struct iwl_priv *priv, int sta_id)
{
unsigned long flags;
spin_lock_irqsave(&priv->sta_lock, flags);
priv->stations[sta_id].sta.station_flags &= ~STA_FLG_PWR_SAVE_MSK;
priv->stations[sta_id].sta.station_flags_msk = STA_FLG_PWR_SAVE_MSK;
priv->stations[sta_id].sta.sta.modify_mask = 0;
priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK;
spin_unlock_irqrestore(&priv->sta_lock, flags);
iwl_send_add_station(priv, &priv->stations[sta_id].sta, CMD_ASYNC);
}
static void iwl4965_update_ps_mode(struct iwl_priv *priv, u16 ps_bit, u8 *addr)
{
/* FIXME: need locking over ps_status ??? */
u8 sta_id = iwl_hw_find_station(priv, addr);
if (sta_id != IWL_INVALID_STATION) {
u8 sta_awake = priv->stations[sta_id].
ps_status == STA_PS_STATUS_WAKE;
if (sta_awake && ps_bit)
priv->stations[sta_id].ps_status = STA_PS_STATUS_SLEEP;
else if (!sta_awake && !ps_bit) {
iwl4965_sta_modify_ps_wake(priv, sta_id);
priv->stations[sta_id].ps_status = STA_PS_STATUS_WAKE;
}
}
}
/* Called for REPLY_4965_RX (legacy ABG frames), or
* REPLY_RX_MPDU_CMD (HT high-throughput N frames). */
static void iwl4965_rx_reply_rx(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
/* Use phy data (Rx signal strength, etc.) contained within
* this rx packet for legacy frames,
* or phy data cached from REPLY_RX_PHY_CMD for HT frames. */
int include_phy = (pkt->hdr.cmd == REPLY_4965_RX);
struct iwl4965_rx_phy_res *rx_start = (include_phy) ?
(struct iwl4965_rx_phy_res *)&(pkt->u.raw[0]) :
(struct iwl4965_rx_phy_res *)&priv->last_phy_res[1];
__le32 *rx_end;
unsigned int len = 0;
struct ieee80211_hdr *header;
u16 fc;
struct ieee80211_rx_status stats = {
.mactime = le64_to_cpu(rx_start->timestamp),
.channel = le16_to_cpu(rx_start->channel),
.phymode =
(rx_start->phy_flags & RX_RES_PHY_FLAGS_BAND_24_MSK) ?
MODE_IEEE80211G : MODE_IEEE80211A,
.antenna = 0,
.rate = iwl_hw_get_rate(rx_start->rate_n_flags),
.flag = 0,
#ifdef CONFIG_IWLWIFI_HT_AGG
.ordered = 0
#endif /* CONFIG_IWLWIFI_HT_AGG */
};
u8 network_packet;
if ((unlikely(rx_start->cfg_phy_cnt > 20))) {
IWL_DEBUG_DROP
("dsp size out of range [0,20]: "
"%d/n", rx_start->cfg_phy_cnt);
return;
}
if (!include_phy) {
if (priv->last_phy_res[0])
rx_start = (struct iwl4965_rx_phy_res *)
&priv->last_phy_res[1];
else
rx_start = NULL;
}
if (!rx_start) {
IWL_ERROR("MPDU frame without a PHY data\n");
return;
}
if (include_phy) {
header = (struct ieee80211_hdr *)((u8 *) & rx_start[1]
+ rx_start->cfg_phy_cnt);
len = le16_to_cpu(rx_start->byte_count);
rx_end = (__le32 *) (pkt->u.raw + rx_start->cfg_phy_cnt +
sizeof(struct iwl4965_rx_phy_res) + len);
} else {
struct iwl4965_rx_mpdu_res_start *amsdu =
(struct iwl4965_rx_mpdu_res_start *)pkt->u.raw;
header = (void *)(pkt->u.raw +
sizeof(struct iwl4965_rx_mpdu_res_start));
len = le16_to_cpu(amsdu->byte_count);
rx_end = (__le32 *) (pkt->u.raw +
sizeof(struct iwl4965_rx_mpdu_res_start) + len);
}
if (!(*rx_end & RX_RES_STATUS_NO_CRC32_ERROR) ||
!(*rx_end & RX_RES_STATUS_NO_RXE_OVERFLOW)) {
IWL_DEBUG_RX("Bad CRC or FIFO: 0x%08X.\n",
le32_to_cpu(*rx_end));
return;
}
priv->ucode_beacon_time = le32_to_cpu(rx_start->beacon_time_stamp);
stats.freq = ieee80211chan2mhz(stats.channel);
/* Find max signal strength (dBm) among 3 antenna/receiver chains */
stats.ssi = iwl4965_calc_rssi(rx_start);
/* Meaningful noise values are available only from beacon statistics,
* which are gathered only when associated, and indicate noise
* only for the associated network channel ...
