/******************************************************************************
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*****************************************************************************/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/etherdevice.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/lockdep.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/skbuff.h>
#include <net/mac80211.h>
#include "common.h"
const char *il_get_cmd_string(u8 cmd)
{
switch (cmd) {
IL_CMD(N_ALIVE);
IL_CMD(N_ERROR);
IL_CMD(C_RXON);
IL_CMD(C_RXON_ASSOC);
IL_CMD(C_QOS_PARAM);
IL_CMD(C_RXON_TIMING);
IL_CMD(C_ADD_STA);
IL_CMD(C_REM_STA);
IL_CMD(C_WEPKEY);
IL_CMD(N_3945_RX);
IL_CMD(C_TX);
IL_CMD(C_RATE_SCALE);
IL_CMD(C_LEDS);
IL_CMD(C_TX_LINK_QUALITY_CMD);
IL_CMD(C_CHANNEL_SWITCH);
IL_CMD(N_CHANNEL_SWITCH);
IL_CMD(C_SPECTRUM_MEASUREMENT);
IL_CMD(N_SPECTRUM_MEASUREMENT);
IL_CMD(C_POWER_TBL);
IL_CMD(N_PM_SLEEP);
IL_CMD(N_PM_DEBUG_STATS);
IL_CMD(C_SCAN);
IL_CMD(C_SCAN_ABORT);
IL_CMD(N_SCAN_START);
IL_CMD(N_SCAN_RESULTS);
IL_CMD(N_SCAN_COMPLETE);
IL_CMD(N_BEACON);
IL_CMD(C_TX_BEACON);
IL_CMD(C_TX_PWR_TBL);
IL_CMD(C_BT_CONFIG);
IL_CMD(C_STATS);
IL_CMD(N_STATS);
IL_CMD(N_CARD_STATE);
IL_CMD(N_MISSED_BEACONS);
IL_CMD(C_CT_KILL_CONFIG);
IL_CMD(C_SENSITIVITY);
IL_CMD(C_PHY_CALIBRATION);
IL_CMD(N_RX_PHY);
IL_CMD(N_RX_MPDU);
IL_CMD(N_RX);
IL_CMD(N_COMPRESSED_BA);
default:
return "UNKNOWN";
}
}
EXPORT_SYMBOL(il_get_cmd_string);
#define HOST_COMPLETE_TIMEOUT (HZ / 2)
static void il_generic_cmd_callback(struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
return;
}
#ifdef CONFIG_IWLEGACY_DEBUG
switch (cmd->hdr.cmd) {
case C_TX_LINK_QUALITY_CMD:
case C_SENSITIVITY:
D_HC_DUMP("back from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
break;
default:
D_HC("back from %s (0x%08X)\n",
il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
}
#endif
}
static int
il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
{
int ret;
BUG_ON(!(cmd->flags & CMD_ASYNC));
/* An asynchronous command can not expect an SKB to be set. */
BUG_ON(cmd->flags & CMD_WANT_SKB);
/* Assign a generic callback if one is not provided */
if (!cmd->callback)
cmd->callback = il_generic_cmd_callback;
if (test_bit(S_EXIT_PENDING, &il->status))
return -EBUSY;
ret = il_enqueue_hcmd(il, cmd);
if (ret < 0) {
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
return ret;
}
return 0;
}
int il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
{
int cmd_idx;
int ret;
lockdep_assert_held(&il->mutex);
BUG_ON(cmd->flags & CMD_ASYNC);
/* A synchronous command can not have a callback set. */
BUG_ON(cmd->callback);
D_INFO("Attempting to send sync command %s\n",
il_get_cmd_string(cmd->id));
set_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Setting HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
cmd_idx = il_enqueue_hcmd(il, cmd);
if (cmd_idx < 0) {
ret = cmd_idx;
IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
il_get_cmd_string(cmd->id), ret);
goto out;
}
ret = wait_event_timeout(il->wait_command_queue,
!test_bit(S_HCMD_ACTIVE, &il->status),
HOST_COMPLETE_TIMEOUT);
if (!ret) {
if (test_bit(S_HCMD_ACTIVE, &il->status)) {
IL_ERR(
"Error sending %s: time out after %dms.\n",
il_get_cmd_string(cmd->id),
jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
clear_bit(S_HCMD_ACTIVE, &il->status);
D_INFO(
"Clearing HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->id));
ret = -ETIMEDOUT;
goto cancel;
}
}
if (test_bit(S_RF_KILL_HW, &il->status)) {
IL_ERR("Command %s aborted: RF KILL Switch\n",
il_get_cmd_string(cmd->id));
ret = -ECANCELED;
goto fail;
}
if (test_bit(S_FW_ERROR, &il->status)) {
IL_ERR("Command %s failed: FW Error\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto fail;
}
if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
IL_ERR("Error: Response NULL in '%s'\n",
il_get_cmd_string(cmd->id));
ret = -EIO;
goto cancel;
}
ret = 0;
goto out;
cancel:
if (cmd->flags & CMD_WANT_SKB) {
/*
* Cancel the CMD_WANT_SKB flag for the cmd in the
* TX cmd queue. Otherwise in case the cmd comes
* in later, it will possibly set an invalid
* address (cmd->meta.source).
*/
il->txq[il->cmd_queue].meta[cmd_idx].flags &=
~CMD_WANT_SKB;
}
fail:
if (cmd->reply_page) {
il_free_pages(il, cmd->reply_page);
cmd->reply_page = 0;
}
out:
return ret;
}
EXPORT_SYMBOL(il_send_cmd_sync);
int il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
{
if (cmd->flags & CMD_ASYNC)
return il_send_cmd_async(il, cmd);
return il_send_cmd_sync(il, cmd);
}
EXPORT_SYMBOL(il_send_cmd);
int
il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
return il_send_cmd_sync(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu);
int il_send_cmd_pdu_async(struct il_priv *il,
u8 id, u16 len, const void *data,
void (*callback)(struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt))
{
struct il_host_cmd cmd = {
.id = id,
.len = len,
.data = data,
};
cmd.flags |= CMD_ASYNC;
cmd.callback = callback;
return il_send_cmd_async(il, &cmd);
}
EXPORT_SYMBOL(il_send_cmd_pdu_async);
/* default: IL_LED_BLINK(0) using blinking idx table */
static int led_mode;
module_param(led_mode, int, S_IRUGO);
MODULE_PARM_DESC(led_mode, "0=system default, "
"1=On(RF On)/Off(RF Off), 2=blinking");
/* Throughput OFF time(ms) ON time (ms)
* >300 25 25
* >200 to 300 40 40
* >100 to 200 55 55
* >70 to 100 65 65
* >50 to 70 75 75
* >20 to 50 85 85
* >10 to 20 95 95
* >5 to 10 110 110
* >1 to 5 130 130
* >0 to 1 167 167
* <=0 SOLID ON
*/
static const struct ieee80211_tpt_blink il_blink[] = {
{ .throughput = 0, .blink_time = 334 },
{ .throughput = 1 * 1024 - 1, .blink_time = 260 },
{ .throughput = 5 * 1024 - 1, .blink_time = 220 },
{ .throughput = 10 * 1024 - 1, .blink_time = 190 },
{ .throughput = 20 * 1024 - 1, .blink_time = 170 },
{ .throughput = 50 * 1024 - 1, .blink_time = 150 },
{ .throughput = 70 * 1024 - 1, .blink_time = 130 },
{ .throughput = 100 * 1024 - 1, .blink_time = 110 },
{ .throughput = 200 * 1024 - 1, .blink_time = 80 },
{ .throughput = 300 * 1024 - 1, .blink_time = 50 },
};
/*
* Adjust led blink rate to compensate on a MAC Clock difference on every HW
* Led blink rate analysis showed an average deviation of 0% on 3945,
* 5% on 4965 HW.
* Need to compensate on the led on/off time per HW according to the deviation
* to achieve the desired led frequency
* The calculation is: (100-averageDeviation)/100 * blinkTime
* For code efficiency the calculation will be:
* compensation = (100 - averageDeviation) * 64 / 100
* NewBlinkTime = (compensation * BlinkTime) / 64
*/
static inline u8 il_blink_compensation(struct il_priv *il,
u8 time, u16 compensation)
{
if (!compensation) {
IL_ERR("undefined blink compensation: "
"use pre-defined blinking time\n");
return time;
}
return (u8)((time * compensation) >> 6);
}
/* Set led pattern command */
static int il_led_cmd(struct il_priv *il,
unsigned long on,
unsigned long off)
{
struct il_led_cmd led_cmd = {
.id = IL_LED_LINK,
.interval = IL_DEF_LED_INTRVL
};
int ret;
if (!test_bit(S_READY, &il->status))
return -EBUSY;
if (il->blink_on == on && il->blink_off == off)
return 0;
if (off == 0) {
/* led is SOLID_ON */
on = IL_LED_SOLID;
}
D_LED("Led blink time compensation=%u\n",
il->cfg->base_params->led_compensation);
led_cmd.on = il_blink_compensation(il, on,
il->cfg->base_params->led_compensation);
led_cmd.off = il_blink_compensation(il, off,
il->cfg->base_params->led_compensation);
ret = il->cfg->ops->led->cmd(il, &led_cmd);
if (!ret) {
il->blink_on = on;
il->blink_off = off;
}
return ret;
}
static void il_led_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
unsigned long on = 0;
if (brightness > 0)
on = IL_LED_SOLID;
il_led_cmd(il, on, 0);
}
static int il_led_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct il_priv *il = container_of(led_cdev, struct il_priv, led);
return il_led_cmd(il, *delay_on, *delay_off);
}
void il_leds_init(struct il_priv *il)
{
int mode = led_mode;
int ret;
if (mode == IL_LED_DEFAULT)
mode = il->cfg->led_mode;
il->led.name = kasprintf(GFP_KERNEL, "%s-led",
wiphy_name(il->hw->wiphy));
il->led.brightness_set = il_led_brightness_set;
il->led.blink_set = il_led_blink_set;
il->led.max_brightness = 1;
switch (mode) {
case IL_LED_DEFAULT:
WARN_ON(1);
break;
case IL_LED_BLINK:
il->led.default_trigger =
ieee80211_create_tpt_led_trigger(il->hw,
IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
il_blink, ARRAY_SIZE(il_blink));
break;
case IL_LED_RF_STATE:
il->led.default_trigger =
ieee80211_get_radio_led_name(il->hw);
break;
}
ret = led_classdev_register(&il->pci_dev->dev, &il->led);
if (ret) {
kfree(il->led.name);
return;
}
il->led_registered = true;
}
EXPORT_SYMBOL(il_leds_init);
void il_leds_exit(struct il_priv *il)
{
if (!il->led_registered)
return;
led_classdev_unregister(&il->led);
kfree(il->led.name);
}
EXPORT_SYMBOL(il_leds_exit);
/************************** EEPROM BANDS ****************************
*
* The il_eeprom_band definitions below provide the mapping from the
* EEPROM contents to the specific channel number supported for each
* band.
*
* For example, il_priv->eeprom.band_3_channels[4] from the band_3
* definition below maps to physical channel 42 in the 5.2GHz spectrum.
* The specific geography and calibration information for that channel
* is contained in the eeprom map itself.
*
* During init, we copy the eeprom information and channel map
* information into il->channel_info_24/52 and il->channel_map_24/52
*
* channel_map_24/52 provides the idx in the channel_info array for a
* given channel. We have to have two separate maps as there is channel
* overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
* band_2
*
* A value of 0xff stored in the channel_map indicates that the channel
* is not supported by the hardware at all.
*
* A value of 0xfe in the channel_map indicates that the channel is not
* valid for Tx with the current hardware. This means that
* while the system can tune and receive on a given channel, it may not
* be able to associate or transmit any frames on that
* channel. There is no corresponding channel information for that
* entry.
*
*********************************************************************/
/* 2.4 GHz */
const u8 il_eeprom_band_1[14] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
};
/* 5.2 GHz bands */
static const u8 il_eeprom_band_2[] = { /* 4915-5080MHz */
183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
};
static const u8 il_eeprom_band_3[] = { /* 5170-5320MHz */
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
};
static const u8 il_eeprom_band_4[] = { /* 5500-5700MHz */
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
};
static const u8 il_eeprom_band_5[] = { /* 5725-5825MHz */
145, 149, 153, 157, 161, 165
};
static const u8 il_eeprom_band_6[] = { /* 2.4 ht40 channel */
1, 2, 3, 4, 5, 6, 7
};
static const u8 il_eeprom_band_7[] = { /* 5.2 ht40 channel */
36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
};
/******************************************************************************
*
* EEPROM related functions
*
******************************************************************************/
static int il_eeprom_verify_signature(struct il_priv *il)
{
u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
int ret = 0;
D_EEPROM("EEPROM signature=0x%08x\n", gp);
switch (gp) {
case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
break;
default:
IL_ERR("bad EEPROM signature,"
"EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
break;
}
return ret;
}
const u8
*il_eeprom_query_addr(const struct il_priv *il, size_t offset)
{
BUG_ON(offset >= il->cfg->base_params->eeprom_size);
return &il->eeprom[offset];
}
EXPORT_SYMBOL(il_eeprom_query_addr);
u16 il_eeprom_query16(const struct il_priv *il, size_t offset)
{
if (!il->eeprom)
return 0;
return (u16)il->eeprom[offset] | ((u16)il->eeprom[offset + 1] << 8);
}
EXPORT_SYMBOL(il_eeprom_query16);
/**
* il_eeprom_init - read EEPROM contents
*
* Load the EEPROM contents from adapter into il->eeprom
*
* NOTE: This routine uses the non-debug IO access functions.
*/
int il_eeprom_init(struct il_priv *il)
{
__le16 *e;
u32 gp = _il_rd(il, CSR_EEPROM_GP);
int sz;
int ret;
u16 addr;
/* allocate eeprom */
sz = il->cfg->base_params->eeprom_size;
D_EEPROM("NVM size = %d\n", sz);
il->eeprom = kzalloc(sz, GFP_KERNEL);
if (!il->eeprom) {
ret = -ENOMEM;
goto alloc_err;
}
e = (__le16 *)il->eeprom;
il->cfg->ops->lib->apm_ops.init(il);
ret = il_eeprom_verify_signature(il);
if (ret < 0) {
IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
ret = -ENOENT;
goto err;
}
/* Make sure driver (instead of uCode) is allowed to read EEPROM */
ret = il->cfg->ops->lib->eeprom_ops.acquire_semaphore(il);
if (ret < 0) {
IL_ERR("Failed to acquire EEPROM semaphore.\n");
ret = -ENOENT;
goto err;
}
/* eeprom is an array of 16bit values */
for (addr = 0; addr < sz; addr += sizeof(u16)) {
u32 r;
_il_wr(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
ret = _il_poll_bit(il, CSR_EEPROM_REG,
CSR_EEPROM_REG_READ_VALID_MSK,
CSR_EEPROM_REG_READ_VALID_MSK,
IL_EEPROM_ACCESS_TIMEOUT);
if (ret < 0) {
IL_ERR("Time out reading EEPROM[%d]\n",
addr);
goto done;
}
r = _il_rd(il, CSR_EEPROM_REG);
e[addr / 2] = cpu_to_le16(r >> 16);
}
D_EEPROM("NVM Type: %s, version: 0x%x\n",
"EEPROM",
il_eeprom_query16(il, EEPROM_VERSION));
ret = 0;
done:
il->cfg->ops->lib->eeprom_ops.release_semaphore(il);
err:
if (ret)
il_eeprom_free(il);
/* Reset chip to save power until we load uCode during "up". */
il_apm_stop(il);
alloc_err:
return ret;
}
EXPORT_SYMBOL(il_eeprom_init);
void il_eeprom_free(struct il_priv *il)
{
kfree(il->eeprom);
il->eeprom = NULL;
}
EXPORT_SYMBOL(il_eeprom_free);
static void il_init_band_reference(const struct il_priv *il,
int eep_band, int *eeprom_ch_count,
const struct il_eeprom_channel **eeprom_ch_info,
const u8 **eeprom_ch_idx)
{
u32 offset = il->cfg->ops->lib->
eeprom_ops.regulatory_bands[eep_band - 1];
switch (eep_band) {
case 1: /* 2.4GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_1;
break;
case 2: /* 4.9GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_2;
break;
case 3: /* 5.2GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_3;
break;
case 4: /* 5.5GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_4;
break;
case 5: /* 5.7GHz band */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_5;
break;
case 6: /* 2.4GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_6;
break;
case 7: /* 5 GHz ht40 channels */
*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
*eeprom_ch_info = (struct il_eeprom_channel *)
il_eeprom_query_addr(il, offset);
*eeprom_ch_idx = il_eeprom_band_7;
break;
default:
BUG();
}
}
#define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
*
* Does not set up a command, or touch hardware.
*/
static int il_mod_ht40_chan_info(struct il_priv *il,
enum ieee80211_band band, u16 channel,
const struct il_eeprom_channel *eeprom_ch,
u8 clear_ht40_extension_channel)
{
struct il_channel_info *ch_info;
ch_info = (struct il_channel_info *)
il_get_channel_info(il, band, channel);
if (!il_is_channel_valid(ch_info))
return -1;
D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n",
ch_info->channel,
il_is_channel_a_band(ch_info) ?
"5.2" : "2.4",
CHECK_AND_PRINT(IBSS),
CHECK_AND_PRINT(ACTIVE),
CHECK_AND_PRINT(RADAR),
CHECK_AND_PRINT(WIDE),
CHECK_AND_PRINT(DFS),
eeprom_ch->flags,
eeprom_ch->max_power_avg,
((eeprom_ch->flags & EEPROM_CHANNEL_IBSS)
&& !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ?
