/******************************************************************************
*
* Copyright(c) 2008 - 2013 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
/*
* DVM device-specific data & functions
*/
#include "iwl-io.h"
#include "iwl-prph.h"
#include "iwl-eeprom-parse.h"
#include "agn.h"
#include "dev.h"
#include "commands.h"
/*
* 1000 series
* ===========
*/
/*
* For 1000, use advance thermal throttling critical temperature threshold,
* but legacy thermal management implementation for now.
* This is for the reason of 1000 uCode using advance thermal throttling API
* but not implement ct_kill_exit based on ct_kill exit temperature
* so the thermal throttling will still based on legacy thermal throttling
* management.
* The code here need to be modified once 1000 uCode has the advanced thermal
* throttling algorithm in place
*/
static void iwl1000_set_ct_threshold(struct iwl_priv *priv)
{
/* want Celsius */
priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY;
priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
}
/* NIC configuration for 1000 series */
static void iwl1000_nic_config(struct iwl_priv *priv)
{
/* Setting digital SVR for 1000 card to 1.32V */
/* locking is acquired in iwl_set_bits_mask_prph() function */
iwl_set_bits_mask_prph(priv->trans, APMG_DIGITAL_SVR_REG,
APMG_SVR_DIGITAL_VOLTAGE_1_32,
~APMG_SVR_VOLTAGE_CONFIG_BIT_MSK);
}
/**
* iwl_beacon_time_mask_low - mask of lower 32 bit of beacon time
* @priv -- pointer to iwl_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32 iwl_beacon_time_mask_low(struct iwl_priv *priv,
u16 tsf_bits)
{
return (1 << tsf_bits) - 1;
}
/**
* iwl_beacon_time_mask_high - mask of higher 32 bit of beacon time
* @priv -- pointer to iwl_priv data structure
* @tsf_bits -- number of bits need to shift for masking)
*/
static inline u32 iwl_beacon_time_mask_high(struct iwl_priv *priv,
u16 tsf_bits)
{
return ((1 << (32 - tsf_bits)) - 1) << tsf_bits;
}
/*
* extended beacon time format
* time in usec will be changed into a 32-bit value in extended:internal format
* the extended part is the beacon counts
* the internal part is the time in usec within one beacon interval
*/
static u32 iwl_usecs_to_beacons(struct iwl_priv *priv, u32 usec,
u32 beacon_interval)
{
u32 quot;
u32 rem;
u32 interval = beacon_interval * TIME_UNIT;
if (!interval || !usec)
return 0;
quot = (usec / interval) &
(iwl_beacon_time_mask_high(priv, IWLAGN_EXT_BEACON_TIME_POS) >>
IWLAGN_EXT_BEACON_TIME_POS);
rem = (usec % interval) & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
return (quot << IWLAGN_EXT_BEACON_TIME_POS) + rem;
}
/* base is usually what we get from ucode with each received frame,
* the same as HW timer counter counting down
*/
static __le32 iwl_add_beacon_time(struct iwl_priv *priv, u32 base,
u32 addon, u32 beacon_interval)
{
u32 base_low = base & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
u32 addon_low = addon & iwl_beacon_time_mask_low(priv,
IWLAGN_EXT_BEACON_TIME_POS);
u32 interval = beacon_interval * TIME_UNIT;
u32 res = (base & iwl_beacon_time_mask_high(priv,
IWLAGN_EXT_BEACON_TIME_POS)) +
(addon & iwl_beacon_time_mask_high(priv,
IWLAGN_EXT_BEACON_TIME_POS));
if (base_low > addon_low)
res += base_low - addon_low;
else if (base_low < addon_low) {
res += interval + base_low - addon_low;
res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
} else
res += (1 << IWLAGN_EXT_BEACON_TIME_POS);
return cpu_to_le32(res);
}
static const struct iwl_sensitivity_ranges iwl1000_sensitivity = {
.min_nrg_cck = 95,
.auto_corr_min_ofdm = 90,
.auto_corr_min_ofdm_mrc = 170,
.auto_corr_min_ofdm_x1 = 120,
.auto_corr_min_ofdm_mrc_x1 = 240,
.auto_corr_max_ofdm = 120,
.auto_corr_max_ofdm_mrc = 210,
.auto_corr_max_ofdm_x1 = 155,
.auto_corr_max_ofdm_mrc_x1 = 290,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 200,
.auto_corr_min_cck_mrc = 170,
.auto_corr_max_cck_mrc = 400,
.nrg_th_cck = 95,
.nrg_th_ofdm = 95,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
static void iwl1000_hw_set_hw_params(struct iwl_priv *priv)
{
iwl1000_set_ct_threshold(priv);
/* Set initial sensitivity parameters */
priv->hw_params.sens = &iwl1000_sensitivity;
}
struct iwl_lib_ops iwl1000_lib = {
.set_hw_params = iwl1000_hw_set_hw_params,
.nic_config = iwl1000_nic_config,
.temperature = iwlagn_temperature,
};
/*
* 2000 series