* Ignore these noise values while scanning (other channels) */
if (iwl_is_associated(priv) &&
!test_bit(STATUS_SCANNING, &priv->status)) {
stats.noise = priv->last_rx_noise;
stats.signal = iwl_calc_sig_qual(stats.ssi, stats.noise);
} else {
stats.noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
stats.signal = iwl_calc_sig_qual(stats.ssi, 0);
}
/* Reset beacon noise level if not associated. */
if (!iwl_is_associated(priv))
priv->last_rx_noise = IWL_NOISE_MEAS_NOT_AVAILABLE;
#ifdef CONFIG_IWLWIFI_DEBUG
/* TODO: Parts of iwl_report_frame are broken for 4965 */
if (iwl_debug_level & (IWL_DL_RX))
/* Set "1" to report good data frames in groups of 100 */
iwl_report_frame(priv, pkt, header, 1);
if (iwl_debug_level & (IWL_DL_RX | IWL_DL_STATS))
IWL_DEBUG_RX("Rssi %d, noise %d, qual %d, TSF %lu\n",
stats.ssi, stats.noise, stats.signal,
(long unsigned int)le64_to_cpu(rx_start->timestamp));
#endif
network_packet = iwl_is_network_packet(priv, header);
if (network_packet) {
priv->last_rx_rssi = stats.ssi;
priv->last_beacon_time = priv->ucode_beacon_time;
priv->last_tsf = le64_to_cpu(rx_start->timestamp);
}
fc = le16_to_cpu(header->frame_control);
switch (fc & IEEE80211_FCTL_FTYPE) {
case IEEE80211_FTYPE_MGMT:
if (priv->iw_mode == IEEE80211_IF_TYPE_AP)
iwl4965_update_ps_mode(priv, fc & IEEE80211_FCTL_PM,
header->addr2);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_RESP:
case IEEE80211_STYPE_BEACON:
if ((priv->iw_mode == IEEE80211_IF_TYPE_STA &&
!compare_ether_addr(header->addr2, priv->bssid)) ||
(priv->iw_mode == IEEE80211_IF_TYPE_IBSS &&
!compare_ether_addr(header->addr3, priv->bssid))) {
struct ieee80211_mgmt *mgmt =
(struct ieee80211_mgmt *)header;
u64 timestamp =
le64_to_cpu(mgmt->u.beacon.timestamp);
priv->timestamp0 = timestamp & 0xFFFFFFFF;
priv->timestamp1 =
(timestamp >> 32) & 0xFFFFFFFF;
priv->beacon_int = le16_to_cpu(
mgmt->u.beacon.beacon_int);
if (priv->call_post_assoc_from_beacon &&
(priv->iw_mode == IEEE80211_IF_TYPE_STA)) {
priv->call_post_assoc_from_beacon = 0;
queue_work(priv->workqueue,
&priv->post_associate.work);
}
}
break;
case IEEE80211_STYPE_ACTION:
break;
/*
* TODO: There is no callback function from upper
* stack to inform us when associated status. this
* work around to sniff assoc_resp management frame
* and finish the association process.
*/
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:
if (network_packet) {
#ifdef CONFIG_IWLWIFI_HT
u8 *pos = NULL;
struct ieee802_11_elems elems;
#endif /*CONFIG_IWLWIFI_HT */
struct ieee80211_mgmt *mgnt =
(struct ieee80211_mgmt *)header;
priv->assoc_id = (~((1 << 15) | (1 << 14))
& le16_to_cpu(mgnt->u.assoc_resp.aid));
priv->assoc_capability =
le16_to_cpu(
mgnt->u.assoc_resp.capab_info);
#ifdef CONFIG_IWLWIFI_HT
pos = mgnt->u.assoc_resp.variable;
if (!parse_elems(pos,
len - (pos - (u8 *) mgnt),
&elems)) {
if (elems.ht_extra_param &&
elems.ht_cap_param)
break;
}
#endif /*CONFIG_IWLWIFI_HT */
/* assoc_id is 0 no association */
if (!priv->assoc_id)
break;
if (priv->beacon_int)
queue_work(priv->workqueue,
&priv->post_associate.work);
else
priv->call_post_assoc_from_beacon = 1;
}
break;
case IEEE80211_STYPE_PROBE_REQ:
if ((priv->iw_mode == IEEE80211_IF_TYPE_IBSS) &&
!iwl_is_associated(priv)) {
DECLARE_MAC_BUF(mac1);
DECLARE_MAC_BUF(mac2);
DECLARE_MAC_BUF(mac3);
IWL_DEBUG_DROP("Dropping (non network): "
"%s, %s, %s\n",
print_mac(mac1, header->addr1),
print_mac(mac2, header->addr2),
print_mac(mac3, header->addr3));
return;
}
}
iwl4965_handle_data_packet(priv, 0, include_phy, rxb, &stats);