"" : "not ");
ch_info->ht40_eeprom = *eeprom_ch;
ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
ch_info->ht40_flags = eeprom_ch->flags;
if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
ch_info->ht40_extension_channel &=
~clear_ht40_extension_channel;
return 0;
}
#define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
? # x " " : "")
/**
* il_init_channel_map - Set up driver's info for all possible channels
*/
int il_init_channel_map(struct il_priv *il)
{
int eeprom_ch_count = 0;
const u8 *eeprom_ch_idx = NULL;
const struct il_eeprom_channel *eeprom_ch_info = NULL;
int band, ch;
struct il_channel_info *ch_info;
if (il->channel_count) {
D_EEPROM("Channel map already initialized.\n");
return 0;
}
D_EEPROM("Initializing regulatory info from EEPROM\n");
il->channel_count =
ARRAY_SIZE(il_eeprom_band_1) +
ARRAY_SIZE(il_eeprom_band_2) +
ARRAY_SIZE(il_eeprom_band_3) +
ARRAY_SIZE(il_eeprom_band_4) +
ARRAY_SIZE(il_eeprom_band_5);
D_EEPROM("Parsing data for %d channels.\n",
il->channel_count);
il->channel_info = kzalloc(sizeof(struct il_channel_info) *
il->channel_count, GFP_KERNEL);
if (!il->channel_info) {
IL_ERR("Could not allocate channel_info\n");
il->channel_count = 0;
return -ENOMEM;
}
ch_info = il->channel_info;
/* Loop through the 5 EEPROM bands adding them in order to the
* channel map we maintain (that contains additional information than
* what just in the EEPROM) */
for (band = 1; band <= 5; band++) {
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
ch_info->channel = eeprom_ch_idx[ch];
ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ :
IEEE80211_BAND_5GHZ;
/* permanently store EEPROM's channel regulatory flags
* and max power in channel info database. */
ch_info->eeprom = eeprom_ch_info[ch];
/* Copy the run-time flags so they are there even on
* invalid channels */
ch_info->flags = eeprom_ch_info[ch].flags;
/* First write that ht40 is not enabled, and then enable
* one by one */
ch_info->ht40_extension_channel =
IEEE80211_CHAN_NO_HT40;
if (!(il_is_channel_valid(ch_info))) {
D_EEPROM(
"Ch. %d Flags %x [%sGHz] - "
"No traffic\n",
ch_info->channel,
ch_info->flags,
il_is_channel_a_band(ch_info) ?
"5.2" : "2.4");
ch_info++;
continue;
}
/* Initialize regulatory-based run-time data */
ch_info->max_power_avg = ch_info->curr_txpow =
eeprom_ch_info[ch].max_power_avg;
ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
ch_info->min_power = 0;
D_EEPROM("Ch. %d [%sGHz] "
"%s%s%s%s%s%s(0x%02x %ddBm):"
" Ad-Hoc %ssupported\n",
ch_info->channel,
il_is_channel_a_band(ch_info) ?
"5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(DFS),
eeprom_ch_info[ch].flags,
eeprom_ch_info[ch].max_power_avg,
((eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_IBSS)
&& !(eeprom_ch_info[ch].
flags & EEPROM_CHANNEL_RADAR))
? "" : "not ");
ch_info++;
}
}
/* Check if we do have HT40 channels */
if (il->cfg->ops->lib->eeprom_ops.regulatory_bands[5] ==
EEPROM_REGULATORY_BAND_NO_HT40 &&
il->cfg->ops->lib->eeprom_ops.regulatory_bands[6] ==
EEPROM_REGULATORY_BAND_NO_HT40)
return 0;
/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
for (band = 6; band <= 7; band++) {
enum ieee80211_band ieeeband;
il_init_band_reference(il, band, &eeprom_ch_count,
&eeprom_ch_info, &eeprom_ch_idx);
/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
ieeeband =
(band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
/* Loop through each band adding each of the channels */
for (ch = 0; ch < eeprom_ch_count; ch++) {
/* Set up driver's info for lower half */
il_mod_ht40_chan_info(il, ieeeband,
eeprom_ch_idx[ch],
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40PLUS);
/* Set up driver's info for upper half */
il_mod_ht40_chan_info(il, ieeeband,
eeprom_ch_idx[ch] + 4,
&eeprom_ch_info[ch],
IEEE80211_CHAN_NO_HT40MINUS);
}
}
return 0;
}
EXPORT_SYMBOL(il_init_channel_map);
/*
* il_free_channel_map - undo allocations in il_init_channel_map
*/
void il_free_channel_map(struct il_priv *il)
{
kfree(il->channel_info);
il->channel_count = 0;
}
EXPORT_SYMBOL(il_free_channel_map);
/**
* il_get_channel_info - Find driver's ilate channel info
*
* Based on band and channel number.
*/
const struct
il_channel_info *il_get_channel_info(const struct il_priv *il,
enum ieee80211_band band, u16 channel)
{
int i;
switch (band) {
case IEEE80211_BAND_5GHZ:
for (i = 14; i < il->channel_count; i++) {
if (il->channel_info[i].channel == channel)
return &il->channel_info[i];
}
break;
case IEEE80211_BAND_2GHZ:
if (channel >= 1 && channel <= 14)
return &il->channel_info[channel - 1];
break;
default:
BUG();
}
return NULL;
}
EXPORT_SYMBOL(il_get_channel_info);
/*
* Setting power level allows the card to go to sleep when not busy.
*
* We calculate a sleep command based on the required latency, which
* we get from mac80211. In order to handle thermal throttling, we can
* also use pre-defined power levels.
*/
/*
* This defines the old power levels. They are still used by default
* (level 1) and for thermal throttle (levels 3 through 5)
*/
struct il_power_vec_entry {
struct il_powertable_cmd cmd;
u8 no_dtim; /* number of skip dtim */
};
static void il_power_sleep_cam_cmd(struct il_priv *il,
struct il_powertable_cmd *cmd)
{
memset(cmd, 0, sizeof(*cmd));
if (il->power_data.pci_pm)
cmd->flags |= IL_POWER_PCI_PM_MSK;
D_POWER("Sleep command for CAM\n");
}
static int
il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
{
D_POWER("Sending power/sleep command\n");
D_POWER("Flags value = 0x%08X\n", cmd->flags);
D_POWER("Tx timeout = %u\n",
le32_to_cpu(cmd->tx_data_timeout));
D_POWER("Rx timeout = %u\n",
le32_to_cpu(cmd->rx_data_timeout));
D_POWER(
"Sleep interval vector = { %d , %d , %d , %d , %d }\n",
le32_to_cpu(cmd->sleep_interval[0]),
le32_to_cpu(cmd->sleep_interval[1]),
le32_to_cpu(cmd->sleep_interval[2]),
le32_to_cpu(cmd->sleep_interval[3]),
le32_to_cpu(cmd->sleep_interval[4]));
return il_send_cmd_pdu(il, C_POWER_TBL,
sizeof(struct il_powertable_cmd), cmd);
}
int
il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd,
bool force)
{
int ret;
bool update_chains;
lockdep_assert_held(&il->mutex);
/* Don't update the RX chain when chain noise calibration is running */
update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
return 0;
if (!il_is_ready_rf(il))
return -EIO;
/* scan complete use sleep_power_next, need to be updated */
memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
if (test_bit(S_SCANNING, &il->status) && !force) {
D_INFO("Defer power set mode while scanning\n");
return 0;
}
if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
set_bit(S_POWER_PMI, &il->status);
ret = il_set_power(il, cmd);
if (!ret) {
if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
clear_bit(S_POWER_PMI, &il->status);
if (il->cfg->ops->lib->update_chain_flags && update_chains)
il->cfg->ops->lib->update_chain_flags(il);
else if (il->cfg->ops->lib->update_chain_flags)
D_POWER(
"Cannot update the power, chain noise "
"calibration running: %d\n",
il->chain_noise_data.state);
memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
} else
IL_ERR("set power fail, ret = %d", ret);
return ret;
}
int il_power_update_mode(struct il_priv *il, bool force)
{
struct il_powertable_cmd cmd;
il_power_sleep_cam_cmd(il, &cmd);
return il_power_set_mode(il, &cmd, force);
}
EXPORT_SYMBOL(il_power_update_mode);
/* initialize to default */
void il_power_initialize(struct il_priv *il)
{
u16 lctl = il_pcie_link_ctl(il);
il->power_data.pci_pm = !(lctl & PCI_CFG_LINK_CTRL_VAL_L0S_EN);
il->power_data.debug_sleep_level_override = -1;
memset(&il->power_data.sleep_cmd, 0,
sizeof(il->power_data.sleep_cmd));
}
EXPORT_SYMBOL(il_power_initialize);
/* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
* sending probe req. This should be set long enough to hear probe responses
* from more than one AP. */
#define IL_ACTIVE_DWELL_TIME_24 (30) /* all times in msec */
#define IL_ACTIVE_DWELL_TIME_52 (20)
#define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
#define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
/* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
* Must be set longer than active dwell time.
* For the most reliable scan, set > AP beacon interval (typically 100msec). */
#define IL_PASSIVE_DWELL_TIME_24 (20) /* all times in msec */
#define IL_PASSIVE_DWELL_TIME_52 (10)
#define IL_PASSIVE_DWELL_BASE (100)
#define IL_CHANNEL_TUNE_TIME 5
static int il_send_scan_abort(struct il_priv *il)
{
int ret;
struct il_rx_pkt *pkt;
struct il_host_cmd cmd = {
.id = C_SCAN_ABORT,
.flags = CMD_WANT_SKB,
};
/* Exit instantly with error when device is not ready
* to receive scan abort command or it does not perform
* hardware scan currently */
if (!test_bit(S_READY, &il->status) ||
!test_bit(S_GEO_CONFIGURED, &il->status) ||
!test_bit(S_SCAN_HW, &il->status) ||
test_bit(S_FW_ERROR, &il->status) ||
test_bit(S_EXIT_PENDING, &il->status))
return -EIO;
ret = il_send_cmd_sync(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->u.status != CAN_ABORT_STATUS) {
/* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before we
* the microcode has notified us that a scan is
* completed. */
D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
ret = -EIO;
}
il_free_pages(il, cmd.reply_page);
return ret;
}
static void il_complete_scan(struct il_priv *il, bool aborted)
{
/* check if scan was requested from mac80211 */
if (il->scan_request) {
D_SCAN("Complete scan in mac80211\n");
ieee80211_scan_completed(il->hw, aborted);
}
il->scan_vif = NULL;
il->scan_request = NULL;
}
void il_force_scan_end(struct il_priv *il)
{
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Forcing scan end while not scanning\n");
return;
}
D_SCAN("Forcing scan end\n");
clear_bit(S_SCANNING, &il->status);
clear_bit(S_SCAN_HW, &il->status);
clear_bit(S_SCAN_ABORTING, &il->status);
il_complete_scan(il, true);
}
static void il_do_scan_abort(struct il_priv *il)
{
int ret;
lockdep_assert_held(&il->mutex);
if (!test_bit(S_SCANNING, &il->status)) {
D_SCAN("Not performing scan to abort\n");
return;
}
if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan abort in progress\n");
return;
}
ret = il_send_scan_abort(il);
if (ret) {
D_SCAN("Send scan abort failed %d\n", ret);
il_force_scan_end(il);
} else
D_SCAN("Successfully send scan abort\n");
}
/**
* il_scan_cancel - Cancel any currently executing HW scan
*/
int il_scan_cancel(struct il_priv *il)
{
D_SCAN("Queuing abort scan\n");
queue_work(il->workqueue, &il->abort_scan);
return 0;
}
EXPORT_SYMBOL(il_scan_cancel);
/**
* il_scan_cancel_timeout - Cancel any currently executing HW scan
* @ms: amount of time to wait (in milliseconds) for scan to abort
*
*/
int il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
{
unsigned long timeout = jiffies + msecs_to_jiffies(ms);
lockdep_assert_held(&il->mutex);
D_SCAN("Scan cancel timeout\n");
il_do_scan_abort(il);
while (time_before_eq(jiffies, timeout)) {
if (!test_bit(S_SCAN_HW, &il->status))
break;
msleep(20);
}
return test_bit(S_SCAN_HW, &il->status);
}
EXPORT_SYMBOL(il_scan_cancel_timeout);
/* Service response to C_SCAN (0x80) */
static void il_hdl_scan(struct il_priv *il,
struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanreq_notification *notif =
(struct il_scanreq_notification *)pkt->u.raw;
D_SCAN("Scan request status = 0x%x\n", notif->status);
#endif
}
/* Service N_SCAN_START (0x82) */
static void il_hdl_scan_start(struct il_priv *il,
struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanstart_notification *notif =
(struct il_scanstart_notification *)pkt->u.raw;
il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
D_SCAN("Scan start: "
"%d [802.11%s] "
"(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n",
notif->channel,
notif->band ? "bg" : "a",
le32_to_cpu(notif->tsf_high),
le32_to_cpu(notif->tsf_low),
notif->status, notif->beacon_timer);
}
/* Service N_SCAN_RESULTS (0x83) */
static void il_hdl_scan_results(struct il_priv *il,
struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scanresults_notification *notif =
(struct il_scanresults_notification *)pkt->u.raw;
D_SCAN("Scan ch.res: "
"%d [802.11%s] "
"(TSF: 0x%08X:%08X) - %d "
"elapsed=%lu usec\n",
notif->channel,
notif->band ? "bg" : "a",
le32_to_cpu(notif->tsf_high),
le32_to_cpu(notif->tsf_low),
le32_to_cpu(notif->stats[0]),
le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
#endif
}
/* Service N_SCAN_COMPLETE (0x84) */
static void il_hdl_scan_complete(struct il_priv *il,
struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
#endif
D_SCAN(
"Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
scan_notif->scanned_channels,
scan_notif->tsf_low,
scan_notif->tsf_high, scan_notif->status);
/* The HW is no longer scanning */
clear_bit(S_SCAN_HW, &il->status);
D_SCAN("Scan on %sGHz took %dms\n",
(il->scan_band == IEEE80211_BAND_2GHZ) ? "2.4" : "5.2",
jiffies_to_msecs(jiffies - il->scan_start));
queue_work(il->workqueue, &il->scan_completed);
}
void il_setup_rx_scan_handlers(struct il_priv *il)
{
/* scan handlers */
il->handlers[C_SCAN] = il_hdl_scan;
il->handlers[N_SCAN_START] =
il_hdl_scan_start;
il->handlers[N_SCAN_RESULTS] =
il_hdl_scan_results;
il->handlers[N_SCAN_COMPLETE] =
il_hdl_scan_complete;
}
EXPORT_SYMBOL(il_setup_rx_scan_handlers);
inline u16 il_get_active_dwell_time(struct il_priv *il,
enum ieee80211_band band,
u8 n_probes)
{
if (band == IEEE80211_BAND_5GHZ)
return IL_ACTIVE_DWELL_TIME_52 +
IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
else
return IL_ACTIVE_DWELL_TIME_24 +
IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
}
EXPORT_SYMBOL(il_get_active_dwell_time);
u16 il_get_passive_dwell_time(struct il_priv *il,
enum ieee80211_band band,
struct ieee80211_vif *vif)
{
struct il_rxon_context *ctx = &il->ctx;
u16 value;
u16 passive = (band == IEEE80211_BAND_2GHZ) ?
IL_PASSIVE_DWELL_BASE + IL_PASSIVE_DWELL_TIME_24 :
IL_PASSIVE_DWELL_BASE + IL_PASSIVE_DWELL_TIME_52;
if (il_is_any_associated(il)) {
/*
* If we're associated, we clamp the maximum passive
* dwell time to be 98% of the smallest beacon interval
* (minus 2 * channel tune time)
*/
value = ctx->vif ? ctx->vif->bss_conf.beacon_int : 0;
if (value > IL_PASSIVE_DWELL_BASE || !value)
value = IL_PASSIVE_DWELL_BASE;
value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
passive = min(value, passive);
}
return passive;
}
EXPORT_SYMBOL(il_get_passive_dwell_time);
void il_init_scan_params(struct il_priv *il)
{
u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
if (!il->scan_tx_ant[IEEE80211_BAND_5GHZ])
il->scan_tx_ant[IEEE80211_BAND_5GHZ] = ant_idx;
if (!il->scan_tx_ant[IEEE80211_BAND_2GHZ])
il->scan_tx_ant[IEEE80211_BAND_2GHZ] = ant_idx;
}
EXPORT_SYMBOL(il_init_scan_params);
static int il_scan_initiate(struct il_priv *il,
struct ieee80211_vif *vif)
{
int ret;
lockdep_assert_held(&il->mutex);
if (WARN_ON(!il->cfg->ops->utils->request_scan))
return -EOPNOTSUPP;
cancel_delayed_work(&il->scan_check);
if (!il_is_ready_rf(il)) {
IL_WARN("Request scan called when driver not ready.\n");
return -EIO;
}
if (test_bit(S_SCAN_HW, &il->status)) {
D_SCAN(
"Multiple concurrent scan requests in parallel.\n");
return -EBUSY;
}
if (test_bit(S_SCAN_ABORTING, &il->status)) {
D_SCAN("Scan request while abort pending.\n");
return -EBUSY;
}
D_SCAN("Starting scan...\n");
set_bit(S_SCANNING, &il->status);
il->scan_start = jiffies;
ret = il->cfg->ops->utils->request_scan(il, vif);
if (ret) {
clear_bit(S_SCANNING, &il->status);
return ret;
}
queue_delayed_work(il->workqueue, &il->scan_check,
IL_SCAN_CHECK_WATCHDOG);
return 0;
}
int il_mac_hw_scan(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct cfg80211_scan_request *req)
{
struct il_priv *il = hw->priv;
int ret;
D_MAC80211("enter\n");
if (req->n_channels == 0)
return -EINVAL;
mutex_lock(&il->mutex);
if (test_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already in progress.\n");
ret = -EAGAIN;
goto out_unlock;
}
/* mac80211 will only ask for one band at a time */
il->scan_request = req;
il->scan_vif = vif;
il->scan_band = req->channels[0]->band;
ret = il_scan_initiate(il, vif);
D_MAC80211("leave\n");
out_unlock:
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_hw_scan);
static void il_bg_scan_check(struct work_struct *data)
{
struct il_priv *il =
container_of(data, struct il_priv, scan_check.work);
D_SCAN("Scan check work\n");
/* Since we are here firmware does not finish scan and
* most likely is in bad shape, so we don't bother to
* send abort command, just force scan complete to mac80211 */
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
/**
* il_fill_probe_req - fill in all required fields and IE for probe request
*/
u16
il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
const u8 *ta, const u8 *ies, int ie_len, int left)
{
int len = 0;
u8 *pos = NULL;
/* Make sure there is enough space for the probe request,
* two mandatory IEs and the data */
left -= 24;
if (left < 0)
return 0;
frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
memcpy(frame->da, il_bcast_addr, ETH_ALEN);
memcpy(frame->sa, ta, ETH_ALEN);
memcpy(frame->bssid, il_bcast_addr, ETH_ALEN);
frame->seq_ctrl = 0;
len += 24;
/* ...next IE... */
pos = &frame->u.probe_req.variable[0];
/* fill in our indirect SSID IE */
left -= 2;
if (left < 0)
return 0;
*pos++ = WLAN_EID_SSID;
*pos++ = 0;
len += 2;
if (WARN_ON(left < ie_len))
return len;
if (ies && ie_len) {
memcpy(pos, ies, ie_len);
len += ie_len;
}
return (u16)len;
}
EXPORT_SYMBOL(il_fill_probe_req);
static void il_bg_abort_scan(struct work_struct *work)
{
struct il_priv *il = container_of(work, struct il_priv, abort_scan);
D_SCAN("Abort scan work\n");
/* We keep scan_check work queued in case when firmware will not
* report back scan completed notification */
mutex_lock(&il->mutex);
il_scan_cancel_timeout(il, 200);
mutex_unlock(&il->mutex);
}
static void il_bg_scan_completed(struct work_struct *work)
{
struct il_priv *il =
container_of(work, struct il_priv, scan_completed);
bool aborted;
D_SCAN("Completed scan.\n");
cancel_delayed_work(&il->scan_check);
mutex_lock(&il->mutex);
aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
if (aborted)
D_SCAN("Aborted scan completed.\n");
if (!test_and_clear_bit(S_SCANNING, &il->status)) {
D_SCAN("Scan already completed.\n");
goto out_settings;
}
il_complete_scan(il, aborted);
out_settings:
/* Can we still talk to firmware ? */
if (!il_is_ready_rf(il))
goto out;
/*
* We do not commit power settings while scan is pending,
* do it now if the settings changed.