* ===========
*/
static void iwl2000_set_ct_threshold(struct iwl_priv *priv)
{
/* want Celsius */
priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
}
/* NIC configuration for 2000 series */
static void iwl2000_nic_config(struct iwl_priv *priv)
{
iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
CSR_GP_DRIVER_REG_BIT_RADIO_IQ_INVER);
}
static const struct iwl_sensitivity_ranges iwl2000_sensitivity = {
.min_nrg_cck = 97,
.auto_corr_min_ofdm = 80,
.auto_corr_min_ofdm_mrc = 128,
.auto_corr_min_ofdm_x1 = 105,
.auto_corr_min_ofdm_mrc_x1 = 192,
.auto_corr_max_ofdm = 145,
.auto_corr_max_ofdm_mrc = 232,
.auto_corr_max_ofdm_x1 = 110,
.auto_corr_max_ofdm_mrc_x1 = 232,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 175,
.auto_corr_min_cck_mrc = 160,
.auto_corr_max_cck_mrc = 310,
.nrg_th_cck = 97,
.nrg_th_ofdm = 100,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
static void iwl2000_hw_set_hw_params(struct iwl_priv *priv)
{
iwl2000_set_ct_threshold(priv);
/* Set initial sensitivity parameters */
priv->hw_params.sens = &iwl2000_sensitivity;
}
struct iwl_lib_ops iwl2000_lib = {
.set_hw_params = iwl2000_hw_set_hw_params,
.nic_config = iwl2000_nic_config,
.temperature = iwlagn_temperature,
};
struct iwl_lib_ops iwl2030_lib = {
.set_hw_params = iwl2000_hw_set_hw_params,
.nic_config = iwl2000_nic_config,
.temperature = iwlagn_temperature,
};
/*
* 5000 series
* ===========
*/
/* NIC configuration for 5000 series */
static const struct iwl_sensitivity_ranges iwl5000_sensitivity = {
.min_nrg_cck = 100,
.auto_corr_min_ofdm = 90,
.auto_corr_min_ofdm_mrc = 170,
.auto_corr_min_ofdm_x1 = 105,
.auto_corr_min_ofdm_mrc_x1 = 220,
.auto_corr_max_ofdm = 120,
.auto_corr_max_ofdm_mrc = 210,
.auto_corr_max_ofdm_x1 = 120,
.auto_corr_max_ofdm_mrc_x1 = 240,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 200,
.auto_corr_min_cck_mrc = 200,
.auto_corr_max_cck_mrc = 400,
.nrg_th_cck = 100,
.nrg_th_ofdm = 100,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
static struct iwl_sensitivity_ranges iwl5150_sensitivity = {
.min_nrg_cck = 95,
.auto_corr_min_ofdm = 90,
.auto_corr_min_ofdm_mrc = 170,
.auto_corr_min_ofdm_x1 = 105,
.auto_corr_min_ofdm_mrc_x1 = 220,
.auto_corr_max_ofdm = 120,
.auto_corr_max_ofdm_mrc = 210,
/* max = min for performance bug in 5150 DSP */
.auto_corr_max_ofdm_x1 = 105,
.auto_corr_max_ofdm_mrc_x1 = 220,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 200,
.auto_corr_min_cck_mrc = 170,
.auto_corr_max_cck_mrc = 400,
.nrg_th_cck = 95,
.nrg_th_ofdm = 95,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 390,
.nrg_th_cca = 62,
};
#define IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF (-5)
static s32 iwl_temp_calib_to_offset(struct iwl_priv *priv)
{
u16 temperature, voltage;
temperature = le16_to_cpu(priv->nvm_data->kelvin_temperature);
voltage = le16_to_cpu(priv->nvm_data->kelvin_voltage);
/* offset = temp - volt / coeff */
return (s32)(temperature -
voltage / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF);
}
static void iwl5150_set_ct_threshold(struct iwl_priv *priv)
{
const s32 volt2temp_coef = IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF;
s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD_LEGACY) -
iwl_temp_calib_to_offset(priv);
priv->hw_params.ct_kill_threshold = threshold * volt2temp_coef;
}
static void iwl5000_set_ct_threshold(struct iwl_priv *priv)
{
/* want Celsius */
priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD_LEGACY;
}
static void iwl5000_hw_set_hw_params(struct iwl_priv *priv)
{
iwl5000_set_ct_threshold(priv);
/* Set initial sensitivity parameters */
priv->hw_params.sens = &iwl5000_sensitivity;
}
static void iwl5150_hw_set_hw_params(struct iwl_priv *priv)
{
iwl5150_set_ct_threshold(priv);
/* Set initial sensitivity parameters */
priv->hw_params.sens = &iwl5150_sensitivity;
}
static void iwl5150_temperature(struct iwl_priv *priv)
{
u32 vt = 0;
s32 offset = iwl_temp_calib_to_offset(priv);
vt = le32_to_cpu(priv->statistics.common.temperature);
vt = vt / IWL_5150_VOLTAGE_TO_TEMPERATURE_COEFF + offset;
/* now vt hold the temperature in Kelvin */
priv->temperature = KELVIN_TO_CELSIUS(vt);
iwl_tt_handler(priv);
}
static int iwl5000_hw_channel_switch(struct iwl_priv *priv,
struct ieee80211_channel_switch *ch_switch)
{
/*
* MULTI-FIXME
* See iwlagn_mac_channel_switch.