break;
case IEEE80211_FTYPE_CTL:
#ifdef CONFIG_IWLWIFI_HT_AGG
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_BACK_REQ:
IWL_DEBUG_HT("IEEE80211_STYPE_BACK_REQ arrived\n");
iwl4965_handle_data_packet(priv, 0, include_phy,
rxb, &stats);
break;
default:
break;
}
#endif
break;
case IEEE80211_FTYPE_DATA: {
DECLARE_MAC_BUF(mac1);
DECLARE_MAC_BUF(mac2);
DECLARE_MAC_BUF(mac3);
if (priv->iw_mode == IEEE80211_IF_TYPE_AP)
iwl4965_update_ps_mode(priv, fc & IEEE80211_FCTL_PM,
header->addr2);
if (unlikely(!network_packet))
IWL_DEBUG_DROP("Dropping (non network): "
"%s, %s, %s\n",
print_mac(mac1, header->addr1),
print_mac(mac2, header->addr2),
print_mac(mac3, header->addr3));
else if (unlikely(is_duplicate_packet(priv, header)))
IWL_DEBUG_DROP("Dropping (dup): %s, %s, %s\n",
print_mac(mac1, header->addr1),
print_mac(mac2, header->addr2),
print_mac(mac3, header->addr3));
else
iwl4965_handle_data_packet(priv, 1, include_phy, rxb,
&stats);
break;
}
default:
break;
}
}
/* Cache phy data (Rx signal strength, etc) for HT frame (REPLY_RX_PHY_CMD).
* This will be used later in iwl4965_rx_reply_rx() for REPLY_RX_MPDU_CMD. */
static void iwl4965_rx_reply_rx_phy(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
priv->last_phy_res[0] = 1;
memcpy(&priv->last_phy_res[1], &(pkt->u.raw[0]),
sizeof(struct iwl4965_rx_phy_res));
}
static void iwl4965_rx_missed_beacon_notif(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
#ifdef CONFIG_IWLWIFI_SENSITIVITY
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
struct iwl_missed_beacon_notif *missed_beacon;
missed_beacon = &pkt->u.missed_beacon;
if (le32_to_cpu(missed_beacon->consequtive_missed_beacons) > 5) {
IWL_DEBUG_CALIB("missed bcn cnsq %d totl %d rcd %d expctd %d\n",
le32_to_cpu(missed_beacon->consequtive_missed_beacons),
le32_to_cpu(missed_beacon->total_missed_becons),
le32_to_cpu(missed_beacon->num_recvd_beacons),
le32_to_cpu(missed_beacon->num_expected_beacons));
priv->sensitivity_data.state = IWL_SENS_CALIB_NEED_REINIT;
if (unlikely(!test_bit(STATUS_SCANNING, &priv->status)))
queue_work(priv->workqueue, &priv->sensitivity_work);
}
#endif /*CONFIG_IWLWIFI_SENSITIVITY*/
}
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
static void iwl4965_set_tx_status(struct iwl_priv *priv, int txq_id, int idx,
u32 status, u32 retry_count, u32 rate)
{
struct ieee80211_tx_status *tx_status =
&(priv->txq[txq_id].txb[idx].status);
tx_status->flags = status ? IEEE80211_TX_STATUS_ACK : 0;
tx_status->retry_count += retry_count;
tx_status->control.tx_rate = rate;
}
static void iwl_sta_modify_enable_tid_tx(struct iwl_priv *priv,
int sta_id, int tid)
{
unsigned long flags;
spin_lock_irqsave(&priv->sta_lock, flags);
priv->stations[sta_id].sta.sta.modify_mask = STA_MODIFY_TID_DISABLE_TX;
priv->stations[sta_id].sta.tid_disable_tx &= cpu_to_le16(~(1 << tid));
priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK;
spin_unlock_irqrestore(&priv->sta_lock, flags);
iwl_send_add_station(priv, &priv->stations[sta_id].sta, CMD_ASYNC);
}
static int iwl4965_tx_status_reply_compressed_ba(struct iwl_priv *priv,
struct iwl_ht_agg *agg,
struct iwl_compressed_ba_resp*
ba_resp)
{
int i, sh, ack;
u16 ba_seq_ctl = le16_to_cpu(ba_resp->ba_seq_ctl);
u32 bitmap0, bitmap1;
u32 resp_bitmap0 = le32_to_cpu(ba_resp->ba_bitmap0);
u32 resp_bitmap1 = le32_to_cpu(ba_resp->ba_bitmap1);
if (unlikely(!agg->wait_for_ba)) {
IWL_ERROR("Received BA when not expected\n");
return -EINVAL;
}
agg->wait_for_ba = 0;
IWL_DEBUG_TX_REPLY("BA %d %d\n", agg->start_idx, ba_resp->ba_seq_ctl);