*/
il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
il_set_tx_power(il, il->tx_power_next, false);
il->cfg->ops->utils->post_scan(il);
out:
mutex_unlock(&il->mutex);
}
void il_setup_scan_deferred_work(struct il_priv *il)
{
INIT_WORK(&il->scan_completed, il_bg_scan_completed);
INIT_WORK(&il->abort_scan, il_bg_abort_scan);
INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
}
EXPORT_SYMBOL(il_setup_scan_deferred_work);
void il_cancel_scan_deferred_work(struct il_priv *il)
{
cancel_work_sync(&il->abort_scan);
cancel_work_sync(&il->scan_completed);
if (cancel_delayed_work_sync(&il->scan_check)) {
mutex_lock(&il->mutex);
il_force_scan_end(il);
mutex_unlock(&il->mutex);
}
}
EXPORT_SYMBOL(il_cancel_scan_deferred_work);
/* il->sta_lock must be held */
static void il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
{
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
IL_ERR(
"ACTIVATE a non DRIVER active station id %u addr %pM\n",
sta_id, il->stations[sta_id].sta.sta.addr);
if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
D_ASSOC(
"STA id %u addr %pM already present"
" in uCode (according to driver)\n",
sta_id, il->stations[sta_id].sta.sta.addr);
} else {
il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
D_ASSOC("Added STA id %u addr %pM to uCode\n",
sta_id, il->stations[sta_id].sta.sta.addr);
}
}
static int il_process_add_sta_resp(struct il_priv *il,
struct il_addsta_cmd *addsta,
struct il_rx_pkt *pkt,
bool sync)
{
u8 sta_id = addsta->sta.sta_id;
unsigned long flags;
int ret = -EIO;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_ADD_STA (0x%08X)\n",
pkt->hdr.flags);
return ret;
}
D_INFO("Processing response for adding station %u\n",
sta_id);
spin_lock_irqsave(&il->sta_lock, flags);
switch (pkt->u.add_sta.status) {
case ADD_STA_SUCCESS_MSK:
D_INFO("C_ADD_STA PASSED\n");
il_sta_ucode_activate(il, sta_id);
ret = 0;
break;
case ADD_STA_NO_ROOM_IN_TBL:
IL_ERR("Adding station %d failed, no room in table.\n",
sta_id);
break;
case ADD_STA_NO_BLOCK_ACK_RESOURCE:
IL_ERR(
"Adding station %d failed, no block ack resource.\n",
sta_id);
break;
case ADD_STA_MODIFY_NON_EXIST_STA:
IL_ERR("Attempting to modify non-existing station %d\n",
sta_id);
break;
default:
D_ASSOC("Received C_ADD_STA:(0x%08X)\n",
pkt->u.add_sta.status);
break;
}
D_INFO("%s station id %u addr %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added",
sta_id, il->stations[sta_id].sta.sta.addr);
/*
* XXX: The MAC address in the command buffer is often changed from
* the original sent to the device. That is, the MAC address
* written to the command buffer often is not the same MAC address
* read from the command buffer when the command returns. This
* issue has not yet been resolved and this debugging is left to
* observe the problem.
*/
D_INFO("%s station according to cmd buffer %pM\n",
il->stations[sta_id].sta.mode ==
STA_CONTROL_MODIFY_MSK ? "Modified" : "Added",
addsta->sta.addr);
spin_unlock_irqrestore(&il->sta_lock, flags);
return ret;
}
static void il_add_sta_callback(struct il_priv *il,
struct il_device_cmd *cmd,
struct il_rx_pkt *pkt)
{
struct il_addsta_cmd *addsta =
(struct il_addsta_cmd *)cmd->cmd.payload;
il_process_add_sta_resp(il, addsta, pkt, false);
}
int il_send_add_sta(struct il_priv *il,
struct il_addsta_cmd *sta, u8 flags)
{
struct il_rx_pkt *pkt = NULL;
int ret = 0;
u8 data[sizeof(*sta)];
struct il_host_cmd cmd = {
.id = C_ADD_STA,
.flags = flags,
.data = data,
};
u8 sta_id __maybe_unused = sta->sta.sta_id;
D_INFO("Adding sta %u (%pM) %ssynchronously\n",
sta_id, sta->sta.addr, flags & CMD_ASYNC ? "a" : "");
if (flags & CMD_ASYNC)
cmd.callback = il_add_sta_callback;
else {
cmd.flags |= CMD_WANT_SKB;
might_sleep();
}
cmd.len = il->cfg->ops->utils->build_addsta_hcmd(sta, data);
ret = il_send_cmd(il, &cmd);
if (ret || (flags & CMD_ASYNC))
return ret;
if (ret == 0) {
pkt = (struct il_rx_pkt *)cmd.reply_page;
ret = il_process_add_sta_resp(il, sta, pkt, true);
}
il_free_pages(il, cmd.reply_page);
return ret;
}
EXPORT_SYMBOL(il_send_add_sta);
static void il_set_ht_add_station(struct il_priv *il, u8 idx,
struct ieee80211_sta *sta,
struct il_rxon_context *ctx)
{
struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
__le32 sta_flags;
u8 mimo_ps_mode;
if (!sta || !sta_ht_inf->ht_supported)
goto done;
mimo_ps_mode = (sta_ht_inf->cap & IEEE80211_HT_CAP_SM_PS) >> 2;
D_ASSOC("spatial multiplexing power save mode: %s\n",
(mimo_ps_mode == WLAN_HT_CAP_SM_PS_STATIC) ?
"static" :
(mimo_ps_mode == WLAN_HT_CAP_SM_PS_DYNAMIC) ?
"dynamic" : "disabled");
sta_flags = il->stations[idx].sta.station_flags;
sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
switch (mimo_ps_mode) {
case WLAN_HT_CAP_SM_PS_STATIC:
sta_flags |= STA_FLG_MIMO_DIS_MSK;
break;
case WLAN_HT_CAP_SM_PS_DYNAMIC:
sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
break;
case WLAN_HT_CAP_SM_PS_DISABLED:
break;
default:
IL_WARN("Invalid MIMO PS mode %d\n", mimo_ps_mode);
break;
}
sta_flags |= cpu_to_le32(
(u32)sta_ht_inf->ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
sta_flags |= cpu_to_le32(
(u32)sta_ht_inf->ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
if (il_is_ht40_tx_allowed(il, ctx, &sta->ht_cap))
sta_flags |= STA_FLG_HT40_EN_MSK;
else
sta_flags &= ~STA_FLG_HT40_EN_MSK;
il->stations[idx].sta.station_flags = sta_flags;
done:
return;
}
/**
* il_prep_station - Prepare station information for addition
*
* should be called with sta_lock held
*/
u8 il_prep_station(struct il_priv *il, struct il_rxon_context *ctx,
const u8 *addr, bool is_ap, struct ieee80211_sta *sta)
{
struct il_station_entry *station;
int i;
u8 sta_id = IL_INVALID_STATION;
u16 rate;
if (is_ap)
sta_id = ctx->ap_sta_id;
else if (is_broadcast_ether_addr(addr))
sta_id = ctx->bcast_sta_id;
else
for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
if (!compare_ether_addr(il->stations[i].sta.sta.addr,
addr)) {
sta_id = i;
break;
}
if (!il->stations[i].used &&
sta_id == IL_INVALID_STATION)
sta_id = i;
}
/*
* These two conditions have the same outcome, but keep them
* separate
*/
if (unlikely(sta_id == IL_INVALID_STATION))
return sta_id;
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO(
"STA %d already in process of being added.\n",
sta_id);
return sta_id;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
!compare_ether_addr(il->stations[sta_id].sta.sta.addr, addr)) {
D_ASSOC(
"STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
return sta_id;
}
station = &il->stations[sta_id];
station->used = IL_STA_DRIVER_ACTIVE;
D_ASSOC("Add STA to driver ID %d: %pM\n",
sta_id, addr);
il->num_stations++;
/* Set up the C_ADD_STA command to send to device */
memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
memcpy(station->sta.sta.addr, addr, ETH_ALEN);
station->sta.mode = 0;
station->sta.sta.sta_id = sta_id;
station->sta.station_flags = ctx->station_flags;
station->ctxid = ctx->ctxid;
if (sta) {
struct il_station_priv_common *sta_priv;
sta_priv = (void *)sta->drv_priv;
sta_priv->ctx = ctx;
}
/*
* OK to call unconditionally, since local stations (IBSS BSSID
* STA and broadcast STA) pass in a NULL sta, and mac80211
* doesn't allow HT IBSS.
*/
il_set_ht_add_station(il, sta_id, sta, ctx);
/* 3945 only */
rate = (il->band == IEEE80211_BAND_5GHZ) ?
RATE_6M_PLCP : RATE_1M_PLCP;
/* Turn on both antennas for the station... */
station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
return sta_id;
}
EXPORT_SYMBOL_GPL(il_prep_station);
#define STA_WAIT_TIMEOUT (HZ/2)
/**
* il_add_station_common -
*/
int
il_add_station_common(struct il_priv *il,
struct il_rxon_context *ctx,
const u8 *addr, bool is_ap,
struct ieee80211_sta *sta, u8 *sta_id_r)
{
unsigned long flags_spin;
int ret = 0;
u8 sta_id;
struct il_addsta_cmd sta_cmd;
*sta_id_r = 0;
spin_lock_irqsave(&il->sta_lock, flags_spin);
sta_id = il_prep_station(il, ctx, addr, is_ap, sta);
if (sta_id == IL_INVALID_STATION) {
IL_ERR("Unable to prepare station %pM for addition\n",
addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
/*
* uCode is not able to deal with multiple requests to add a
* station. Keep track if one is in progress so that we do not send
* another.
*/
if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
D_INFO(
"STA %d already in process of being added.\n",
sta_id);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC(
"STA %d (%pM) already added, not adding again.\n",
sta_id, addr);
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EEXIST;
}
il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
memcpy(&sta_cmd, &il->stations[sta_id].sta,
sizeof(struct il_addsta_cmd));
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
/* Add station to device's station table */
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[sta_id].sta.sta.addr);
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
*sta_id_r = sta_id;
return ret;
}
EXPORT_SYMBOL(il_add_station_common);
/**
* il_sta_ucode_deactivate - deactivate ucode status for a station
*
* il->sta_lock must be held
*/
static void il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
{
/* Ucode must be active and driver must be non active */
if ((il->stations[sta_id].used &
(IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
IL_STA_UCODE_ACTIVE)
IL_ERR("removed non active STA %u\n", sta_id);
il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
D_ASSOC("Removed STA %u\n", sta_id);
}
static int il_send_remove_station(struct il_priv *il,
const u8 *addr, int sta_id,
bool temporary)
{
struct il_rx_pkt *pkt;
int ret;
unsigned long flags_spin;
struct il_rem_sta_cmd rm_sta_cmd;
struct il_host_cmd cmd = {
.id = C_REM_STA,
.len = sizeof(struct il_rem_sta_cmd),
.flags = CMD_SYNC,
.data = &rm_sta_cmd,
};
memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
rm_sta_cmd.num_sta = 1;
memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
cmd.flags |= CMD_WANT_SKB;
ret = il_send_cmd(il, &cmd);
if (ret)
return ret;
pkt = (struct il_rx_pkt *)cmd.reply_page;
if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
IL_ERR("Bad return from C_REM_STA (0x%08X)\n",
pkt->hdr.flags);
ret = -EIO;
}
if (!ret) {
switch (pkt->u.rem_sta.status) {
case REM_STA_SUCCESS_MSK:
if (!temporary) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
il_sta_ucode_deactivate(il, sta_id);
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
D_ASSOC("C_REM_STA PASSED\n");
break;
default:
ret = -EIO;
IL_ERR("C_REM_STA failed\n");
break;
}
}
il_free_pages(il, cmd.reply_page);
return ret;
}
/**
* il_remove_station - Remove driver's knowledge of station.
*/
int il_remove_station(struct il_priv *il, const u8 sta_id,
const u8 *addr)
{
unsigned long flags;
if (!il_is_ready(il)) {
D_INFO(
"Unable to remove station %pM, device not ready.\n",
addr);
/*
* It is typical for stations to be removed when we are
* going down. Return success since device will be down
* soon anyway
*/
return 0;
}
D_ASSOC("Removing STA from driver:%d %pM\n",
sta_id, addr);
if (WARN_ON(sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags);
if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
D_INFO("Removing %pM but non DRIVER active\n",
addr);
goto out_err;
}
if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
D_INFO("Removing %pM but non UCODE active\n",
addr);
goto out_err;
}
if (il->stations[sta_id].used & IL_STA_LOCAL) {
kfree(il->stations[sta_id].lq);
il->stations[sta_id].lq = NULL;
}
il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
spin_unlock_irqrestore(&il->sta_lock, flags);
return il_send_remove_station(il, addr, sta_id, false);
out_err:
spin_unlock_irqrestore(&il->sta_lock, flags);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(il_remove_station);
/**
* il_clear_ucode_stations - clear ucode station table bits
*
* This function clears all the bits in the driver indicating
* which stations are active in the ucode. Call when something
* other than explicit station management would cause this in
* the ucode, e.g. unassociated RXON.
*/
void il_clear_ucode_stations(struct il_priv *il,
struct il_rxon_context *ctx)
{
int i;
unsigned long flags_spin;
bool cleared = false;
D_INFO("Clearing ucode stations in driver\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (ctx && ctx->ctxid != il->stations[i].ctxid)
continue;
if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
D_INFO(
"Clearing ucode active for station %d\n", i);
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
cleared = true;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!cleared)
D_INFO(
"No active stations found to be cleared\n");
}
EXPORT_SYMBOL(il_clear_ucode_stations);
/**
* il_restore_stations() - Restore driver known stations to device
*
* All stations considered active by driver, but not present in ucode, is
* restored.
*
* Function sleeps.
*/
void
il_restore_stations(struct il_priv *il, struct il_rxon_context *ctx)
{
struct il_addsta_cmd sta_cmd;
struct il_link_quality_cmd lq;
unsigned long flags_spin;
int i;
bool found = false;
int ret;
bool send_lq;
if (!il_is_ready(il)) {
D_INFO(
"Not ready yet, not restoring any stations.\n");
return;
}
D_ASSOC("Restoring all known stations ... start.\n");
spin_lock_irqsave(&il->sta_lock, flags_spin);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (ctx->ctxid != il->stations[i].ctxid)
continue;
if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
!(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
D_ASSOC("Restoring sta %pM\n",
il->stations[i].sta.sta.addr);
il->stations[i].sta.mode = 0;
il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
found = true;
}
}
for (i = 0; i < il->hw_params.max_stations; i++) {
if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
memcpy(&sta_cmd, &il->stations[i].sta,
sizeof(struct il_addsta_cmd));
send_lq = false;
if (il->stations[i].lq) {
memcpy(&lq, il->stations[i].lq,
sizeof(struct il_link_quality_cmd));
send_lq = true;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
if (ret) {
spin_lock_irqsave(&il->sta_lock, flags_spin);
IL_ERR("Adding station %pM failed.\n",
il->stations[i].sta.sta.addr);
il->stations[i].used &=
~IL_STA_DRIVER_ACTIVE;
il->stations[i].used &=
~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock,
flags_spin);
}
/*
* Rate scaling has already been initialized, send
* current LQ command
*/
if (send_lq)
il_send_lq_cmd(il, ctx, &lq,
CMD_SYNC, true);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
}
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
if (!found)
D_INFO("Restoring all known stations"
" .... no stations to be restored.\n");
else
D_INFO("Restoring all known stations"
" .... complete.\n");
}
EXPORT_SYMBOL(il_restore_stations);
int il_get_free_ucode_key_idx(struct il_priv *il)
{
int i;
for (i = 0; i < il->sta_key_max_num; i++)
if (!test_and_set_bit(i, &il->ucode_key_table))
return i;
return WEP_INVALID_OFFSET;
}
EXPORT_SYMBOL(il_get_free_ucode_key_idx);
void il_dealloc_bcast_stations(struct il_priv *il)
{
unsigned long flags;
int i;
spin_lock_irqsave(&il->sta_lock, flags);
for (i = 0; i < il->hw_params.max_stations; i++) {
if (!(il->stations[i].used & IL_STA_BCAST))
continue;
il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
il->num_stations--;
BUG_ON(il->num_stations < 0);
kfree(il->stations[i].lq);
il->stations[i].lq = NULL;
}
spin_unlock_irqrestore(&il->sta_lock, flags);
}
EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
#ifdef CONFIG_IWLEGACY_DEBUG
static void il_dump_lq_cmd(struct il_priv *il,
struct il_link_quality_cmd *lq)
{
int i;
D_RATE("lq station id 0x%x\n", lq->sta_id);
D_RATE("lq ant 0x%X 0x%X\n",
lq->general_params.single_stream_ant_msk,
lq->general_params.dual_stream_ant_msk);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
D_RATE("lq idx %d 0x%X\n",
i, lq->rs_table[i].rate_n_flags);
}
#else
static inline void il_dump_lq_cmd(struct il_priv *il,
struct il_link_quality_cmd *lq)
{
}
#endif
/**
* il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
*
* It sometimes happens when a HT rate has been in use and we
* loose connectivity with AP then mac80211 will first tell us that the
* current channel is not HT anymore before removing the station. In such a
* scenario the RXON flags will be updated to indicate we are not
* communicating HT anymore, but the LQ command may still contain HT rates.
* Test for this to prevent driver from sending LQ command between the time
* RXON flags are updated and when LQ command is updated.