*/
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
struct iwl5000_channel_switch_cmd cmd;
u32 switch_time_in_usec, ucode_switch_time;
u16 ch;
u32 tsf_low;
u8 switch_count;
u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval);
struct ieee80211_vif *vif = ctx->vif;
struct iwl_host_cmd hcmd = {
.id = REPLY_CHANNEL_SWITCH,
.len = { sizeof(cmd), },
.flags = CMD_SYNC,
.data = { &cmd, },
};
cmd.band = priv->band == IEEE80211_BAND_2GHZ;
ch = ch_switch->channel->hw_value;
IWL_DEBUG_11H(priv, "channel switch from %d to %d\n",
ctx->active.channel, ch);
cmd.channel = cpu_to_le16(ch);
cmd.rxon_flags = ctx->staging.flags;
cmd.rxon_filter_flags = ctx->staging.filter_flags;
switch_count = ch_switch->count;
tsf_low = ch_switch->timestamp & 0x0ffffffff;
/*
* calculate the ucode channel switch time
* adding TSF as one of the factor for when to switch
*/
if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) {
if (switch_count > ((priv->ucode_beacon_time - tsf_low) /
beacon_interval)) {
switch_count -= (priv->ucode_beacon_time -
tsf_low) / beacon_interval;
} else
switch_count = 0;
}
if (switch_count <= 1)
cmd.switch_time = cpu_to_le32(priv->ucode_beacon_time);
else {
switch_time_in_usec =
vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
ucode_switch_time = iwl_usecs_to_beacons(priv,
switch_time_in_usec,
beacon_interval);
cmd.switch_time = iwl_add_beacon_time(priv,
priv->ucode_beacon_time,
ucode_switch_time,
beacon_interval);
}
IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n",
cmd.switch_time);
cmd.expect_beacon = ch_switch->channel->flags & IEEE80211_CHAN_RADAR;
return iwl_dvm_send_cmd(priv, &hcmd);
}
struct iwl_lib_ops iwl5000_lib = {
.set_hw_params = iwl5000_hw_set_hw_params,
.set_channel_switch = iwl5000_hw_channel_switch,
.temperature = iwlagn_temperature,
};
struct iwl_lib_ops iwl5150_lib = {
.set_hw_params = iwl5150_hw_set_hw_params,
.set_channel_switch = iwl5000_hw_channel_switch,
.temperature = iwl5150_temperature,
};
/*
* 6000 series
* ===========
*/
static void iwl6000_set_ct_threshold(struct iwl_priv *priv)
{
/* want Celsius */
priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD;
priv->hw_params.ct_kill_exit_threshold = CT_KILL_EXIT_THRESHOLD;
}
/* NIC configuration for 6000 series */
static void iwl6000_nic_config(struct iwl_priv *priv)
{
switch (priv->cfg->device_family) {
case IWL_DEVICE_FAMILY_6005:
case IWL_DEVICE_FAMILY_6030:
case IWL_DEVICE_FAMILY_6000:
break;
case IWL_DEVICE_FAMILY_6000i:
/* 2x2 IPA phy type */
iwl_write32(priv->trans, CSR_GP_DRIVER_REG,
CSR_GP_DRIVER_REG_BIT_RADIO_SKU_2x2_IPA);
break;
case IWL_DEVICE_FAMILY_6050:
/* Indicate calibration version to uCode. */
if (priv->nvm_data->calib_version >= 6)
iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6);
break;
case IWL_DEVICE_FAMILY_6150:
/* Indicate calibration version to uCode. */
if (priv->nvm_data->calib_version >= 6)
iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
CSR_GP_DRIVER_REG_BIT_CALIB_VERSION6);
iwl_set_bit(priv->trans, CSR_GP_DRIVER_REG,
CSR_GP_DRIVER_REG_BIT_6050_1x2);
break;
default:
WARN_ON(1);
}