sh = agg->start_idx - SEQ_TO_INDEX(ba_seq_ctl>>4);
if (sh < 0) /* tbw something is wrong with indices */
sh += 0x100;
/* don't use 64 bits for now */
bitmap0 = resp_bitmap0 >> sh;
bitmap1 = resp_bitmap1 >> sh;
bitmap0 |= (resp_bitmap1 & ((1<<sh)|((1<<sh)-1))) << (32 - sh);
if (agg->frame_count > (64 - sh)) {
IWL_DEBUG_TX_REPLY("more frames than bitmap size");
return -1;
}
/* check for success or failure according to the
* transmitted bitmap and back bitmap */
bitmap0 &= agg->bitmap0;
bitmap1 &= agg->bitmap1;
for (i = 0; i < agg->frame_count ; i++) {
int idx = (agg->start_idx + i) & 0xff;
ack = bitmap0 & (1 << i);
IWL_DEBUG_TX_REPLY("%s ON i=%d idx=%d raw=%d\n",
ack? "ACK":"NACK", i, idx, agg->start_idx + i);
iwl4965_set_tx_status(priv, agg->txq_id, idx, ack, 0,
agg->rate_n_flags);
}
IWL_DEBUG_TX_REPLY("Bitmap %x%x\n", bitmap0, bitmap1);
return 0;
}
static inline int iwl_queue_dec_wrap(int index, int n_bd)
{
return (index == 0) ? n_bd - 1 : index - 1;
}
static void iwl4965_rx_reply_compressed_ba(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_rx_packet *pkt = (void *)rxb->skb->data;
struct iwl_compressed_ba_resp *ba_resp = &pkt->u.compressed_ba;
int index;
struct iwl_tx_queue *txq = NULL;
struct iwl_ht_agg *agg;
u16 ba_resp_scd_flow = le16_to_cpu(ba_resp->scd_flow);
u16 ba_resp_scd_ssn = le16_to_cpu(ba_resp->scd_ssn);
if (ba_resp_scd_flow >= ARRAY_SIZE(priv->txq)) {
IWL_ERROR("BUG_ON scd_flow is bigger than number of queues");
return;
}
txq = &priv->txq[ba_resp_scd_flow];
agg = &priv->stations[ba_resp->sta_id].tid[ba_resp->tid].agg;
index = iwl_queue_dec_wrap(ba_resp_scd_ssn & 0xff, txq->q.n_bd);
/* TODO: Need to get this copy more safely - now good for debug */
/*
{
DECLARE_MAC_BUF(mac);
IWL_DEBUG_TX_REPLY("REPLY_COMPRESSED_BA [%d]Received from %s, "
"sta_id = %d\n",
agg->wait_for_ba,
print_mac(mac, (u8*) &ba_resp->sta_addr_lo32),
ba_resp->sta_id);
IWL_DEBUG_TX_REPLY("TID = %d, SeqCtl = %d, bitmap = 0x%X%X, scd_flow = "
"%d, scd_ssn = %d\n",
ba_resp->tid,
ba_resp->ba_seq_ctl,
ba_resp->ba_bitmap1,
ba_resp->ba_bitmap0,
ba_resp->scd_flow,
ba_resp->scd_ssn);
IWL_DEBUG_TX_REPLY("DAT start_idx = %d, bitmap = 0x%X%X \n",
agg->start_idx,
agg->bitmap1,
agg->bitmap0);
}
*/
iwl4965_tx_status_reply_compressed_ba(priv, agg, ba_resp);
/* releases all the TFDs until the SSN */
if (txq->q.read_ptr != (ba_resp_scd_ssn & 0xff))
iwl_tx_queue_reclaim(priv, ba_resp_scd_flow, index);
}
static void iwl4965_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id)
{
iwl_write_restricted_reg(priv,
SCD_QUEUE_STATUS_BITS(txq_id),
(0 << SCD_QUEUE_STTS_REG_POS_ACTIVE)|
(1 << SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
}
static int iwl4965_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid,
u16 txq_id)
{
u32 tbl_dw_addr;
u32 tbl_dw;
u16 scd_q2ratid;
scd_q2ratid = ra_tid & SCD_QUEUE_RA_TID_MAP_RATID_MSK;
tbl_dw_addr = priv->scd_base_addr +
SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id);
tbl_dw = iwl_read_restricted_mem(priv, tbl_dw_addr);
if (txq_id & 0x1)
tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF);
else
tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000);
iwl_write_restricted_mem(priv, tbl_dw_addr, tbl_dw);
return 0;
}
/**
* txq_id must be greater than IWL_BACK_QUEUE_FIRST_ID
*/
static int iwl4965_tx_queue_agg_enable(struct iwl_priv *priv, int txq_id,
int tx_fifo, int sta_id, int tid,
u16 ssn_idx)
{
unsigned long flags;
int rc;
u16 ra_tid;
if (IWL_BACK_QUEUE_FIRST_ID > txq_id)