*/
static bool il_is_lq_table_valid(struct il_priv *il,
struct il_rxon_context *ctx,
struct il_link_quality_cmd *lq)
{
int i;
if (ctx->ht.enabled)
return true;
D_INFO("Channel %u is not an HT channel\n",
ctx->active.channel);
for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
if (le32_to_cpu(lq->rs_table[i].rate_n_flags) &
RATE_MCS_HT_MSK) {
D_INFO(
"idx %d of LQ expects HT channel\n",
i);
return false;
}
}
return true;
}
/**
* il_send_lq_cmd() - Send link quality command
* @init: This command is sent as part of station initialization right
* after station has been added.
*
* The link quality command is sent as the last step of station creation.
* This is the special case in which init is set and we call a callback in
* this case to clear the state indicating that station creation is in
* progress.
*/
int il_send_lq_cmd(struct il_priv *il, struct il_rxon_context *ctx,
struct il_link_quality_cmd *lq, u8 flags, bool init)
{
int ret = 0;
unsigned long flags_spin;
struct il_host_cmd cmd = {
.id = C_TX_LINK_QUALITY_CMD,
.len = sizeof(struct il_link_quality_cmd),
.flags = flags,
.data = lq,
};
if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
return -EINVAL;
spin_lock_irqsave(&il->sta_lock, flags_spin);
if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
return -EINVAL;
}
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
il_dump_lq_cmd(il, lq);
BUG_ON(init && (cmd.flags & CMD_ASYNC));
if (il_is_lq_table_valid(il, ctx, lq))
ret = il_send_cmd(il, &cmd);
else
ret = -EINVAL;
if (cmd.flags & CMD_ASYNC)
return ret;
if (init) {
D_INFO("init LQ command complete,"
" clearing sta addition status for sta %d\n",
lq->sta_id);
spin_lock_irqsave(&il->sta_lock, flags_spin);
il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
spin_unlock_irqrestore(&il->sta_lock, flags_spin);
}
return ret;
}
EXPORT_SYMBOL(il_send_lq_cmd);
int il_mac_sta_remove(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct il_priv *il = hw->priv;
struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
int ret;
D_INFO("received request to remove station %pM\n",
sta->addr);
mutex_lock(&il->mutex);
D_INFO("proceeding to remove station %pM\n",
sta->addr);
ret = il_remove_station(il, sta_common->sta_id, sta->addr);
if (ret)
IL_ERR("Error removing station %pM\n",
sta->addr);
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_sta_remove);
/************************** RX-FUNCTIONS ****************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of idxes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two idx registers for managing the Rx buffers.
*
* The READ idx maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ idx is managed by the firmware once the card is enabled.
*
* The WRITE idx maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* IDX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ idx
* and fire the RX interrupt. The driver can then query the READ idx and
* process as many packets as possible, moving the WRITE idx forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ IDX is updated (updating the
* 'processed' and 'read' driver idxes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' idx is updated.
* + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
* list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
* IDX is not incremented and iwl->status(RX_STALLED) is set. If there
* were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* il_rx_queue_alloc() Allocates rx_free
* il_rx_replenish() Replenishes rx_free list from rx_used, and calls
* il_rx_queue_restock
* il_rx_queue_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE idx. If insufficient rx_free buffers
* are available, schedules il_rx_replenish
*
* -- enable interrupts --
* ISR - il_rx() Detach il_rx_bufs from pool up to the
* READ IDX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls il_rx_queue_restock to refill any empty
* slots.
* ...
*
*/
/**
* il_rx_queue_space - Return number of free slots available in queue.
*/
int il_rx_queue_space(const struct il_rx_queue *q)
{
int s = q->read - q->write;
if (s <= 0)
s += RX_QUEUE_SIZE;
/* keep some buffer to not confuse full and empty queue */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(il_rx_queue_space);
/**
* il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
*/
void
il_rx_queue_update_write_ptr(struct il_priv *il,
struct il_rx_queue *q)
{
unsigned long flags;
u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
u32 reg;
spin_lock_irqsave(&q->lock, flags);
if (q->need_update == 0)
goto exit_unlock;
/* If power-saving is in use, make sure device is awake */
if (test_bit(S_POWER_PMI, &il->status)) {
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO(
"Rx queue requesting wakeup,"
" GP1 = 0x%x\n", reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
goto exit_unlock;
}
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg,
q->write_actual);
/* Else device is assumed to be awake */
} else {
/* Device expects a multiple of 8 */
q->write_actual = (q->write & ~0x7);
il_wr(il, rx_wrt_ptr_reg,
q->write_actual);
}
q->need_update = 0;
exit_unlock:
spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
int il_rx_queue_alloc(struct il_priv *il)
{
struct il_rx_queue *rxq = &il->rxq;
struct device *dev = &il->pci_dev->dev;
int i;
spin_lock_init(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
GFP_KERNEL);
if (!rxq->bd)
goto err_bd;
rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
&rxq->rb_stts_dma, GFP_KERNEL);
if (!rxq->rb_stts)
goto err_rb;
/* Fill the rx_used queue with _all_ of the Rx buffers */
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
rxq->free_count = 0;
rxq->need_update = 0;
return 0;
err_rb:
dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
rxq->bd_dma);
err_bd:
return -ENOMEM;
}
EXPORT_SYMBOL(il_rx_queue_alloc);
void il_hdl_spectrum_measurement(struct il_priv *il,
struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
if (!report->state) {
D_11H(
"Spectrum Measure Notification: Start\n");
return;
}
memcpy(&il->measure_report, report, sizeof(*report));
il->measurement_status |= MEASUREMENT_READY;
}
EXPORT_SYMBOL(il_hdl_spectrum_measurement);
/*
* returns non-zero if packet should be dropped
*/
int il_set_decrypted_flag(struct il_priv *il,
struct ieee80211_hdr *hdr,
u32 decrypt_res,
struct ieee80211_rx_status *stats)
{
u16 fc = le16_to_cpu(hdr->frame_control);
/*
* All contexts have the same setting here due to it being
* a module parameter, so OK to check any context.
*/
if (il->ctx.active.filter_flags &
RXON_FILTER_DIS_DECRYPT_MSK)
return 0;
if (!(fc & IEEE80211_FCTL_PROTECTED))
return 0;
D_RX("decrypt_res:0x%x\n", decrypt_res);
switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
case RX_RES_STATUS_SEC_TYPE_TKIP:
/* The uCode has got a bad phase 1 Key, pushes the packet.
* Decryption will be done in SW. */
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_KEY_TTAK)
break;
case RX_RES_STATUS_SEC_TYPE_WEP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_BAD_ICV_MIC) {
/* bad ICV, the packet is destroyed since the
* decryption is inplace, drop it */
D_RX("Packet destroyed\n");
return -1;
}
case RX_RES_STATUS_SEC_TYPE_CCMP:
if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
RX_RES_STATUS_DECRYPT_OK) {
D_RX("hw decrypt successfully!!!\n");
stats->flag |= RX_FLAG_DECRYPTED;
}
break;
default:
break;
}
return 0;
}
EXPORT_SYMBOL(il_set_decrypted_flag);
/**
* il_txq_update_write_ptr - Send new write idx to hardware
*/
void
il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
{
u32 reg = 0;
int txq_id = txq->q.id;
if (txq->need_update == 0)
return;
/* if we're trying to save power */
if (test_bit(S_POWER_PMI, &il->status)) {
/* wake up nic if it's powered down ...
* uCode will wake up, and interrupt us again, so next
* time we'll skip this part. */
reg = _il_rd(il, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
D_INFO(
"Tx queue %d requesting wakeup,"
" GP1 = 0x%x\n", txq_id, reg);
il_set_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
return;
}
il_wr(il, HBUS_TARG_WRPTR,
txq->q.write_ptr | (txq_id << 8));
/*
* else not in power-save mode,
* uCode will never sleep when we're
* trying to tx (during RFKILL, we're not trying to tx).
*/
} else
_il_wr(il, HBUS_TARG_WRPTR,
txq->q.write_ptr | (txq_id << 8));
txq->need_update = 0;
}
EXPORT_SYMBOL(il_txq_update_write_ptr);
/**
* il_tx_queue_unmap - Unmap any remaining DMA mappings and free skb's
*/
void il_tx_queue_unmap(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
if (q->n_bd == 0)
return;
while (q->write_ptr != q->read_ptr) {
il->cfg->ops->lib->txq_free_tfd(il, txq);
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
}
}
EXPORT_SYMBOL(il_tx_queue_unmap);
/**
* il_tx_queue_free - Deallocate DMA queue.
* @txq: Transmit queue to deallocate.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
* 0-fill, but do not free "txq" descriptor structure.
*/
void il_tx_queue_free(struct il_priv *il, int txq_id)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct device *dev = &il->pci_dev->dev;
int i;
il_tx_queue_unmap(il, txq_id);
/* De-alloc array of command/tx buffers */
for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
kfree(txq->cmd[i]);
/* De-alloc circular buffer of TFDs */
if (txq->q.n_bd)
dma_free_coherent(dev, il->hw_params.tfd_size *
txq->q.n_bd, txq->tfds, txq->q.dma_addr);
/* De-alloc array of per-TFD driver data */
kfree(txq->txb);
txq->txb = NULL;
/* deallocate arrays */
kfree(txq->cmd);
kfree(txq->meta);
txq->cmd = NULL;
txq->meta = NULL;
/* 0-fill queue descriptor structure */
memset(txq, 0, sizeof(*txq));
}
EXPORT_SYMBOL(il_tx_queue_free);
/**
* il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
*/
void il_cmd_queue_unmap(struct il_priv *il)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct il_queue *q = &txq->q;
int i;
if (q->n_bd == 0)
return;
while (q->read_ptr != q->write_ptr) {
i = il_get_cmd_idx(q, q->read_ptr, 0);
if (txq->meta[i].flags & CMD_MAPPED) {
pci_unmap_single(il->pci_dev,
dma_unmap_addr(&txq->meta[i], mapping),
dma_unmap_len(&txq->meta[i], len),
PCI_DMA_BIDIRECTIONAL);
txq->meta[i].flags = 0;
}
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
}
i = q->n_win;
if (txq->meta[i].flags & CMD_MAPPED) {
pci_unmap_single(il->pci_dev,
dma_unmap_addr(&txq->meta[i], mapping),
dma_unmap_len(&txq->meta[i], len),
PCI_DMA_BIDIRECTIONAL);
txq->meta[i].flags = 0;
}
}
EXPORT_SYMBOL(il_cmd_queue_unmap);
/**
* il_cmd_queue_free - Deallocate DMA queue.
* @txq: Transmit queue to deallocate.
*
* Empty queue by removing and destroying all BD's.
* Free all buffers.
* 0-fill, but do not free "txq" descriptor structure.
*/
void il_cmd_queue_free(struct il_priv *il)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct device *dev = &il->pci_dev->dev;
int i;
il_cmd_queue_unmap(il);
/* De-alloc array of command/tx buffers */
for (i = 0; i <= TFD_CMD_SLOTS; i++)
kfree(txq->cmd[i]);
/* De-alloc circular buffer of TFDs */
if (txq->q.n_bd)
dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
txq->tfds, txq->q.dma_addr);
/* deallocate arrays */
kfree(txq->cmd);
kfree(txq->meta);
txq->cmd = NULL;
txq->meta = NULL;
/* 0-fill queue descriptor structure */
memset(txq, 0, sizeof(*txq));
}
EXPORT_SYMBOL(il_cmd_queue_free);
/*************** DMA-QUEUE-GENERAL-FUNCTIONS *****
* DMA services
*
* Theory of operation
*
* A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
* of buffer descriptors, each of which points to one or more data buffers for
* the device to read from or fill. Driver and device exchange status of each
* queue via "read" and "write" pointers. Driver keeps minimum of 2 empty
* entries in each circular buffer, to protect against confusing empty and full
* queue states.
*
* The device reads or writes the data in the queues via the device's several
* DMA/FIFO channels. Each queue is mapped to a single DMA channel.
*
* For Tx queue, there are low mark and high mark limits. If, after queuing
* the packet for Tx, free space become < low mark, Tx queue stopped. When
* reclaiming packets (on 'tx done IRQ), if free space become > high mark,
* Tx queue resumed.
*
* See more detailed info in 4965.h.
***************************************************/
int il_queue_space(const struct il_queue *q)
{
int s = q->read_ptr - q->write_ptr;
if (q->read_ptr > q->write_ptr)
s -= q->n_bd;
if (s <= 0)
s += q->n_win;
/* keep some reserve to not confuse empty and full situations */
s -= 2;
if (s < 0)
s = 0;
return s;
}
EXPORT_SYMBOL(il_queue_space);
/**
* il_queue_init - Initialize queue's high/low-water and read/write idxes
*/
static int il_queue_init(struct il_priv *il, struct il_queue *q,
int count, int slots_num, u32 id)
{
q->n_bd = count;
q->n_win = slots_num;
q->id = id;
/* count must be power-of-two size, otherwise il_queue_inc_wrap
* and il_queue_dec_wrap are broken. */
BUG_ON(!is_power_of_2(count));
/* slots_num must be power-of-two size, otherwise
* il_get_cmd_idx is broken. */
BUG_ON(!is_power_of_2(slots_num));
q->low_mark = q->n_win / 4;
if (q->low_mark < 4)
q->low_mark = 4;
q->high_mark = q->n_win / 8;
if (q->high_mark < 2)
q->high_mark = 2;
q->write_ptr = q->read_ptr = 0;
return 0;
}
/**
* il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
*/
static int il_tx_queue_alloc(struct il_priv *il,
struct il_tx_queue *txq, u32 id)
{
struct device *dev = &il->pci_dev->dev;
size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
/* Driver ilate data, only for Tx (not command) queues,
* not shared with device. */
if (id != il->cmd_queue) {
txq->txb = kzalloc(sizeof(txq->txb[0]) *
TFD_QUEUE_SIZE_MAX, GFP_KERNEL);
if (!txq->txb) {
IL_ERR("kmalloc for auxiliary BD "
"structures failed\n");
goto error;
}
} else {
txq->txb = NULL;
}
/* Circular buffer of transmit frame descriptors (TFDs),
* shared with device */
txq->tfds = dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr,
GFP_KERNEL);
if (!txq->tfds) {
IL_ERR("pci_alloc_consistent(%zd) failed\n", tfd_sz);
goto error;
}
txq->q.id = id;
return 0;
error:
kfree(txq->txb);
txq->txb = NULL;
return -ENOMEM;
}
/**
* il_tx_queue_init - Allocate and initialize one tx/cmd queue
*/
int il_tx_queue_init(struct il_priv *il, struct il_tx_queue *txq,
int slots_num, u32 txq_id)
{
int i, len;
int ret;
int actual_slots = slots_num;
/*
* Alloc buffer array for commands (Tx or other types of commands).
* For the command queue (#4/#9), allocate command space + one big
* command for scan, since scan command is very huge; the system will
* not have two scans at the same time, so only one is needed.
* For normal Tx queues (all other queues), no super-size command
* space is needed.
*/
if (txq_id == il->cmd_queue)
actual_slots++;
txq->meta = kzalloc(sizeof(struct il_cmd_meta) * actual_slots,
GFP_KERNEL);
txq->cmd = kzalloc(sizeof(struct il_device_cmd *) * actual_slots,
GFP_KERNEL);
if (!txq->meta || !txq->cmd)
goto out_free_arrays;
len = sizeof(struct il_device_cmd);
for (i = 0; i < actual_slots; i++) {
/* only happens for cmd queue */
if (i == slots_num)
len = IL_MAX_CMD_SIZE;
txq->cmd[i] = kmalloc(len, GFP_KERNEL);
if (!txq->cmd[i])
goto err;
}
/* Alloc driver data array and TFD circular buffer */
ret = il_tx_queue_alloc(il, txq, txq_id);
if (ret)
goto err;
txq->need_update = 0;
/*
* For the default queues 0-3, set up the swq_id
* already -- all others need to get one later
* (if they need one at all).
*/
if (txq_id < 4)
il_set_swq_id(txq, txq_id, txq_id);
/* TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
* il_queue_inc_wrap and il_queue_dec_wrap are broken. */
BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
/* Initialize queue's high/low-water marks, and head/tail idxes */
il_queue_init(il, &txq->q,
TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
/* Tell device where to find queue */
il->cfg->ops->lib->txq_init(il, txq);
return 0;
err:
for (i = 0; i < actual_slots; i++)
kfree(txq->cmd[i]);
out_free_arrays:
kfree(txq->meta);
kfree(txq->cmd);
return -ENOMEM;
}
EXPORT_SYMBOL(il_tx_queue_init);
void il_tx_queue_reset(struct il_priv *il, struct il_tx_queue *txq,
int slots_num, u32 txq_id)
{
int actual_slots = slots_num;
if (txq_id == il->cmd_queue)
actual_slots++;
memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
txq->need_update = 0;
/* Initialize queue's high/low-water marks, and head/tail idxes */
il_queue_init(il, &txq->q,
TFD_QUEUE_SIZE_MAX, slots_num, txq_id);
/* Tell device where to find queue */
il->cfg->ops->lib->txq_init(il, txq);
}
EXPORT_SYMBOL(il_tx_queue_reset);
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
/**
* il_enqueue_hcmd - enqueue a uCode command
* @il: device ilate data point
* @cmd: a point to the ucode command structure
*
* The function returns < 0 values to indicate the operation is
* failed. On success, it turns the idx (> 0) of command in the
* command queue.