}
static const struct iwl_sensitivity_ranges iwl6000_sensitivity = {
.min_nrg_cck = 110,
.auto_corr_min_ofdm = 80,
.auto_corr_min_ofdm_mrc = 128,
.auto_corr_min_ofdm_x1 = 105,
.auto_corr_min_ofdm_mrc_x1 = 192,
.auto_corr_max_ofdm = 145,
.auto_corr_max_ofdm_mrc = 232,
.auto_corr_max_ofdm_x1 = 110,
.auto_corr_max_ofdm_mrc_x1 = 232,
.auto_corr_min_cck = 125,
.auto_corr_max_cck = 175,
.auto_corr_min_cck_mrc = 160,
.auto_corr_max_cck_mrc = 310,
.nrg_th_cck = 110,
.nrg_th_ofdm = 110,
.barker_corr_th_min = 190,
.barker_corr_th_min_mrc = 336,
.nrg_th_cca = 62,
};
static void iwl6000_hw_set_hw_params(struct iwl_priv *priv)
{
iwl6000_set_ct_threshold(priv);
/* Set initial sensitivity parameters */
priv->hw_params.sens = &iwl6000_sensitivity;
}
static int iwl6000_hw_channel_switch(struct iwl_priv *priv,
struct ieee80211_channel_switch *ch_switch)
{
/*
* MULTI-FIXME
* See iwlagn_mac_channel_switch.
*/
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
struct iwl6000_channel_switch_cmd *cmd;
u32 switch_time_in_usec, ucode_switch_time;
u16 ch;
u32 tsf_low;
u8 switch_count;
u16 beacon_interval = le16_to_cpu(ctx->timing.beacon_interval);
struct ieee80211_vif *vif = ctx->vif;
struct iwl_host_cmd hcmd = {
.id = REPLY_CHANNEL_SWITCH,
.len = { sizeof(*cmd), },
.flags = CMD_SYNC,
.dataflags[0] = IWL_HCMD_DFL_NOCOPY,
};
int err;
cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
hcmd.data[0] = cmd;
cmd->band = priv->band == IEEE80211_BAND_2GHZ;
ch = ch_switch->channel->hw_value;
IWL_DEBUG_11H(priv, "channel switch from %u to %u\n",
ctx->active.channel, ch);
cmd->channel = cpu_to_le16(ch);
cmd->rxon_flags = ctx->staging.flags;
cmd->rxon_filter_flags = ctx->staging.filter_flags;
switch_count = ch_switch->count;
tsf_low = ch_switch->timestamp & 0x0ffffffff;
/*
* calculate the ucode channel switch time
* adding TSF as one of the factor for when to switch
*/
if ((priv->ucode_beacon_time > tsf_low) && beacon_interval) {
if (switch_count > ((priv->ucode_beacon_time - tsf_low) /
beacon_interval)) {
switch_count -= (priv->ucode_beacon_time -
tsf_low) / beacon_interval;
} else
switch_count = 0;
}
if (switch_count <= 1)
cmd->switch_time = cpu_to_le32(priv->ucode_beacon_time);
else {
switch_time_in_usec =
vif->bss_conf.beacon_int * switch_count * TIME_UNIT;
ucode_switch_time = iwl_usecs_to_beacons(priv,
switch_time_in_usec,
beacon_interval);
cmd->switch_time = iwl_add_beacon_time(priv,
priv->ucode_beacon_time,
ucode_switch_time,
beacon_interval);
}
IWL_DEBUG_11H(priv, "uCode time for the switch is 0x%x\n",
cmd->switch_time);
cmd->expect_beacon = ch_switch->channel->flags & IEEE80211_CHAN_RADAR;
err = iwl_dvm_send_cmd(priv, &hcmd);
kfree(cmd);
return err;
}
struct iwl_lib_ops iwl6000_lib = {
.set_hw_params = iwl6000_hw_set_hw_params,
.set_channel_switch = iwl6000_hw_channel_switch,
.nic_config = iwl6000_nic_config,
.temperature = iwlagn_temperature,
};
struct iwl_lib_ops iwl6030_lib = {
.set_hw_params = iwl6000_hw_set_hw_params,
.set_channel_switch = iwl6000_hw_channel_switch,
.nic_config = iwl6000_nic_config,
.temperature = iwlagn_temperature,
};