IWL_WARNING("queue number too small: %d, must be > %d\n",
txq_id, IWL_BACK_QUEUE_FIRST_ID);
ra_tid = BUILD_RAxTID(sta_id, tid);
iwl_sta_modify_enable_tid_tx(priv, sta_id, tid);
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl4965_tx_queue_stop_scheduler(priv, txq_id);
iwl4965_tx_queue_set_q2ratid(priv, ra_tid, txq_id);
iwl_set_bits_restricted_reg(priv, SCD_QUEUECHAIN_SEL, (1<<txq_id));
priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
/* supposes that ssn_idx is valid (!= 0xFFF) */
iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx);
iwl_write_restricted_mem(priv,
priv->scd_base_addr + SCD_CONTEXT_QUEUE_OFFSET(txq_id),
(SCD_WIN_SIZE << SCD_QUEUE_CTX_REG1_WIN_SIZE_POS) &
SCD_QUEUE_CTX_REG1_WIN_SIZE_MSK);
iwl_write_restricted_mem(priv, priv->scd_base_addr +
SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32),
(SCD_FRAME_LIMIT << SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS)
& SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK);
iwl_set_bits_restricted_reg(priv, SCD_INTERRUPT_MASK, (1 << txq_id));
iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
/**
* txq_id must be greater than IWL_BACK_QUEUE_FIRST_ID
*/
static int iwl4965_tx_queue_agg_disable(struct iwl_priv *priv, u16 txq_id,
u16 ssn_idx, u8 tx_fifo)
{
unsigned long flags;
int rc;
if (IWL_BACK_QUEUE_FIRST_ID > txq_id) {
IWL_WARNING("queue number too small: %d, must be > %d\n",
txq_id, IWL_BACK_QUEUE_FIRST_ID);
return -EINVAL;
}
spin_lock_irqsave(&priv->lock, flags);
rc = iwl_grab_restricted_access(priv);
if (rc) {
spin_unlock_irqrestore(&priv->lock, flags);
return rc;
}
iwl4965_tx_queue_stop_scheduler(priv, txq_id);
iwl_clear_bits_restricted_reg(priv, SCD_QUEUECHAIN_SEL, (1 << txq_id));
priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff);
priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff);
/* supposes that ssn_idx is valid (!= 0xFFF) */
iwl4965_set_wr_ptrs(priv, txq_id, ssn_idx);
iwl_clear_bits_restricted_reg(priv, SCD_INTERRUPT_MASK, (1 << txq_id));
iwl4965_txq_ctx_deactivate(priv, txq_id);
iwl4965_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0);
iwl_release_restricted_access(priv);
spin_unlock_irqrestore(&priv->lock, flags);
return 0;
}
#endif/* CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
/*
* RATE SCALE CODE
*/
int iwl4965_init_hw_rates(struct iwl_priv *priv, struct ieee80211_rate *rates)
{
return 0;
}
/**
* iwl4965_add_station - Initialize a station's hardware rate table
*
* The uCode contains a table of fallback rates and retries per rate
* for automatic fallback during transmission.
*
* NOTE: This initializes the table for a single retry per data rate
* which is not optimal. Setting up an intelligent retry per rate
* requires feedback from transmission, which isn't exposed through
* rc80211_simple which is what this driver is currently using.
*
*/
void iwl4965_add_station(struct iwl_priv *priv, const u8 *addr, int is_ap)
{
int i, r;
struct iwl_link_quality_cmd link_cmd = {
.reserved1 = 0,
};
u16 rate_flags;
/* Set up the rate scaling to start at 54M and fallback
* all the way to 1M in IEEE order and then spin on IEEE */
if (is_ap)
r = IWL_RATE_54M_INDEX;
else if (priv->phymode == MODE_IEEE80211A)
r = IWL_RATE_6M_INDEX;
else
r = IWL_RATE_1M_INDEX;
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
rate_flags = 0;
if (r >= IWL_FIRST_CCK_RATE && r <= IWL_LAST_CCK_RATE)
rate_flags |= RATE_MCS_CCK_MSK;
rate_flags |= RATE_MCS_ANT_B_MSK;
rate_flags &= ~RATE_MCS_ANT_A_MSK;
link_cmd.rs_table[i].rate_n_flags =
iwl_hw_set_rate_n_flags(iwl_rates[r].plcp, rate_flags);