*/
int il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
{
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
struct il_queue *q = &txq->q;
struct il_device_cmd *out_cmd;
struct il_cmd_meta *out_meta;
dma_addr_t phys_addr;
unsigned long flags;
int len;
u32 idx;
u16 fix_size;
cmd->len = il->cfg->ops->utils->get_hcmd_size(cmd->id, cmd->len);
fix_size = (u16)(cmd->len + sizeof(out_cmd->hdr));
/* If any of the command structures end up being larger than
* the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
* we will need to increase the size of the TFD entries
* Also, check to see if command buffer should not exceed the size
* of device_cmd and max_cmd_size. */
BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
!(cmd->flags & CMD_SIZE_HUGE));
BUG_ON(fix_size > IL_MAX_CMD_SIZE);
if (il_is_rfkill(il) || il_is_ctkill(il)) {
IL_WARN("Not sending command - %s KILL\n",
il_is_rfkill(il) ? "RF" : "CT");
return -EIO;
}
spin_lock_irqsave(&il->hcmd_lock, flags);
if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
spin_unlock_irqrestore(&il->hcmd_lock, flags);
IL_ERR("Restarting adapter due to command queue full\n");
queue_work(il->workqueue, &il->restart);
return -ENOSPC;
}
idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
out_cmd = txq->cmd[idx];
out_meta = &txq->meta[idx];
if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
spin_unlock_irqrestore(&il->hcmd_lock, flags);
return -ENOSPC;
}
memset(out_meta, 0, sizeof(*out_meta)); /* re-initialize to NULL */
out_meta->flags = cmd->flags | CMD_MAPPED;
if (cmd->flags & CMD_WANT_SKB)
out_meta->source = cmd;
if (cmd->flags & CMD_ASYNC)
out_meta->callback = cmd->callback;
out_cmd->hdr.cmd = cmd->id;
memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
/* At this point, the out_cmd now has all of the incoming cmd
* information */
out_cmd->hdr.flags = 0;
out_cmd->hdr.sequence = cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) |
IDX_TO_SEQ(q->write_ptr));
if (cmd->flags & CMD_SIZE_HUGE)
out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
len = sizeof(struct il_device_cmd);
if (idx == TFD_CMD_SLOTS)
len = IL_MAX_CMD_SIZE;
#ifdef CONFIG_IWLEGACY_DEBUG
switch (out_cmd->hdr.cmd) {
case C_TX_LINK_QUALITY_CMD:
case C_SENSITIVITY:
D_HC_DUMP(
"Sending command %s (#%x), seq: 0x%04X, "
"%d bytes at %d[%d]:%d\n",
il_get_cmd_string(out_cmd->hdr.cmd),
out_cmd->hdr.cmd,
le16_to_cpu(out_cmd->hdr.sequence), fix_size,
q->write_ptr, idx, il->cmd_queue);
break;
default:
D_HC("Sending command %s (#%x), seq: 0x%04X, "
"%d bytes at %d[%d]:%d\n",
il_get_cmd_string(out_cmd->hdr.cmd),
out_cmd->hdr.cmd,
le16_to_cpu(out_cmd->hdr.sequence), fix_size,
q->write_ptr, idx, il->cmd_queue);
}
#endif
txq->need_update = 1;
if (il->cfg->ops->lib->txq_update_byte_cnt_tbl)
/* Set up entry in queue's byte count circular buffer */
il->cfg->ops->lib->txq_update_byte_cnt_tbl(il, txq, 0);
phys_addr = pci_map_single(il->pci_dev, &out_cmd->hdr,
fix_size, PCI_DMA_BIDIRECTIONAL);
dma_unmap_addr_set(out_meta, mapping, phys_addr);
dma_unmap_len_set(out_meta, len, fix_size);
il->cfg->ops->lib->txq_attach_buf_to_tfd(il, txq,
phys_addr, fix_size, 1,
U32_PAD(cmd->len));
/* Increment and update queue's write idx */
q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
il_txq_update_write_ptr(il, txq);
spin_unlock_irqrestore(&il->hcmd_lock, flags);
return idx;
}
/**
* il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
*
* When FW advances 'R' idx, all entries between old and new 'R' idx
* need to be reclaimed. As result, some free space forms. If there is
* enough free space (> low mark), wake the stack that feeds us.
*/
static void il_hcmd_queue_reclaim(struct il_priv *il, int txq_id,
int idx, int cmd_idx)
{
struct il_tx_queue *txq = &il->txq[txq_id];
struct il_queue *q = &txq->q;
int nfreed = 0;
if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
"is out of range [0-%d] %d %d.\n", txq_id,
idx, q->n_bd, q->write_ptr, q->read_ptr);
return;
}
for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
if (nfreed++ > 0) {
IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
q->write_ptr, q->read_ptr);
queue_work(il->workqueue, &il->restart);
}
}
}
/**
* il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
* @rxb: Rx buffer to reclaim
*
* If an Rx buffer has an async callback associated with it the callback
* will be executed. The attached skb (if present) will only be freed
* if the callback returns 1
*/
void
il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
u16 sequence = le16_to_cpu(pkt->hdr.sequence);
int txq_id = SEQ_TO_QUEUE(sequence);
int idx = SEQ_TO_IDX(sequence);
int cmd_idx;
bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
struct il_device_cmd *cmd;
struct il_cmd_meta *meta;
struct il_tx_queue *txq = &il->txq[il->cmd_queue];
unsigned long flags;
/* If a Tx command is being handled and it isn't in the actual
* command queue then there a command routing bug has been introduced
* in the queue management code. */
if (WARN(txq_id != il->cmd_queue,
"wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
txq_id, il->cmd_queue, sequence,
il->txq[il->cmd_queue].q.read_ptr,
il->txq[il->cmd_queue].q.write_ptr)) {
il_print_hex_error(il, pkt, 32);
return;
}
cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
cmd = txq->cmd[cmd_idx];
meta = &txq->meta[cmd_idx];
txq->time_stamp = jiffies;
pci_unmap_single(il->pci_dev,
dma_unmap_addr(meta, mapping),
dma_unmap_len(meta, len),
PCI_DMA_BIDIRECTIONAL);
/* Input error checking is done when commands are added to queue. */
if (meta->flags & CMD_WANT_SKB) {
meta->source->reply_page = (unsigned long)rxb_addr(rxb);
rxb->page = NULL;
} else if (meta->callback)
meta->callback(il, cmd, pkt);
spin_lock_irqsave(&il->hcmd_lock, flags);
il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
if (!(meta->flags & CMD_ASYNC)) {
clear_bit(S_HCMD_ACTIVE, &il->status);
D_INFO("Clearing HCMD_ACTIVE for command %s\n",
il_get_cmd_string(cmd->hdr.cmd));
wake_up(&il->wait_command_queue);
}
/* Mark as unmapped */
meta->flags = 0;
spin_unlock_irqrestore(&il->hcmd_lock, flags);
}
EXPORT_SYMBOL(il_tx_cmd_complete);
MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
MODULE_VERSION(IWLWIFI_VERSION);
MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
MODULE_LICENSE("GPL");
/*
* set bt_coex_active to true, uCode will do kill/defer
* every time the priority line is asserted (BT is sending signals on the
* priority line in the PCIx).
* set bt_coex_active to false, uCode will ignore the BT activity and
* perform the normal operation
*
* User might experience transmit issue on some platform due to WiFi/BT
* co-exist problem. The possible behaviors are:
* Able to scan and finding all the available AP
* Not able to associate with any AP
* On those platforms, WiFi communication can be restored by set
* "bt_coex_active" module parameter to "false"
*
* default: bt_coex_active = true (BT_COEX_ENABLE)
*/
static bool bt_coex_active = true;
module_param(bt_coex_active, bool, S_IRUGO);
MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
u32 il_debug_level;
EXPORT_SYMBOL(il_debug_level);
const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
EXPORT_SYMBOL(il_bcast_addr);
/* This function both allocates and initializes hw and il. */
struct ieee80211_hw *il_alloc_all(struct il_cfg *cfg)
{
struct il_priv *il;
/* mac80211 allocates memory for this device instance, including
* space for this driver's ilate structure */
struct ieee80211_hw *hw;
hw = ieee80211_alloc_hw(sizeof(struct il_priv),
cfg->ops->ieee80211_ops);
if (hw == NULL) {
pr_err("%s: Can not allocate network device\n",
cfg->name);
goto out;
}
il = hw->priv;
il->hw = hw;
out:
return hw;
}
EXPORT_SYMBOL(il_alloc_all);
#define MAX_BIT_RATE_40_MHZ 150 /* Mbps */
#define MAX_BIT_RATE_20_MHZ 72 /* Mbps */
static void il_init_ht_hw_capab(const struct il_priv *il,
struct ieee80211_sta_ht_cap *ht_info,
enum ieee80211_band band)
{
u16 max_bit_rate = 0;
u8 rx_chains_num = il->hw_params.rx_chains_num;
u8 tx_chains_num = il->hw_params.tx_chains_num;
ht_info->cap = 0;
memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
ht_info->ht_supported = true;
ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
max_bit_rate = MAX_BIT_RATE_20_MHZ;
if (il->hw_params.ht40_channel & BIT(band)) {
ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
ht_info->mcs.rx_mask[4] = 0x01;
max_bit_rate = MAX_BIT_RATE_40_MHZ;
}
if (il->cfg->mod_params->amsdu_size_8K)
ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
ht_info->mcs.rx_mask[0] = 0xFF;
if (rx_chains_num >= 2)
ht_info->mcs.rx_mask[1] = 0xFF;
if (rx_chains_num >= 3)
ht_info->mcs.rx_mask[2] = 0xFF;
/* Highest supported Rx data rate */
max_bit_rate *= rx_chains_num;
WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
/* Tx MCS capabilities */
ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
if (tx_chains_num != rx_chains_num) {
ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
ht_info->mcs.tx_params |= ((tx_chains_num - 1) <<
IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
}
}
/**
* il_init_geos - Initialize mac80211's geo/channel info based from eeprom
*/
int il_init_geos(struct il_priv *il)
{
struct il_channel_info *ch;
struct ieee80211_supported_band *sband;
struct ieee80211_channel *channels;
struct ieee80211_channel *geo_ch;
struct ieee80211_rate *rates;
int i = 0;
s8 max_tx_power = 0;
if (il->bands[IEEE80211_BAND_2GHZ].n_bitrates ||
il->bands[IEEE80211_BAND_5GHZ].n_bitrates) {
D_INFO("Geography modes already initialized.\n");
set_bit(S_GEO_CONFIGURED, &il->status);
return 0;
}
channels = kzalloc(sizeof(struct ieee80211_channel) *
il->channel_count, GFP_KERNEL);
if (!channels)
return -ENOMEM;
rates = kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
GFP_KERNEL);
if (!rates) {
kfree(channels);
return -ENOMEM;
}
/* 5.2GHz channels start after the 2.4GHz channels */
sband = &il->bands[IEEE80211_BAND_5GHZ];
sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
/* just OFDM */
sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
if (il->cfg->sku & IL_SKU_N)
il_init_ht_hw_capab(il, &sband->ht_cap,
IEEE80211_BAND_5GHZ);
sband = &il->bands[IEEE80211_BAND_2GHZ];
sband->channels = channels;
/* OFDM & CCK */
sband->bitrates = rates;
sband->n_bitrates = RATE_COUNT_LEGACY;
if (il->cfg->sku & IL_SKU_N)
il_init_ht_hw_capab(il, &sband->ht_cap,
IEEE80211_BAND_2GHZ);
il->ieee_channels = channels;
il->ieee_rates = rates;
for (i = 0; i < il->channel_count; i++) {
ch = &il->channel_info[i];
if (!il_is_channel_valid(ch))
continue;
sband = &il->bands[ch->band];
geo_ch = &sband->channels[sband->n_channels++];
geo_ch->center_freq =
ieee80211_channel_to_frequency(ch->channel, ch->band);
geo_ch->max_power = ch->max_power_avg;
geo_ch->max_antenna_gain = 0xff;
geo_ch->hw_value = ch->channel;
if (il_is_channel_valid(ch)) {
if (!(ch->flags & EEPROM_CHANNEL_IBSS))
geo_ch->flags |= IEEE80211_CHAN_NO_IBSS;
if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
geo_ch->flags |= IEEE80211_CHAN_PASSIVE_SCAN;
if (ch->flags & EEPROM_CHANNEL_RADAR)
geo_ch->flags |= IEEE80211_CHAN_RADAR;
geo_ch->flags |= ch->ht40_extension_channel;
if (ch->max_power_avg > max_tx_power)
max_tx_power = ch->max_power_avg;
} else {
geo_ch->flags |= IEEE80211_CHAN_DISABLED;
}
D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n",
ch->channel, geo_ch->center_freq,
il_is_channel_a_band(ch) ? "5.2" : "2.4",
geo_ch->flags & IEEE80211_CHAN_DISABLED ?
"restricted" : "valid",
geo_ch->flags);
}
il->tx_power_device_lmt = max_tx_power;
il->tx_power_user_lmt = max_tx_power;
il->tx_power_next = max_tx_power;
if (il->bands[IEEE80211_BAND_5GHZ].n_channels == 0 &&
(il->cfg->sku & IL_SKU_A)) {
IL_INFO("Incorrectly detected BG card as ABG. "
"Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
il->pci_dev->device,
il->pci_dev->subsystem_device);
il->cfg->sku &= ~IL_SKU_A;
}
IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
il->bands[IEEE80211_BAND_2GHZ].n_channels,
il->bands[IEEE80211_BAND_5GHZ].n_channels);
set_bit(S_GEO_CONFIGURED, &il->status);
return 0;
}
EXPORT_SYMBOL(il_init_geos);
/*
* il_free_geos - undo allocations in il_init_geos
*/
void il_free_geos(struct il_priv *il)
{
kfree(il->ieee_channels);
kfree(il->ieee_rates);
clear_bit(S_GEO_CONFIGURED, &il->status);
}
EXPORT_SYMBOL(il_free_geos);
static bool il_is_channel_extension(struct il_priv *il,
enum ieee80211_band band,
u16 channel, u8 extension_chan_offset)
{
const struct il_channel_info *ch_info;
ch_info = il_get_channel_info(il, band, channel);
if (!il_is_channel_valid(ch_info))
return false;
if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
return !(ch_info->ht40_extension_channel &
IEEE80211_CHAN_NO_HT40PLUS);
else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
return !(ch_info->ht40_extension_channel &
IEEE80211_CHAN_NO_HT40MINUS);
return false;
}
bool il_is_ht40_tx_allowed(struct il_priv *il,
struct il_rxon_context *ctx,
struct ieee80211_sta_ht_cap *ht_cap)
{
if (!ctx->ht.enabled || !ctx->ht.is_40mhz)
return false;
/*
* We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
* the bit will not set if it is pure 40MHz case
*/
if (ht_cap && !ht_cap->ht_supported)
return false;
#ifdef CONFIG_IWLEGACY_DEBUGFS
if (il->disable_ht40)
return false;
#endif
return il_is_channel_extension(il, il->band,
le16_to_cpu(ctx->staging.channel),
ctx->ht.extension_chan_offset);
}
EXPORT_SYMBOL(il_is_ht40_tx_allowed);
static u16 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
{
u16 new_val;
u16 beacon_factor;
/*
* If mac80211 hasn't given us a beacon interval, program
* the default into the device.
*/
if (!beacon_val)
return DEFAULT_BEACON_INTERVAL;
/*
* If the beacon interval we obtained from the peer
* is too large, we'll have to wake up more often
* (and in IBSS case, we'll beacon too much)
*
* For example, if max_beacon_val is 4096, and the
* requested beacon interval is 7000, we'll have to
* use 3500 to be able to wake up on the beacons.
*
* This could badly influence beacon detection stats.
*/
beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
new_val = beacon_val / beacon_factor;
if (!new_val)
new_val = max_beacon_val;
return new_val;
}
int
il_send_rxon_timing(struct il_priv *il, struct il_rxon_context *ctx)
{
u64 tsf;
s32 interval_tm, rem;
struct ieee80211_conf *conf = NULL;
u16 beacon_int;
struct ieee80211_vif *vif = ctx->vif;
conf = &il->hw->conf;
lockdep_assert_held(&il->mutex);
memset(&ctx->timing, 0, sizeof(struct il_rxon_time_cmd));
ctx->timing.timestamp = cpu_to_le64(il->timestamp);
ctx->timing.listen_interval = cpu_to_le16(conf->listen_interval);
beacon_int = vif ? vif->bss_conf.beacon_int : 0;
/*
* TODO: For IBSS we need to get atim_win from mac80211,
* for now just always use 0
*/
ctx->timing.atim_win = 0;
beacon_int = il_adjust_beacon_interval(beacon_int,
il->hw_params.max_beacon_itrvl * TIME_UNIT);
ctx->timing.beacon_interval = cpu_to_le16(beacon_int);
tsf = il->timestamp; /* tsf is modifed by do_div: copy it */
interval_tm = beacon_int * TIME_UNIT;
rem = do_div(tsf, interval_tm);
ctx->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
ctx->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ?: 1) : 1;
D_ASSOC(
"beacon interval %d beacon timer %d beacon tim %d\n",
le16_to_cpu(ctx->timing.beacon_interval),
le32_to_cpu(ctx->timing.beacon_init_val),
le16_to_cpu(ctx->timing.atim_win));
return il_send_cmd_pdu(il, ctx->rxon_timing_cmd,
sizeof(ctx->timing), &ctx->timing);
}
EXPORT_SYMBOL(il_send_rxon_timing);
void
il_set_rxon_hwcrypto(struct il_priv *il,
struct il_rxon_context *ctx,
int hw_decrypt)
{
struct il_rxon_cmd *rxon = &ctx->staging;
if (hw_decrypt)
rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
else
rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
}
EXPORT_SYMBOL(il_set_rxon_hwcrypto);
/* validate RXON structure is valid */
int
il_check_rxon_cmd(struct il_priv *il, struct il_rxon_context *ctx)
{
struct il_rxon_cmd *rxon = &ctx->staging;
bool error = false;
if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
IL_WARN("check 2.4G: wrong narrow\n");
error = true;
}
if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
IL_WARN("check 2.4G: wrong radar\n");
error = true;
}
} else {
if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
IL_WARN("check 5.2G: not short slot!\n");
error = true;
}
if (rxon->flags & RXON_FLG_CCK_MSK) {
IL_WARN("check 5.2G: CCK!\n");
error = true;
}
}
if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
IL_WARN("mac/bssid mcast!\n");
error = true;
}
/* make sure basic rates 6Mbps and 1Mbps are supported */
if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
(rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
IL_WARN("neither 1 nor 6 are basic\n");
error = true;
}
if (le16_to_cpu(rxon->assoc_id) > 2007) {
IL_WARN("aid > 2007\n");
error = true;
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK))
== (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
IL_WARN("CCK and short slot\n");
error = true;
}
if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK))
== (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
IL_WARN("CCK and auto detect");
error = true;
}
if ((rxon->flags & (RXON_FLG_AUTO_DETECT_MSK |
RXON_FLG_TGG_PROTECT_MSK)) ==
RXON_FLG_TGG_PROTECT_MSK) {
IL_WARN("TGg but no auto-detect\n");
error = true;
}
if (error)
IL_WARN("Tuning to channel %d\n",
le16_to_cpu(rxon->channel));
if (error) {
IL_ERR("Invalid RXON\n");
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL(il_check_rxon_cmd);
/**
* il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
* @il: staging_rxon is compared to active_rxon
*
* If the RXON structure is changing enough to require a new tune,
* or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
* a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
*/
int il_full_rxon_required(struct il_priv *il,
struct il_rxon_context *ctx)
{
const struct il_rxon_cmd *staging = &ctx->staging;
const struct il_rxon_cmd *active = &ctx->active;
#define CHK(cond) \
if ((cond)) { \
D_INFO("need full RXON - " #cond "\n"); \
return 1; \
}
#define CHK_NEQ(c1, c2) \
if ((c1) != (c2)) { \
D_INFO("need full RXON - " \
#c1 " != " #c2 " - %d != %d\n", \
(c1), (c2)); \
return 1; \
}
/* These items are only settable from the full RXON command */
CHK(!il_is_associated_ctx(ctx));
CHK(compare_ether_addr(staging->bssid_addr, active->bssid_addr));
CHK(compare_ether_addr(staging->node_addr, active->node_addr));
CHK(compare_ether_addr(staging->wlap_bssid_addr,
active->wlap_bssid_addr));
CHK_NEQ(staging->dev_type, active->dev_type);
CHK_NEQ(staging->channel, active->channel);
CHK_NEQ(staging->air_propagation, active->air_propagation);
CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
active->ofdm_ht_single_stream_basic_rates);
CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
active->ofdm_ht_dual_stream_basic_rates);
CHK_NEQ(staging->assoc_id, active->assoc_id);
/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
* be updated with the RXON_ASSOC command -- however only some
* flag transitions are allowed using RXON_ASSOC */
/* Check if we are not switching bands */
CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
active->flags & RXON_FLG_BAND_24G_MSK);
/* Check if we are switching association toggle */
CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
active->filter_flags & RXON_FILTER_ASSOC_MSK);
#undef CHK
#undef CHK_NEQ
return 0;
}
EXPORT_SYMBOL(il_full_rxon_required);
u8 il_get_lowest_plcp(struct il_priv *il,
struct il_rxon_context *ctx)
{
/*
* Assign the lowest rate -- should really get this from
* the beacon skb from mac80211.