r = iwl_get_prev_ieee_rate(r);
}
link_cmd.general_params.single_stream_ant_msk = 2;
link_cmd.general_params.dual_stream_ant_msk = 3;
link_cmd.agg_params.agg_dis_start_th = 3;
link_cmd.agg_params.agg_time_limit = cpu_to_le16(4000);
/* Update the rate scaling for control frame Tx to AP */
link_cmd.sta_id = is_ap ? IWL_AP_ID : IWL4965_BROADCAST_ID;
iwl_send_cmd_pdu(priv, REPLY_TX_LINK_QUALITY_CMD, sizeof(link_cmd),
&link_cmd);
}
#ifdef CONFIG_IWLWIFI_HT
static u8 iwl_is_channel_extension(struct iwl_priv *priv, int phymode,
u16 channel, u8 extension_chan_offset)
{
const struct iwl_channel_info *ch_info;
ch_info = iwl_get_channel_info(priv, phymode, channel);
if (!is_channel_valid(ch_info))
return 0;
if (extension_chan_offset == IWL_EXT_CHANNEL_OFFSET_AUTO)
return 0;
if ((ch_info->fat_extension_channel == extension_chan_offset) ||
(ch_info->fat_extension_channel == HT_IE_EXT_CHANNEL_MAX))
return 1;
return 0;
}
static u8 iwl_is_fat_tx_allowed(struct iwl_priv *priv,
const struct sta_ht_info *ht_info)
{
if (priv->channel_width != IWL_CHANNEL_WIDTH_40MHZ)
return 0;
if (ht_info->supported_chan_width != IWL_CHANNEL_WIDTH_40MHZ)
return 0;
if (ht_info->extension_chan_offset == IWL_EXT_CHANNEL_OFFSET_AUTO)
return 0;
/* no fat tx allowed on 2.4GHZ */
if (priv->phymode != MODE_IEEE80211A)
return 0;
return (iwl_is_channel_extension(priv, priv->phymode,
ht_info->control_channel,
ht_info->extension_chan_offset));
}
void iwl4965_set_rxon_ht(struct iwl_priv *priv, struct sta_ht_info *ht_info)
{
struct iwl_rxon_cmd *rxon = &priv->staging_rxon;
u32 val;
if (!ht_info->is_ht)
return;
if (iwl_is_fat_tx_allowed(priv, ht_info))
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED_MSK;
else
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED_MSK |
RXON_FLG_CHANNEL_MODE_PURE_40_MSK);
if (le16_to_cpu(rxon->channel) != ht_info->control_channel) {
IWL_DEBUG_ASSOC("control diff than current %d %d\n",
le16_to_cpu(rxon->channel),
ht_info->control_channel);
rxon->channel = cpu_to_le16(ht_info->control_channel);
return;
}
/* Note: control channel is oposit to extension channel */
switch (ht_info->extension_chan_offset) {
case IWL_EXT_CHANNEL_OFFSET_ABOVE:
rxon->flags &= ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
break;
case IWL_EXT_CHANNEL_OFFSET_BELOW:
rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
case IWL_EXT_CHANNEL_OFFSET_AUTO:
rxon->flags &= ~RXON_FLG_CHANNEL_MODE_MIXED_MSK;
break;
default:
rxon->flags &= ~RXON_FLG_CHANNEL_MODE_MIXED_MSK;
break;
}
val = ht_info->operating_mode;
rxon->flags |= cpu_to_le32(val << RXON_FLG_HT_OPERATING_MODE_POS);
priv->active_rate_ht[0] = ht_info->supp_rates[0];
priv->active_rate_ht[1] = ht_info->supp_rates[1];
iwl4965_set_rxon_chain(priv);
IWL_DEBUG_ASSOC("supported HT rate 0x%X %X "
"rxon flags 0x%X operation mode :0x%X "
"extension channel offset 0x%x "
"control chan %d\n",
priv->active_rate_ht[0], priv->active_rate_ht[1],
le32_to_cpu(rxon->flags), ht_info->operating_mode,
ht_info->extension_chan_offset,
ht_info->control_channel);
return;
}
void iwl4965_set_ht_add_station(struct iwl_priv *priv, u8 index)
{
__le32 sta_flags;
struct sta_ht_info *ht_info = &priv->current_assoc_ht;
priv->current_channel_width = IWL_CHANNEL_WIDTH_20MHZ;
if (!ht_info->is_ht)
goto done;
sta_flags = priv->stations[index].sta.station_flags;
if (ht_info->tx_mimo_ps_mode == IWL_MIMO_PS_DYNAMIC)
sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
else
sta_flags &= ~STA_FLG_RTS_MIMO_PROT_MSK;
sta_flags |= cpu_to_le32(
(u32)ht_info->ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
sta_flags |= cpu_to_le32(
(u32)ht_info->mpdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
sta_flags &= (~STA_FLG_FAT_EN_MSK);
ht_info->tx_chan_width = IWL_CHANNEL_WIDTH_20MHZ;
ht_info->chan_width_cap = IWL_CHANNEL_WIDTH_20MHZ;
if (iwl_is_fat_tx_allowed(priv, ht_info)) {
sta_flags |= STA_FLG_FAT_EN_MSK;
ht_info->chan_width_cap = IWL_CHANNEL_WIDTH_40MHZ;
if (ht_info->supported_chan_width == IWL_CHANNEL_WIDTH_40MHZ)
ht_info->tx_chan_width = IWL_CHANNEL_WIDTH_40MHZ;
}
priv->current_channel_width = ht_info->tx_chan_width;
priv->stations[index].sta.station_flags = sta_flags;
done:
return;
}
#ifdef CONFIG_IWLWIFI_HT_AGG
static void iwl4965_sta_modify_add_ba_tid(struct iwl_priv *priv,
int sta_id, int tid, u16 ssn)
{
unsigned long flags;
spin_lock_irqsave(&priv->sta_lock, flags);
priv->stations[sta_id].sta.station_flags_msk = 0;
priv->stations[sta_id].sta.sta.modify_mask = STA_MODIFY_ADDBA_TID_MSK;
priv->stations[sta_id].sta.add_immediate_ba_tid = (u8)tid;
priv->stations[sta_id].sta.add_immediate_ba_ssn = cpu_to_le16(ssn);
priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK;
spin_unlock_irqrestore(&priv->sta_lock, flags);
iwl_send_add_station(priv, &priv->stations[sta_id].sta, CMD_ASYNC);
}
static void iwl4965_sta_modify_del_ba_tid(struct iwl_priv *priv,
int sta_id, int tid)
{
unsigned long flags;
spin_lock_irqsave(&priv->sta_lock, flags);
priv->stations[sta_id].sta.station_flags_msk = 0;
priv->stations[sta_id].sta.sta.modify_mask = STA_MODIFY_DELBA_TID_MSK;
priv->stations[sta_id].sta.remove_immediate_ba_tid = (u8)tid;
priv->stations[sta_id].sta.mode = STA_CONTROL_MODIFY_MSK;
spin_unlock_irqrestore(&priv->sta_lock, flags);
iwl_send_add_station(priv, &priv->stations[sta_id].sta, CMD_ASYNC);
}
static const u16 default_tid_to_tx_fifo[] = {
IWL_TX_FIFO_AC1,
IWL_TX_FIFO_AC0,
IWL_TX_FIFO_AC0,
IWL_TX_FIFO_AC1,
IWL_TX_FIFO_AC2,
IWL_TX_FIFO_AC2,
IWL_TX_FIFO_AC3,
IWL_TX_FIFO_AC3,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_NONE,
IWL_TX_FIFO_AC3
};
static int iwl_txq_ctx_activate_free(struct iwl_priv *priv)
{
int txq_id;
for (txq_id = 0; txq_id < priv->hw_setting.max_txq_num; txq_id++)
if (!test_and_set_bit(txq_id, &priv->txq_ctx_active_msk))
return txq_id;
return -1;
}
int iwl_mac_ht_tx_agg_start(struct ieee80211_hw *hw, u8 *da, u16 tid,
u16 *start_seq_num)
{
struct iwl_priv *priv = hw->priv;
int sta_id;
int tx_fifo;
int txq_id;
int ssn = -1;
unsigned long flags;
struct iwl_tid_data *tid_data;
DECLARE_MAC_BUF(mac);
if (likely(tid < ARRAY_SIZE(default_tid_to_tx_fifo)))
tx_fifo = default_tid_to_tx_fifo[tid];
else
return -EINVAL;
IWL_WARNING("iwl-AGG iwl_mac_ht_tx_agg_start on da=%s"
" tid=%d\n", print_mac(mac, da), tid);
sta_id = iwl_hw_find_station(priv, da);
if (sta_id == IWL_INVALID_STATION)
return -ENXIO;
txq_id = iwl_txq_ctx_activate_free(priv);
if (txq_id == -1)
return -ENXIO;
spin_lock_irqsave(&priv->sta_lock, flags);
tid_data = &priv->stations[sta_id].tid[tid];
ssn = SEQ_TO_SN(tid_data->seq_number);
tid_data->agg.txq_id = txq_id;
spin_unlock_irqrestore(&priv->sta_lock, flags);
*start_seq_num = ssn;
iwl4965_ba_status(priv, tid, BA_STATUS_ACTIVE);
return iwl4965_tx_queue_agg_enable(priv, txq_id, tx_fifo,
sta_id, tid, ssn);
}
int iwl_mac_ht_tx_agg_stop(struct ieee80211_hw *hw, u8 *da, u16 tid,
int generator)
{
struct iwl_priv *priv = hw->priv;
int tx_fifo_id, txq_id, sta_id, ssn = -1;
struct iwl_tid_data *tid_data;
int rc;
DECLARE_MAC_BUF(mac);
if (!da) {
IWL_ERROR("%s: da = NULL\n", __func__);