*/
if (ctx->staging.flags & RXON_FLG_BAND_24G_MSK)
return RATE_1M_PLCP;
else
return RATE_6M_PLCP;
}
EXPORT_SYMBOL(il_get_lowest_plcp);
static void _il_set_rxon_ht(struct il_priv *il,
struct il_ht_config *ht_conf,
struct il_rxon_context *ctx)
{
struct il_rxon_cmd *rxon = &ctx->staging;
if (!ctx->ht.enabled) {
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK |
RXON_FLG_HT40_PROT_MSK |
RXON_FLG_HT_PROT_MSK);
return;
}
rxon->flags |= cpu_to_le32(ctx->ht.protection <<
RXON_FLG_HT_OPERATING_MODE_POS);
/* Set up channel bandwidth:
* 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
/* clear the HT channel mode before set the mode */
rxon->flags &= ~(RXON_FLG_CHANNEL_MODE_MSK |
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
if (il_is_ht40_tx_allowed(il, ctx, NULL)) {
/* pure ht40 */
if (ctx->ht.protection ==
IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
/* Note: control channel is opposite of extension channel */
switch (ctx->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &=
~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |=
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
break;
}
} else {
/* Note: control channel is opposite of extension channel */
switch (ctx->ht.extension_chan_offset) {
case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
rxon->flags &=
~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
rxon->flags |=
RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
break;
case IEEE80211_HT_PARAM_CHA_SEC_NONE:
default:
/* channel location only valid if in Mixed mode */
IL_ERR(
"invalid extension channel offset\n");
break;
}
}
} else {
rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
}
if (il->cfg->ops->hcmd->set_rxon_chain)
il->cfg->ops->hcmd->set_rxon_chain(il, ctx);
D_ASSOC("rxon flags 0x%X operation mode :0x%X "
"extension channel offset 0x%x\n",
le32_to_cpu(rxon->flags), ctx->ht.protection,
ctx->ht.extension_chan_offset);
}
void il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
{
_il_set_rxon_ht(il, ht_conf, &il->ctx);
}
EXPORT_SYMBOL(il_set_rxon_ht);
/* Return valid, unused, channel for a passive scan to reset the RF */
u8 il_get_single_channel_number(struct il_priv *il,
enum ieee80211_band band)
{
const struct il_channel_info *ch_info;
int i;
u8 channel = 0;
u8 min, max;
if (band == IEEE80211_BAND_5GHZ) {
min = 14;
max = il->channel_count;
} else {
min = 0;
max = 14;
}
for (i = min; i < max; i++) {
channel = il->channel_info[i].channel;
if (channel == le16_to_cpu(il->ctx.staging.channel))
continue;
ch_info = il_get_channel_info(il, band, channel);
if (il_is_channel_valid(ch_info))
break;
}
return channel;
}
EXPORT_SYMBOL(il_get_single_channel_number);
/**
* il_set_rxon_channel - Set the band and channel values in staging RXON
* @ch: requested channel as a pointer to struct ieee80211_channel
* NOTE: Does not commit to the hardware; it sets appropriate bit fields
* in the staging RXON flag structure based on the ch->band
*/
int
il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch,
struct il_rxon_context *ctx)
{
enum ieee80211_band band = ch->band;
u16 channel = ch->hw_value;
if (le16_to_cpu(ctx->staging.channel) == channel && il->band == band)
return 0;
ctx->staging.channel = cpu_to_le16(channel);
if (band == IEEE80211_BAND_5GHZ)
ctx->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
else
ctx->staging.flags |= RXON_FLG_BAND_24G_MSK;
il->band = band;
D_INFO("Staging channel set to %d [%d]\n", channel, band);
return 0;
}
EXPORT_SYMBOL(il_set_rxon_channel);
void il_set_flags_for_band(struct il_priv *il,
struct il_rxon_context *ctx,
enum ieee80211_band band,
struct ieee80211_vif *vif)
{
if (band == IEEE80211_BAND_5GHZ) {
ctx->staging.flags &=
~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK
| RXON_FLG_CCK_MSK);
ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
} else {
/* Copied from il_post_associate() */
if (vif && vif->bss_conf.use_short_slot)
ctx->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
else
ctx->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
ctx->staging.flags |= RXON_FLG_BAND_24G_MSK;
ctx->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
ctx->staging.flags &= ~RXON_FLG_CCK_MSK;
}
}
EXPORT_SYMBOL(il_set_flags_for_band);
/*
* initialize rxon structure with default values from eeprom
*/
void il_connection_init_rx_config(struct il_priv *il,
struct il_rxon_context *ctx)
{
const struct il_channel_info *ch_info;
memset(&ctx->staging, 0, sizeof(ctx->staging));
if (!ctx->vif) {
ctx->staging.dev_type = ctx->unused_devtype;
} else
switch (ctx->vif->type) {
case NL80211_IFTYPE_STATION:
ctx->staging.dev_type = ctx->station_devtype;
ctx->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
break;
case NL80211_IFTYPE_ADHOC:
ctx->staging.dev_type = ctx->ibss_devtype;
ctx->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
ctx->staging.filter_flags = RXON_FILTER_BCON_AWARE_MSK |
RXON_FILTER_ACCEPT_GRP_MSK;
break;
default:
IL_ERR("Unsupported interface type %d\n",
ctx->vif->type);
break;
}
#if 0
/* TODO: Figure out when short_preamble would be set and cache from
* that */
if (!hw_to_local(il->hw)->short_preamble)
ctx->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
else
ctx->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
#endif
ch_info = il_get_channel_info(il, il->band,
le16_to_cpu(ctx->active.channel));
if (!ch_info)
ch_info = &il->channel_info[0];
ctx->staging.channel = cpu_to_le16(ch_info->channel);
il->band = ch_info->band;
il_set_flags_for_band(il, ctx, il->band, ctx->vif);
ctx->staging.ofdm_basic_rates =
(IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
ctx->staging.cck_basic_rates =
(IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
/* clear both MIX and PURE40 mode flag */
ctx->staging.flags &= ~(RXON_FLG_CHANNEL_MODE_MIXED |
RXON_FLG_CHANNEL_MODE_PURE_40);
if (ctx->vif)
memcpy(ctx->staging.node_addr, ctx->vif->addr, ETH_ALEN);
ctx->staging.ofdm_ht_single_stream_basic_rates = 0xff;
ctx->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
}
EXPORT_SYMBOL(il_connection_init_rx_config);
void il_set_rate(struct il_priv *il)
{
const struct ieee80211_supported_band *hw = NULL;
struct ieee80211_rate *rate;
int i;
hw = il_get_hw_mode(il, il->band);
if (!hw) {
IL_ERR("Failed to set rate: unable to get hw mode\n");
return;
}
il->active_rate = 0;
for (i = 0; i < hw->n_bitrates; i++) {
rate = &(hw->bitrates[i]);
if (rate->hw_value < RATE_COUNT_LEGACY)
il->active_rate |= (1 << rate->hw_value);
}
D_RATE("Set active_rate = %0x\n", il->active_rate);
il->ctx.staging.cck_basic_rates =
(IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
il->ctx.staging.ofdm_basic_rates =
(IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
}
EXPORT_SYMBOL(il_set_rate);
void il_chswitch_done(struct il_priv *il, bool is_success)
{
struct il_rxon_context *ctx = &il->ctx;
if (test_bit(S_EXIT_PENDING, &il->status))
return;
if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
ieee80211_chswitch_done(ctx->vif, is_success);
}
EXPORT_SYMBOL(il_chswitch_done);
void il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_csa_notification *csa = &(pkt->u.csa_notif);
struct il_rxon_context *ctx = &il->ctx;
struct il_rxon_cmd *rxon = (void *)&ctx->active;
if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
return;
if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
rxon->channel = csa->channel;
ctx->staging.channel = csa->channel;
D_11H("CSA notif: channel %d\n",
le16_to_cpu(csa->channel));
il_chswitch_done(il, true);
} else {
IL_ERR("CSA notif (fail) : channel %d\n",
le16_to_cpu(csa->channel));
il_chswitch_done(il, false);
}
}
EXPORT_SYMBOL(il_hdl_csa);
#ifdef CONFIG_IWLEGACY_DEBUG
void il_print_rx_config_cmd(struct il_priv *il,
struct il_rxon_context *ctx)
{
struct il_rxon_cmd *rxon = &ctx->staging;
D_RADIO("RX CONFIG:\n");
il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
D_RADIO("u16 channel: 0x%x\n",
le16_to_cpu(rxon->channel));
D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
D_RADIO("u32 filter_flags: 0x%08x\n",
le32_to_cpu(rxon->filter_flags));
D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
D_RADIO("u8 ofdm_basic_rates: 0x%02x\n",
rxon->ofdm_basic_rates);
D_RADIO("u8 cck_basic_rates: 0x%02x\n",
rxon->cck_basic_rates);
D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
D_RADIO("u16 assoc_id: 0x%x\n",
le16_to_cpu(rxon->assoc_id));
}
EXPORT_SYMBOL(il_print_rx_config_cmd);
#endif
/**
* il_irq_handle_error - called for HW or SW error interrupt from card
*/
void il_irq_handle_error(struct il_priv *il)
{
/* Set the FW error flag -- cleared on il_down */
set_bit(S_FW_ERROR, &il->status);
/* Cancel currently queued command. */
clear_bit(S_HCMD_ACTIVE, &il->status);
IL_ERR("Loaded firmware version: %s\n",
il->hw->wiphy->fw_version);
il->cfg->ops->lib->dump_nic_error_log(il);
if (il->cfg->ops->lib->dump_fh)
il->cfg->ops->lib->dump_fh(il, NULL, false);
#ifdef CONFIG_IWLEGACY_DEBUG
if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
il_print_rx_config_cmd(il,
&il->ctx);
#endif
wake_up(&il->wait_command_queue);
/* Keep the restart process from trying to send host
* commands by clearing the INIT status bit */
clear_bit(S_READY, &il->status);
if (!test_bit(S_EXIT_PENDING, &il->status)) {
IL_DBG(IL_DL_FW_ERRORS,
"Restarting adapter due to uCode error.\n");
if (il->cfg->mod_params->restart_fw)
queue_work(il->workqueue, &il->restart);
}
}
EXPORT_SYMBOL(il_irq_handle_error);
static int il_apm_stop_master(struct il_priv *il)
{
int ret = 0;
/* stop device's busmaster DMA activity */
il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
ret = _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
if (ret)
IL_WARN("Master Disable Timed Out, 100 usec\n");
D_INFO("stop master\n");
return ret;
}
void il_apm_stop(struct il_priv *il)
{
D_INFO("Stop card, put in low power state\n");
/* Stop device's DMA activity */
il_apm_stop_master(il);
/* Reset the entire device */
il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
udelay(10);
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
il_clear_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
}
EXPORT_SYMBOL(il_apm_stop);
/*
* Start up NIC's basic functionality after it has been reset
* (e.g. after platform boot, or shutdown via il_apm_stop())
* NOTE: This does not load uCode nor start the embedded processor
*/
int il_apm_init(struct il_priv *il)
{
int ret = 0;
u16 lctl;
D_INFO("Init card's basic functions\n");
/*
* Use "set_bit" below rather than "write", to preserve any hardware
* bits already set by default after reset.
*/
/* Disable L0S exit timer (platform NMI Work/Around) */
il_set_bit(il, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
il_set_bit(il, CSR_GIO_CHICKEN_BITS,
CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
il_set_bit(il, CSR_DBG_HPET_MEM_REG,
CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
* NOTE: This is no-op for 3945 (non-existent bit)
*/
il_set_bit(il, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
/*
* HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
* Check if BIOS (or OS) enabled L1-ASPM on this device.
* If so (likely), disable L0S, so device moves directly L0->L1;
* costs negligible amount of power savings.
* If not (unlikely), enable L0S, so there is at least some
* power savings, even without L1.
*/
if (il->cfg->base_params->set_l0s) {
lctl = il_pcie_link_ctl(il);
if ((lctl & PCI_CFG_LINK_CTRL_VAL_L1_EN) ==
PCI_CFG_LINK_CTRL_VAL_L1_EN) {
/* L1-ASPM enabled; disable(!) L0S */
il_set_bit(il, CSR_GIO_REG,
CSR_GIO_REG_VAL_L0S_ENABLED);
D_POWER("L1 Enabled; Disabling L0S\n");
} else {
/* L1-ASPM disabled; enable(!) L0S */
il_clear_bit(il, CSR_GIO_REG,
CSR_GIO_REG_VAL_L0S_ENABLED);
D_POWER("L1 Disabled; Enabling L0S\n");
}
}
/* Configure analog phase-lock-loop before activating to D0A */
if (il->cfg->base_params->pll_cfg_val)
il_set_bit(il, CSR_ANA_PLL_CFG,
il->cfg->base_params->pll_cfg_val);
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. il_wr_prph()
* and accesses to uCode SRAM.
*/
ret = _il_poll_bit(il, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
if (ret < 0) {
D_INFO("Failed to init the card\n");
goto out;
}
/*
* Enable DMA and BSM (if used) clocks, wait for them to stabilize.
* BSM (Boostrap State Machine) is only in 3945 and 4965.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
* do not disable clocks. This preserves any hardware bits already
* set by default in "CLK_CTRL_REG" after reset.
*/
if (il->cfg->base_params->use_bsm)
il_wr_prph(il, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
else
il_wr_prph(il, APMG_CLK_EN_REG,
APMG_CLK_VAL_DMA_CLK_RQT);
udelay(20);
/* Disable L1-Active */
il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
out:
return ret;
}
EXPORT_SYMBOL(il_apm_init);
int il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
{
int ret;
s8 prev_tx_power;
bool defer;
struct il_rxon_context *ctx = &il->ctx;
lockdep_assert_held(&il->mutex);
if (il->tx_power_user_lmt == tx_power && !force)
return 0;
if (!il->cfg->ops->lib->send_tx_power)
return -EOPNOTSUPP;
/* 0 dBm mean 1 milliwatt */
if (tx_power < 0) {
IL_WARN(
"Requested user TXPOWER %d below 1 mW.\n",
tx_power);
return -EINVAL;
}
if (tx_power > il->tx_power_device_lmt) {
IL_WARN(
"Requested user TXPOWER %d above upper limit %d.\n",
tx_power, il->tx_power_device_lmt);
return -EINVAL;
}
if (!il_is_ready_rf(il))
return -EIO;
/* scan complete and commit_rxon use tx_power_next value,
* it always need to be updated for newest request */
il->tx_power_next = tx_power;
/* do not set tx power when scanning or channel changing */
defer = test_bit(S_SCANNING, &il->status) ||
memcmp(&ctx->active, &ctx->staging, sizeof(ctx->staging));
if (defer && !force) {
D_INFO("Deferring tx power set\n");
return 0;
}
prev_tx_power = il->tx_power_user_lmt;
il->tx_power_user_lmt = tx_power;
ret = il->cfg->ops->lib->send_tx_power(il);
/* if fail to set tx_power, restore the orig. tx power */
if (ret) {
il->tx_power_user_lmt = prev_tx_power;
il->tx_power_next = prev_tx_power;
}
return ret;
}
EXPORT_SYMBOL(il_set_tx_power);
void il_send_bt_config(struct il_priv *il)
{
struct il_bt_cmd bt_cmd = {
.lead_time = BT_LEAD_TIME_DEF,
.max_kill = BT_MAX_KILL_DEF,
.kill_ack_mask = 0,
.kill_cts_mask = 0,
};
if (!bt_coex_active)
bt_cmd.flags = BT_COEX_DISABLE;
else
bt_cmd.flags = BT_COEX_ENABLE;
D_INFO("BT coex %s\n",
(bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
if (il_send_cmd_pdu(il, C_BT_CONFIG,
sizeof(struct il_bt_cmd), &bt_cmd))
IL_ERR("failed to send BT Coex Config\n");
}
EXPORT_SYMBOL(il_send_bt_config);
int il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
{
struct il_stats_cmd stats_cmd = {
.configuration_flags =
clear ? IL_STATS_CONF_CLEAR_STATS : 0,
};
if (flags & CMD_ASYNC)
return il_send_cmd_pdu_async(il, C_STATS,
sizeof(struct il_stats_cmd),
&stats_cmd, NULL);
else
return il_send_cmd_pdu(il, C_STATS,
sizeof(struct il_stats_cmd),
&stats_cmd);
}
EXPORT_SYMBOL(il_send_stats_request);
void il_hdl_pm_sleep(struct il_priv *il,
struct il_rx_buf *rxb)
{
#ifdef CONFIG_IWLEGACY_DEBUG
struct il_rx_pkt *pkt = rxb_addr(rxb);
struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
D_RX("sleep mode: %d, src: %d\n",
sleep->pm_sleep_mode, sleep->pm_wakeup_src);
#endif
}
EXPORT_SYMBOL(il_hdl_pm_sleep);
void il_hdl_pm_debug_stats(struct il_priv *il,
struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
D_RADIO("Dumping %d bytes of unhandled "
"notification for %s:\n", len,
il_get_cmd_string(pkt->hdr.cmd));
il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
}
EXPORT_SYMBOL(il_hdl_pm_debug_stats);
void il_hdl_error(struct il_priv *il,
struct il_rx_buf *rxb)
{
struct il_rx_pkt *pkt = rxb_addr(rxb);
IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
"seq 0x%04X ser 0x%08X\n",
le32_to_cpu(pkt->u.err_resp.error_type),
il_get_cmd_string(pkt->u.err_resp.cmd_id),
pkt->u.err_resp.cmd_id,
le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
le32_to_cpu(pkt->u.err_resp.error_info));
}
EXPORT_SYMBOL(il_hdl_error);
void il_clear_isr_stats(struct il_priv *il)
{
memset(&il->isr_stats, 0, sizeof(il->isr_stats));
}
int il_mac_conf_tx(struct ieee80211_hw *hw,
struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct il_priv *il = hw->priv;
unsigned long flags;
int q;
D_MAC80211("enter\n");
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - RF not ready\n");
return -EIO;
}
if (queue >= AC_NUM) {
D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
return 0;
}
q = AC_NUM - 1 - queue;
spin_lock_irqsave(&il->lock, flags);
il->ctx.qos_data.def_qos_parm.ac[q].cw_min =
cpu_to_le16(params->cw_min);
il->ctx.qos_data.def_qos_parm.ac[q].cw_max =
cpu_to_le16(params->cw_max);
il->ctx.qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
il->ctx.qos_data.def_qos_parm.ac[q].edca_txop =
cpu_to_le16((params->txop * 32));
il->ctx.qos_data.def_qos_parm.ac[q].reserved1 = 0;
spin_unlock_irqrestore(&il->lock, flags);
D_MAC80211("leave\n");
return 0;
}
EXPORT_SYMBOL(il_mac_conf_tx);
int il_mac_tx_last_beacon(struct ieee80211_hw *hw)
{
struct il_priv *il = hw->priv;
return il->ibss_manager == IL_IBSS_MANAGER;
}
EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
static int
il_set_mode(struct il_priv *il, struct il_rxon_context *ctx)
{
il_connection_init_rx_config(il, ctx);
if (il->cfg->ops->hcmd->set_rxon_chain)
il->cfg->ops->hcmd->set_rxon_chain(il, ctx);
return il_commit_rxon(il, ctx);
}
static int il_setup_interface(struct il_priv *il,
struct il_rxon_context *ctx)
{
struct ieee80211_vif *vif = ctx->vif;
int err;
lockdep_assert_held(&il->mutex);
/*
* This variable will be correct only when there's just
* a single context, but all code using it is for hardware
* that supports only one context.