return -EINVAL;
}
if (likely(tid < ARRAY_SIZE(default_tid_to_tx_fifo)))
tx_fifo_id = default_tid_to_tx_fifo[tid];
else
return -EINVAL;
sta_id = iwl_hw_find_station(priv, da);
if (sta_id == IWL_INVALID_STATION)
return -ENXIO;
tid_data = &priv->stations[sta_id].tid[tid];
ssn = (tid_data->seq_number & IEEE80211_SCTL_SEQ) >> 4;
txq_id = tid_data->agg.txq_id;
rc = iwl4965_tx_queue_agg_disable(priv, txq_id, ssn, tx_fifo_id);
/* FIXME: need more safe way to handle error condition */
if (rc)
return rc;
iwl4965_ba_status(priv, tid, BA_STATUS_INITIATOR_DELBA);
IWL_DEBUG_INFO("iwl_mac_ht_tx_agg_stop on da=%s tid=%d\n",
print_mac(mac, da), tid);
return 0;
}
int iwl_mac_ht_rx_agg_start(struct ieee80211_hw *hw, u8 *da,
u16 tid, u16 start_seq_num)
{
struct iwl_priv *priv = hw->priv;
int sta_id;
DECLARE_MAC_BUF(mac);
IWL_WARNING("iwl-AGG iwl_mac_ht_rx_agg_start on da=%s"
" tid=%d\n", print_mac(mac, da), tid);
sta_id = iwl_hw_find_station(priv, da);
iwl4965_sta_modify_add_ba_tid(priv, sta_id, tid, start_seq_num);
return 0;
}
int iwl_mac_ht_rx_agg_stop(struct ieee80211_hw *hw, u8 *da,
u16 tid, int generator)
{
struct iwl_priv *priv = hw->priv;
int sta_id;
DECLARE_MAC_BUF(mac);
IWL_WARNING("iwl-AGG iwl_mac_ht_rx_agg_stop on da=%s tid=%d\n",
print_mac(mac, da), tid);
sta_id = iwl_hw_find_station(priv, da);
iwl4965_sta_modify_del_ba_tid(priv, sta_id, tid);
return 0;
}
#endif /* CONFIG_IWLWIFI_HT_AGG */
#endif /* CONFIG_IWLWIFI_HT */
/* Set up 4965-specific Rx frame reply handlers */
void iwl_hw_rx_handler_setup(struct iwl_priv *priv)
{
/* Legacy Rx frames */
priv->rx_handlers[REPLY_4965_RX] = iwl4965_rx_reply_rx;
/* High-throughput (HT) Rx frames */
priv->rx_handlers[REPLY_RX_PHY_CMD] = iwl4965_rx_reply_rx_phy;
priv->rx_handlers[REPLY_RX_MPDU_CMD] = iwl4965_rx_reply_rx;
priv->rx_handlers[MISSED_BEACONS_NOTIFICATION] =
iwl4965_rx_missed_beacon_notif;
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
priv->rx_handlers[REPLY_COMPRESSED_BA] = iwl4965_rx_reply_compressed_ba;
#endif /* CONFIG_IWLWIFI_AGG */
#endif /* CONFIG_IWLWIFI */
}
void iwl_hw_setup_deferred_work(struct iwl_priv *priv)
{
INIT_WORK(&priv->txpower_work, iwl4965_bg_txpower_work);
INIT_WORK(&priv->statistics_work, iwl4965_bg_statistics_work);
#ifdef CONFIG_IWLWIFI_SENSITIVITY
INIT_WORK(&priv->sensitivity_work, iwl4965_bg_sensitivity_work);
#endif
#ifdef CONFIG_IWLWIFI_HT
#ifdef CONFIG_IWLWIFI_HT_AGG
INIT_WORK(&priv->agg_work, iwl4965_bg_agg_work);
#endif /* CONFIG_IWLWIFI_AGG */
#endif /* CONFIG_IWLWIFI_HT */
init_timer(&priv->statistics_periodic);
priv->statistics_periodic.data = (unsigned long)priv;
priv->statistics_periodic.function = iwl4965_bg_statistics_periodic;
}
void iwl_hw_cancel_deferred_work(struct iwl_priv *priv)
{
del_timer_sync(&priv->statistics_periodic);
cancel_delayed_work(&priv->init_alive_start);
}
struct pci_device_id iwl_hw_card_ids[] = {
{PCI_DEVICE(0x8086, 0x4229)},
{PCI_DEVICE(0x8086, 0x4230)},
{0}
};
int iwl_eeprom_acquire_semaphore(struct iwl_priv *priv)
{
u16 count;
int rc;
for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) {
iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
rc = iwl_poll_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM,
EEPROM_SEM_TIMEOUT);
if (rc >= 0) {
IWL_DEBUG_IO("Acquired semaphore after %d tries.\n",
count+1);
return rc;
}
}
return rc;
}
inline void iwl_eeprom_release_semaphore(struct iwl_priv *priv)
{
iwl_clear_bit(priv, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM);
}
MODULE_DEVICE_TABLE(pci, iwl_hw_card_ids);