*/
il->iw_mode = vif->type;
ctx->is_active = true;
err = il_set_mode(il, ctx);
if (err) {
if (!ctx->always_active)
ctx->is_active = false;
return err;
}
return 0;
}
int
il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
struct il_vif_priv *vif_priv = (void *)vif->drv_priv;
int err;
u32 modes;
D_MAC80211("enter: type %d, addr %pM\n",
vif->type, vif->addr);
mutex_lock(&il->mutex);
if (!il_is_ready_rf(il)) {
IL_WARN("Try to add interface when device not ready\n");
err = -EINVAL;
goto out;
}
/* check if busy context is exclusive */
if (il->ctx.vif &&
(il->ctx.exclusive_interface_modes & BIT(il->ctx.vif->type))) {
err = -EINVAL;
goto out;
}
modes = il->ctx.interface_modes | il->ctx.exclusive_interface_modes;
if (!(modes & BIT(vif->type))) {
err = -EOPNOTSUPP;
goto out;
}
vif_priv->ctx = &il->ctx;
il->ctx.vif = vif;
err = il_setup_interface(il, &il->ctx);
if (err) {
il->ctx.vif = NULL;
il->iw_mode = NL80211_IFTYPE_STATION;
}
out:
mutex_unlock(&il->mutex);
D_MAC80211("leave\n");
return err;
}
EXPORT_SYMBOL(il_mac_add_interface);
static void il_teardown_interface(struct il_priv *il,
struct ieee80211_vif *vif,
bool mode_change)
{
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
lockdep_assert_held(&il->mutex);
if (il->scan_vif == vif) {
il_scan_cancel_timeout(il, 200);
il_force_scan_end(il);
}
if (!mode_change) {
il_set_mode(il, ctx);
if (!ctx->always_active)
ctx->is_active = false;
}
}
void il_mac_remove_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
D_MAC80211("enter\n");
mutex_lock(&il->mutex);
WARN_ON(ctx->vif != vif);
ctx->vif = NULL;
il_teardown_interface(il, vif, false);
memset(il->bssid, 0, ETH_ALEN);
mutex_unlock(&il->mutex);
D_MAC80211("leave\n");
}
EXPORT_SYMBOL(il_mac_remove_interface);
int il_alloc_txq_mem(struct il_priv *il)
{
if (!il->txq)
il->txq = kzalloc(
sizeof(struct il_tx_queue) *
il->cfg->base_params->num_of_queues,
GFP_KERNEL);
if (!il->txq) {
IL_ERR("Not enough memory for txq\n");
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(il_alloc_txq_mem);
void il_txq_mem(struct il_priv *il)
{
kfree(il->txq);
il->txq = NULL;
}
EXPORT_SYMBOL(il_txq_mem);
#ifdef CONFIG_IWLEGACY_DEBUGFS
#define IL_TRAFFIC_DUMP_SIZE (IL_TRAFFIC_ENTRY_SIZE * IL_TRAFFIC_ENTRIES)
void il_reset_traffic_log(struct il_priv *il)
{
il->tx_traffic_idx = 0;
il->rx_traffic_idx = 0;
if (il->tx_traffic)
memset(il->tx_traffic, 0, IL_TRAFFIC_DUMP_SIZE);
if (il->rx_traffic)
memset(il->rx_traffic, 0, IL_TRAFFIC_DUMP_SIZE);
}
int il_alloc_traffic_mem(struct il_priv *il)
{
u32 traffic_size = IL_TRAFFIC_DUMP_SIZE;
if (il_debug_level & IL_DL_TX) {
if (!il->tx_traffic) {
il->tx_traffic =
kzalloc(traffic_size, GFP_KERNEL);
if (!il->tx_traffic)
return -ENOMEM;
}
}
if (il_debug_level & IL_DL_RX) {
if (!il->rx_traffic) {
il->rx_traffic =
kzalloc(traffic_size, GFP_KERNEL);
if (!il->rx_traffic)
return -ENOMEM;
}
}
il_reset_traffic_log(il);
return 0;
}
EXPORT_SYMBOL(il_alloc_traffic_mem);
void il_free_traffic_mem(struct il_priv *il)
{
kfree(il->tx_traffic);
il->tx_traffic = NULL;
kfree(il->rx_traffic);
il->rx_traffic = NULL;
}
EXPORT_SYMBOL(il_free_traffic_mem);
void il_dbg_log_tx_data_frame(struct il_priv *il,
u16 length, struct ieee80211_hdr *header)
{
__le16 fc;
u16 len;
if (likely(!(il_debug_level & IL_DL_TX)))
return;
if (!il->tx_traffic)
return;
fc = header->frame_control;
if (ieee80211_is_data(fc)) {
len = (length > IL_TRAFFIC_ENTRY_SIZE)
? IL_TRAFFIC_ENTRY_SIZE : length;
memcpy((il->tx_traffic +
(il->tx_traffic_idx * IL_TRAFFIC_ENTRY_SIZE)),
header, len);
il->tx_traffic_idx =
(il->tx_traffic_idx + 1) % IL_TRAFFIC_ENTRIES;
}
}
EXPORT_SYMBOL(il_dbg_log_tx_data_frame);
void il_dbg_log_rx_data_frame(struct il_priv *il,
u16 length, struct ieee80211_hdr *header)
{
__le16 fc;
u16 len;
if (likely(!(il_debug_level & IL_DL_RX)))
return;
if (!il->rx_traffic)
return;
fc = header->frame_control;
if (ieee80211_is_data(fc)) {
len = (length > IL_TRAFFIC_ENTRY_SIZE)
? IL_TRAFFIC_ENTRY_SIZE : length;
memcpy((il->rx_traffic +
(il->rx_traffic_idx * IL_TRAFFIC_ENTRY_SIZE)),
header, len);
il->rx_traffic_idx =
(il->rx_traffic_idx + 1) % IL_TRAFFIC_ENTRIES;
}
}
EXPORT_SYMBOL(il_dbg_log_rx_data_frame);
const char *il_get_mgmt_string(int cmd)
{
switch (cmd) {
IL_CMD(MANAGEMENT_ASSOC_REQ);
IL_CMD(MANAGEMENT_ASSOC_RESP);
IL_CMD(MANAGEMENT_REASSOC_REQ);
IL_CMD(MANAGEMENT_REASSOC_RESP);
IL_CMD(MANAGEMENT_PROBE_REQ);
IL_CMD(MANAGEMENT_PROBE_RESP);
IL_CMD(MANAGEMENT_BEACON);
IL_CMD(MANAGEMENT_ATIM);
IL_CMD(MANAGEMENT_DISASSOC);
IL_CMD(MANAGEMENT_AUTH);
IL_CMD(MANAGEMENT_DEAUTH);
IL_CMD(MANAGEMENT_ACTION);
default:
return "UNKNOWN";
}
}
const char *il_get_ctrl_string(int cmd)
{
switch (cmd) {
IL_CMD(CONTROL_BACK_REQ);
IL_CMD(CONTROL_BACK);
IL_CMD(CONTROL_PSPOLL);
IL_CMD(CONTROL_RTS);
IL_CMD(CONTROL_CTS);
IL_CMD(CONTROL_ACK);
IL_CMD(CONTROL_CFEND);
IL_CMD(CONTROL_CFENDACK);
default:
return "UNKNOWN";
}
}
void il_clear_traffic_stats(struct il_priv *il)
{
memset(&il->tx_stats, 0, sizeof(struct traffic_stats));
memset(&il->rx_stats, 0, sizeof(struct traffic_stats));
}
/*
* if CONFIG_IWLEGACY_DEBUGFS defined,
* il_update_stats function will
* record all the MGMT, CTRL and DATA pkt for both TX and Rx pass
* Use debugFs to display the rx/rx_stats
* if CONFIG_IWLEGACY_DEBUGFS not being defined, then no MGMT and CTRL
* information will be recorded, but DATA pkt still will be recorded
* for the reason of il_led.c need to control the led blinking based on
* number of tx and rx data.
*
*/
void
il_update_stats(struct il_priv *il, bool is_tx, __le16 fc, u16 len)
{
struct traffic_stats *stats;
if (is_tx)
stats = &il->tx_stats;
else
stats = &il->rx_stats;
if (ieee80211_is_mgmt(fc)) {
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
stats->mgmt[MANAGEMENT_ASSOC_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
stats->mgmt[MANAGEMENT_ASSOC_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
stats->mgmt[MANAGEMENT_REASSOC_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
stats->mgmt[MANAGEMENT_REASSOC_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
stats->mgmt[MANAGEMENT_PROBE_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
stats->mgmt[MANAGEMENT_PROBE_RESP]++;
break;
case cpu_to_le16(IEEE80211_STYPE_BEACON):
stats->mgmt[MANAGEMENT_BEACON]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ATIM):
stats->mgmt[MANAGEMENT_ATIM]++;
break;
case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
stats->mgmt[MANAGEMENT_DISASSOC]++;
break;
case cpu_to_le16(IEEE80211_STYPE_AUTH):
stats->mgmt[MANAGEMENT_AUTH]++;
break;
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
stats->mgmt[MANAGEMENT_DEAUTH]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ACTION):
stats->mgmt[MANAGEMENT_ACTION]++;
break;
}
} else if (ieee80211_is_ctl(fc)) {
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_BACK_REQ):
stats->ctrl[CONTROL_BACK_REQ]++;
break;
case cpu_to_le16(IEEE80211_STYPE_BACK):
stats->ctrl[CONTROL_BACK]++;
break;
case cpu_to_le16(IEEE80211_STYPE_PSPOLL):
stats->ctrl[CONTROL_PSPOLL]++;
break;
case cpu_to_le16(IEEE80211_STYPE_RTS):
stats->ctrl[CONTROL_RTS]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CTS):
stats->ctrl[CONTROL_CTS]++;
break;
case cpu_to_le16(IEEE80211_STYPE_ACK):
stats->ctrl[CONTROL_ACK]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CFEND):
stats->ctrl[CONTROL_CFEND]++;
break;
case cpu_to_le16(IEEE80211_STYPE_CFENDACK):
stats->ctrl[CONTROL_CFENDACK]++;
break;
}
} else {
/* data */
stats->data_cnt++;
stats->data_bytes += len;
}
}
EXPORT_SYMBOL(il_update_stats);
#endif
int il_force_reset(struct il_priv *il, bool external)
{
struct il_force_reset *force_reset;
if (test_bit(S_EXIT_PENDING, &il->status))
return -EINVAL;
force_reset = &il->force_reset;
force_reset->reset_request_count++;
if (!external) {
if (force_reset->last_force_reset_jiffies &&
time_after(force_reset->last_force_reset_jiffies +
force_reset->reset_duration, jiffies)) {
D_INFO("force reset rejected\n");
force_reset->reset_reject_count++;
return -EAGAIN;
}
}
force_reset->reset_success_count++;
force_reset->last_force_reset_jiffies = jiffies;
/*
* if the request is from external(ex: debugfs),
* then always perform the request in regardless the module
* parameter setting
* if the request is from internal (uCode error or driver
* detect failure), then fw_restart module parameter
* need to be check before performing firmware reload
*/
if (!external && !il->cfg->mod_params->restart_fw) {
D_INFO("Cancel firmware reload based on "
"module parameter setting\n");
return 0;
}
IL_ERR("On demand firmware reload\n");
/* Set the FW error flag -- cleared on il_down */
set_bit(S_FW_ERROR, &il->status);
wake_up(&il->wait_command_queue);
/*
* Keep the restart process from trying to send host
* commands by clearing the INIT status bit
*/
clear_bit(S_READY, &il->status);
queue_work(il->workqueue, &il->restart);
return 0;
}
int
il_mac_change_interface(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
enum nl80211_iftype newtype, bool newp2p)
{
struct il_priv *il = hw->priv;
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
u32 modes;
int err;
newtype = ieee80211_iftype_p2p(newtype, newp2p);
mutex_lock(&il->mutex);
if (!ctx->vif || !il_is_ready_rf(il)) {
/*
* Huh? But wait ... this can maybe happen when
* we're in the middle of a firmware restart!
*/
err = -EBUSY;
goto out;
}
modes = ctx->interface_modes | ctx->exclusive_interface_modes;
if (!(modes & BIT(newtype))) {
err = -EOPNOTSUPP;
goto out;
}
if ((il->ctx.exclusive_interface_modes & BIT(il->ctx.vif->type)) ||
(il->ctx.exclusive_interface_modes & BIT(newtype))) {
err = -EINVAL;
goto out;
}
/* success */
il_teardown_interface(il, vif, true);
vif->type = newtype;
vif->p2p = newp2p;
err = il_setup_interface(il, ctx);
WARN_ON(err);
/*
* We've switched internally, but submitting to the
* device may have failed for some reason. Mask this
* error, because otherwise mac80211 will not switch
* (and set the interface type back) and we'll be
* out of sync with it.
*/
err = 0;
out:
mutex_unlock(&il->mutex);
return err;
}
EXPORT_SYMBOL(il_mac_change_interface);
/*
* On every watchdog tick we check (latest) time stamp. If it does not
* change during timeout period and queue is not empty we reset firmware.
*/
static int il_check_stuck_queue(struct il_priv *il, int cnt)
{
struct il_tx_queue *txq = &il->txq[cnt];
struct il_queue *q = &txq->q;
unsigned long timeout;
int ret;
if (q->read_ptr == q->write_ptr) {
txq->time_stamp = jiffies;
return 0;
}
timeout = txq->time_stamp +
msecs_to_jiffies(il->cfg->base_params->wd_timeout);
if (time_after(jiffies, timeout)) {
IL_ERR("Queue %d stuck for %u ms.\n",
q->id, il->cfg->base_params->wd_timeout);
ret = il_force_reset(il, false);
return (ret == -EAGAIN) ? 0 : 1;
}
return 0;
}
/*
* Making watchdog tick be a quarter of timeout assure we will
* discover the queue hung between timeout and 1.25*timeout
*/
#define IL_WD_TICK(timeout) ((timeout) / 4)
/*
* Watchdog timer callback, we check each tx queue for stuck, if if hung
* we reset the firmware. If everything is fine just rearm the timer.
*/
void il_bg_watchdog(unsigned long data)
{
struct il_priv *il = (struct il_priv *)data;
int cnt;
unsigned long timeout;
if (test_bit(S_EXIT_PENDING, &il->status))
return;
timeout = il->cfg->base_params->wd_timeout;
if (timeout == 0)
return;
/* monitor and check for stuck cmd queue */
if (il_check_stuck_queue(il, il->cmd_queue))
return;
/* monitor and check for other stuck queues */
if (il_is_any_associated(il)) {
for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
/* skip as we already checked the command queue */
if (cnt == il->cmd_queue)
continue;
if (il_check_stuck_queue(il, cnt))
return;
}
}
mod_timer(&il->watchdog, jiffies +
msecs_to_jiffies(IL_WD_TICK(timeout)));
}
EXPORT_SYMBOL(il_bg_watchdog);
void il_setup_watchdog(struct il_priv *il)
{
unsigned int timeout = il->cfg->base_params->wd_timeout;
if (timeout)
mod_timer(&il->watchdog,
jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
else
del_timer(&il->watchdog);
}
EXPORT_SYMBOL(il_setup_watchdog);
/*
* extended beacon time format
* time in usec will be changed into a 32-bit value in extended:internal format
* the extended part is the beacon counts
* the internal part is the time in usec within one beacon interval
*/
u32
il_usecs_to_beacons(struct il_priv *il,
u32 usec, u32 beacon_interval)
{
u32 quot;
u32 rem;
u32 interval = beacon_interval * TIME_UNIT;
if (!interval || !usec)
return 0;
quot = (usec / interval) &
(il_beacon_time_mask_high(il,
il->hw_params.beacon_time_tsf_bits) >>
il->hw_params.beacon_time_tsf_bits);
rem = (usec % interval) & il_beacon_time_mask_low(il,
il->hw_params.beacon_time_tsf_bits);
return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
}
EXPORT_SYMBOL(il_usecs_to_beacons);
/* base is usually what we get from ucode with each received frame,
* the same as HW timer counter counting down
*/
__le32 il_add_beacon_time(struct il_priv *il, u32 base,
u32 addon, u32 beacon_interval)
{
u32 base_low = base & il_beacon_time_mask_low(il,
il->hw_params.beacon_time_tsf_bits);
u32 addon_low = addon & il_beacon_time_mask_low(il,
il->hw_params.beacon_time_tsf_bits);
u32 interval = beacon_interval * TIME_UNIT;
u32 res = (base & il_beacon_time_mask_high(il,
il->hw_params.beacon_time_tsf_bits)) +
(addon & il_beacon_time_mask_high(il,
il->hw_params.beacon_time_tsf_bits));
if (base_low > addon_low)
res += base_low - addon_low;
else if (base_low < addon_low) {
res += interval + base_low - addon_low;
res += (1 << il->hw_params.beacon_time_tsf_bits);
} else
res += (1 << il->hw_params.beacon_time_tsf_bits);
return cpu_to_le32(res);
}
EXPORT_SYMBOL(il_add_beacon_time);
#ifdef CONFIG_PM
int il_pci_suspend(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct il_priv *il = pci_get_drvdata(pdev);
/*
* This function is called when system goes into suspend state
* mac80211 will call il_mac_stop() from the mac80211 suspend function
* first but since il_mac_stop() has no knowledge of who the caller is,
* it will not call apm_ops.stop() to stop the DMA operation.
* Calling apm_ops.stop here to make sure we stop the DMA.
*/
il_apm_stop(il);
return 0;
}
EXPORT_SYMBOL(il_pci_suspend);
int il_pci_resume(struct device *device)
{
struct pci_dev *pdev = to_pci_dev(device);
struct il_priv *il = pci_get_drvdata(pdev);
bool hw_rfkill = false;
/*
* We disable the RETRY_TIMEOUT register (0x41) to keep
* PCI Tx retries from interfering with C3 CPU state.
*/
pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
il_enable_interrupts(il);
if (!(_il_rd(il, CSR_GP_CNTRL) &
CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
hw_rfkill = true;
if (hw_rfkill)
set_bit(S_RF_KILL_HW, &il->status);
else
clear_bit(S_RF_KILL_HW, &il->status);
wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
return 0;
}
EXPORT_SYMBOL(il_pci_resume);
const struct dev_pm_ops il_pm_ops = {
.suspend = il_pci_suspend,
.resume = il_pci_resume,
.freeze = il_pci_suspend,
.thaw = il_pci_resume,
.poweroff = il_pci_suspend,
.restore = il_pci_resume,
};
EXPORT_SYMBOL(il_pm_ops);
#endif /* CONFIG_PM */
static void
il_update_qos(struct il_priv *il, struct il_rxon_context *ctx)
{
if (test_bit(S_EXIT_PENDING, &il->status))
return;
if (!ctx->is_active)
return;
ctx->qos_data.def_qos_parm.qos_flags = 0;
if (ctx->qos_data.qos_active)
ctx->qos_data.def_qos_parm.qos_flags |=
QOS_PARAM_FLG_UPDATE_EDCA_MSK;
if (ctx->ht.enabled)
ctx->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
ctx->qos_data.qos_active,
ctx->qos_data.def_qos_parm.qos_flags);
il_send_cmd_pdu_async(il, ctx->qos_cmd,
sizeof(struct il_qosparam_cmd),
&ctx->qos_data.def_qos_parm, NULL);
}
/**
* il_mac_config - mac80211 config callback
*/
int il_mac_config(struct ieee80211_hw *hw, u32 changed)
{
struct il_priv *il = hw->priv;
const struct il_channel_info *ch_info;
struct ieee80211_conf *conf = &hw->conf;
struct ieee80211_channel *channel = conf->channel;
struct il_ht_config *ht_conf = &il->current_ht_config;
struct il_rxon_context *ctx = &il->ctx;
unsigned long flags = 0;
int ret = 0;
u16 ch;
int scan_active = 0;
bool ht_changed = false;
if (WARN_ON(!il->cfg->ops->legacy))
return -EOPNOTSUPP;
mutex_lock(&il->mutex);
D_MAC80211("enter to channel %d changed 0x%X\n",
channel->hw_value, changed);
if (unlikely(test_bit(S_SCANNING, &il->status))) {
scan_active = 1;
D_MAC80211("scan active\n");
}
if (changed & (IEEE80211_CONF_CHANGE_SMPS |
IEEE80211_CONF_CHANGE_CHANNEL)) {
/* mac80211 uses static for non-HT which is what we want */
il->current_ht_config.smps = conf->smps_mode;
/*
* Recalculate chain counts.
*
* If monitor mode is enabled then mac80211 will
* set up the SM PS mode to OFF if an HT channel is
* configured.
*/
if (il->cfg->ops->hcmd->set_rxon_chain)
il->cfg->ops->hcmd->set_rxon_chain(il, &il->ctx);
}
/* during scanning mac80211 will delay channel setting until
* scan finish with changed = 0
*/
if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
if (scan_active)
goto set_ch_out;
ch = channel->hw_value;
ch_info = il_get_channel_info(il, channel->band, ch);
if (!il_is_channel_valid(ch_info)) {
D_MAC80211("leave - invalid channel\n");
ret = -EINVAL;
goto set_ch_out;
}
if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
!il_is_channel_ibss(ch_info)) {
D_MAC80211("leave - not IBSS channel\n");
ret = -EINVAL;
goto set_ch_out;
}
spin_lock_irqsave(&il->lock, flags);
/* Configure HT40 channels */
if (ctx->ht.enabled != conf_is_ht(conf)) {
ctx->ht.enabled = conf_is_ht(conf);
ht_changed = true;
}
if (ctx->ht.enabled) {
if (conf_is_ht40_minus(conf)) {
ctx->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_BELOW;
ctx->ht.is_40mhz = true;
} else if (conf_is_ht40_plus(conf)) {
ctx->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
ctx->ht.is_40mhz = true;
} else {
ctx->ht.extension_chan_offset =
IEEE80211_HT_PARAM_CHA_SEC_NONE;
ctx->ht.is_40mhz = false;
}
} else
ctx->ht.is_40mhz = false;
/*
* Default to no protection. Protection mode will
* later be set from BSS config in il_ht_conf
*/
ctx->ht.protection =
IEEE80211_HT_OP_MODE_PROTECTION_NONE;
/* if we are switching from ht to 2.4 clear flags
* from any ht related info since 2.4 does not
* support ht */
if ((le16_to_cpu(ctx->staging.channel) != ch))
ctx->staging.flags = 0;
il_set_rxon_channel(il, channel, ctx);
il_set_rxon_ht(il, ht_conf);
il_set_flags_for_band(il, ctx, channel->band,
ctx->vif);
spin_unlock_irqrestore(&il->lock, flags);
if (il->cfg->ops->legacy->update_bcast_stations)
ret =
il->cfg->ops->legacy->update_bcast_stations(il);
set_ch_out:
/* The list of supported rates and rate mask can be different
* for each band; since the band may have changed, reset
* the rate mask to what mac80211 lists */
il_set_rate(il);
}
if (changed & (IEEE80211_CONF_CHANGE_PS |
IEEE80211_CONF_CHANGE_IDLE)) {
ret = il_power_update_mode(il, false);
if (ret)
D_MAC80211("Error setting sleep level\n");
}
if (changed & IEEE80211_CONF_CHANGE_POWER) {
D_MAC80211("TX Power old=%d new=%d\n",
il->tx_power_user_lmt, conf->power_level);
il_set_tx_power(il, conf->power_level, false);
}
if (!il_is_ready(il)) {
D_MAC80211("leave - not ready\n");
goto out;
}
if (scan_active)
goto out;
if (memcmp(&ctx->active, &ctx->staging, sizeof(ctx->staging)))
il_commit_rxon(il, ctx);
else
D_INFO("Not re-sending same RXON configuration.\n");
if (ht_changed)
il_update_qos(il, ctx);
out:
D_MAC80211("leave\n");
mutex_unlock(&il->mutex);
return ret;
}
EXPORT_SYMBOL(il_mac_config);
void il_mac_reset_tsf(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
unsigned long flags;
struct il_rxon_context *ctx = &il->ctx;
if (WARN_ON(!il->cfg->ops->legacy))
return;
mutex_lock(&il->mutex);
D_MAC80211("enter\n");
spin_lock_irqsave(&il->lock, flags);
memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
spin_unlock_irqrestore(&il->lock, flags);
spin_lock_irqsave(&il->lock, flags);
/* new association get rid of ibss beacon skb */
if (il->beacon_skb)
dev_kfree_skb(il->beacon_skb);
il->beacon_skb = NULL;
il->timestamp = 0;
spin_unlock_irqrestore(&il->lock, flags);
il_scan_cancel_timeout(il, 100);
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - not ready\n");
mutex_unlock(&il->mutex);
return;
}
/* we are restarting association process
* clear RXON_FILTER_ASSOC_MSK bit
*/
ctx->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
il_commit_rxon(il, ctx);
il_set_rate(il);
mutex_unlock(&il->mutex);
D_MAC80211("leave\n");
}
EXPORT_SYMBOL(il_mac_reset_tsf);
static void il_ht_conf(struct il_priv *il,
struct ieee80211_vif *vif)
{
struct il_ht_config *ht_conf = &il->current_ht_config;
struct ieee80211_sta *sta;
struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
D_ASSOC("enter:\n");
if (!ctx->ht.enabled)
return;
ctx->ht.protection =
bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
ctx->ht.non_gf_sta_present =
!!(bss_conf->ht_operation_mode &
IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
ht_conf->single_chain_sufficient = false;
switch (vif->type) {
case NL80211_IFTYPE_STATION:
rcu_read_lock();
sta = ieee80211_find_sta(vif, bss_conf->bssid);
if (sta) {
struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
int maxstreams;
maxstreams = (ht_cap->mcs.tx_params &
IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
>> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
maxstreams += 1;
if (ht_cap->mcs.rx_mask[1] == 0 &&
ht_cap->mcs.rx_mask[2] == 0)
ht_conf->single_chain_sufficient = true;
if (maxstreams <= 1)
ht_conf->single_chain_sufficient = true;
} else {
/*
* If at all, this can only happen through a race
* when the AP disconnects us while we're still
* setting up the connection, in that case mac80211
* will soon tell us about that.
*/
ht_conf->single_chain_sufficient = true;
}
rcu_read_unlock();
break;
case NL80211_IFTYPE_ADHOC:
ht_conf->single_chain_sufficient = true;
break;
default:
break;
}
D_ASSOC("leave\n");
}
static inline void il_set_no_assoc(struct il_priv *il,
struct ieee80211_vif *vif)
{
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
/*
* inform the ucode that there is no longer an
* association and that no more packets should be
* sent
*/
ctx->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
ctx->staging.assoc_id = 0;
il_commit_rxon(il, ctx);
}
static void il_beacon_update(struct ieee80211_hw *hw,
struct ieee80211_vif *vif)
{
struct il_priv *il = hw->priv;
unsigned long flags;
__le64 timestamp;
struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
if (!skb)
return;
D_MAC80211("enter\n");
lockdep_assert_held(&il->mutex);
if (!il->beacon_ctx) {
IL_ERR("update beacon but no beacon context!\n");
dev_kfree_skb(skb);
return;
}
spin_lock_irqsave(&il->lock, flags);
if (il->beacon_skb)
dev_kfree_skb(il->beacon_skb);
il->beacon_skb = skb;
timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
il->timestamp = le64_to_cpu(timestamp);
D_MAC80211("leave\n");
spin_unlock_irqrestore(&il->lock, flags);
if (!il_is_ready_rf(il)) {
D_MAC80211("leave - RF not ready\n");
return;
}
il->cfg->ops->legacy->post_associate(il);
}
void il_mac_bss_info_changed(struct ieee80211_hw *hw,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *bss_conf,
u32 changes)
{
struct il_priv *il = hw->priv;
struct il_rxon_context *ctx = il_rxon_ctx_from_vif(vif);
int ret;
if (WARN_ON(!il->cfg->ops->legacy))
return;
D_MAC80211("changes = 0x%X\n", changes);
mutex_lock(&il->mutex);
if (!il_is_alive(il)) {
mutex_unlock(&il->mutex);
return;
}
if (changes & BSS_CHANGED_QOS) {
unsigned long flags;
spin_lock_irqsave(&il->lock, flags);
ctx->qos_data.qos_active = bss_conf->qos;
il_update_qos(il, ctx);
spin_unlock_irqrestore(&il->lock, flags);
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
/*
* the add_interface code must make sure we only ever
* have a single interface that could be beaconing at
* any time.
*/
if (vif->bss_conf.enable_beacon)
il->beacon_ctx = ctx;
else
il->beacon_ctx = NULL;
}
if (changes & BSS_CHANGED_BSSID) {
D_MAC80211("BSSID %pM\n", bss_conf->bssid);
/*
* If there is currently a HW scan going on in the
* background then we need to cancel it else the RXON
* below/in post_associate will fail.
*/
if (il_scan_cancel_timeout(il, 100)) {
IL_WARN(
"Aborted scan still in progress after 100ms\n");
D_MAC80211(
"leaving - scan abort failed.\n");
mutex_unlock(&il->mutex);
return;
}
/* mac80211 only sets assoc when in STATION mode */
if (vif->type == NL80211_IFTYPE_ADHOC || bss_conf->assoc) {
memcpy(ctx->staging.bssid_addr,
bss_conf->bssid, ETH_ALEN);
/* currently needed in a few places */
memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
} else {
ctx->staging.filter_flags &=
~RXON_FILTER_ASSOC_MSK;
}
}
/*
* This needs to be after setting the BSSID in case
* mac80211 decides to do both changes at once because
* it will invoke post_associate.
*/
if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
il_beacon_update(hw, vif);
if (changes & BSS_CHANGED_ERP_PREAMBLE) {
D_MAC80211("ERP_PREAMBLE %d\n",
bss_conf->use_short_preamble);
if (bss_conf->use_short_preamble)
ctx->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
else
ctx->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
}
if (changes & BSS_CHANGED_ERP_CTS_PROT) {
D_MAC80211(
"ERP_CTS %d\n", bss_conf->use_cts_prot);
if (bss_conf->use_cts_prot && il->band != IEEE80211_BAND_5GHZ)
ctx->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
else
ctx->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
if (bss_conf->use_cts_prot)
ctx->staging.flags |= RXON_FLG_SELF_CTS_EN;
else
ctx->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
}
if (changes & BSS_CHANGED_BASIC_RATES) {
/* XXX use this information
*
* To do that, remove code from il_set_rate() and put something
* like this here:
*
if (A-band)
ctx->staging.ofdm_basic_rates =
bss_conf->basic_rates;
else
ctx->staging.ofdm_basic_rates =
bss_conf->basic_rates >> 4;
ctx->staging.cck_basic_rates =
bss_conf->basic_rates & 0xF;
*/
}
if (changes & BSS_CHANGED_HT) {
il_ht_conf(il, vif);
if (il->cfg->ops->hcmd->set_rxon_chain)
il->cfg->ops->hcmd->set_rxon_chain(il, ctx);
}
if (changes & BSS_CHANGED_ASSOC) {
D_MAC80211("ASSOC %d\n", bss_conf->assoc);
if (bss_conf->assoc) {
il->timestamp = bss_conf->timestamp;
if (!il_is_rfkill(il))
il->cfg->ops->legacy->post_associate(il);
} else
il_set_no_assoc(il, vif);
}
if (changes && il_is_associated_ctx(ctx) && bss_conf->aid) {
D_MAC80211("Changes (%#x) while associated\n",
changes);
ret = il_send_rxon_assoc(il, ctx);
if (!ret) {
/* Sync active_rxon with latest change. */
memcpy((void *)&ctx->active,
&ctx->staging,
sizeof(struct il_rxon_cmd));
}
}
if (changes & BSS_CHANGED_BEACON_ENABLED) {
if (vif->bss_conf.enable_beacon) {
memcpy(ctx->staging.bssid_addr,
bss_conf->bssid, ETH_ALEN);
memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
il->cfg->ops->legacy->config_ap(il);
} else
il_set_no_assoc(il, vif);
}
if (changes & BSS_CHANGED_IBSS) {
ret = il->cfg->ops->legacy->manage_ibss_station(il, vif,
bss_conf->ibss_joined);
if (ret)
IL_ERR("failed to %s IBSS station %pM\n",
bss_conf->ibss_joined ? "add" : "remove",
bss_conf->bssid);
}
mutex_unlock(&il->mutex);
D_MAC80211("leave\n");
}
EXPORT_SYMBOL(il_mac_bss_info_changed);
irqreturn_t il_isr(int irq, void *data)
{
struct il_priv *il = data;
u32 inta, inta_mask;
u32 inta_fh;
unsigned long flags;
if (!il)
return IRQ_NONE;
spin_lock_irqsave(&il->lock, flags);
/* Disable (but don't clear!) interrupts here to avoid
* back-to-back ISRs and sporadic interrupts from our NIC.
* If we have something to service, the tasklet will re-enable ints.
* If we *don't* have something, we'll re-enable before leaving here. */
inta_mask = _il_rd(il, CSR_INT_MASK); /* just for debug */
_il_wr(il, CSR_INT_MASK, 0x00000000);
/* Discover which interrupts are active/pending */
inta = _il_rd(il, CSR_INT);
inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
/* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC. */
if (!inta && !inta_fh) {
D_ISR(
"Ignore interrupt, inta == 0, inta_fh == 0\n");
goto none;
}
if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
/* Hardware disappeared. It might have already raised
* an interrupt */
IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
goto unplugged;
}
D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n",
inta, inta_mask, inta_fh);
inta &= ~CSR_INT_BIT_SCD;
/* il_irq_tasklet() will service interrupts and re-enable them */
if (likely(inta || inta_fh))
tasklet_schedule(&il->irq_tasklet);
unplugged:
spin_unlock_irqrestore(&il->lock, flags);
return IRQ_HANDLED;
none:
/* re-enable interrupts here since we don't have anything to service. */
/* only Re-enable if disabled by irq */
if (test_bit(S_INT_ENABLED, &il->status))
il_enable_interrupts(il);
spin_unlock_irqrestore(&il->lock, flags);
return IRQ_NONE;
}
EXPORT_SYMBOL(il_isr);
/*
* il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
* function.
*/
void il_tx_cmd_protection(struct il_priv *il,
struct ieee80211_tx_info *info,
__le16 fc, __le32 *tx_flags)
{
if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
*tx_flags |= TX_CMD_FLG_RTS_MSK;
*tx_flags &= ~TX_CMD_FLG_CTS_MSK;
*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
if (!ieee80211_is_mgmt(fc))
return;
switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
case cpu_to_le16(IEEE80211_STYPE_AUTH):
case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
*tx_flags |= TX_CMD_FLG_CTS_MSK;
break;
}
} else if (info->control.rates[0].flags &
IEEE80211_TX_RC_USE_CTS_PROTECT) {
*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
*tx_flags |= TX_CMD_FLG_CTS_MSK;
*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
}
}
EXPORT_SYMBOL(il_tx_cmd_protection);