/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Implementation of transmit path.
*/
#include "core.h"
#define BITS_PER_BYTE 8
#define OFDM_PLCP_BITS 22
#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
#define L_STF 8
#define L_LTF 8
#define L_SIG 4
#define HT_SIG 8
#define HT_STF 4
#define HT_LTF(_ns) (4 * (_ns))
#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
#define OFDM_SIFS_TIME 16
static u32 bits_per_symbol[][2] = {
/* 20MHz 40MHz */
{ 26, 54 }, /* 0: BPSK */
{ 52, 108 }, /* 1: QPSK 1/2 */
{ 78, 162 }, /* 2: QPSK 3/4 */
{ 104, 216 }, /* 3: 16-QAM 1/2 */
{ 156, 324 }, /* 4: 16-QAM 3/4 */
{ 208, 432 }, /* 5: 64-QAM 2/3 */
{ 234, 486 }, /* 6: 64-QAM 3/4 */
{ 260, 540 }, /* 7: 64-QAM 5/6 */
{ 52, 108 }, /* 8: BPSK */
{ 104, 216 }, /* 9: QPSK 1/2 */
{ 156, 324 }, /* 10: QPSK 3/4 */
{ 208, 432 }, /* 11: 16-QAM 1/2 */
{ 312, 648 }, /* 12: 16-QAM 3/4 */
{ 416, 864 }, /* 13: 64-QAM 2/3 */
{ 468, 972 }, /* 14: 64-QAM 3/4 */
{ 520, 1080 }, /* 15: 64-QAM 5/6 */
};
#define IS_HT_RATE(_rate) ((_rate) & 0x80)
/*
* Insert a chain of ath_buf (descriptors) on a txq and
* assume the descriptors are already chained together by caller.
* NB: must be called with txq lock held
*/
static void ath_tx_txqaddbuf(struct ath_softc *sc,
struct ath_txq *txq, struct list_head *head)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
/*
* Insert the frame on the outbound list and
* pass it on to the hardware.
*/
if (list_empty(head))
return;
bf = list_first_entry(head, struct ath_buf, list);
list_splice_tail_init(head, &txq->axq_q);
txq->axq_depth++;
txq->axq_totalqueued++;
txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
DPRINTF(sc, ATH_DBG_QUEUE,
"%s: txq depth = %d\n", __func__, txq->axq_depth);
if (txq->axq_link == NULL) {
ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
DPRINTF(sc, ATH_DBG_XMIT,
"%s: TXDP[%u] = %llx (%p)\n",
__func__, txq->axq_qnum,
ito64(bf->bf_daddr), bf->bf_desc);
} else {
*txq->axq_link = bf->bf_daddr;
DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
__func__,
txq->axq_qnum, txq->axq_link,
ito64(bf->bf_daddr), bf->bf_desc);
}
txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
ath9k_hw_txstart(ah, txq->axq_qnum);
}
/* Get transmit rate index using rate in Kbps */
static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
{
int i;
int ndx = 0;
for (i = 0; i < rt->rateCount; i++) {
if (rt->info[i].rateKbps == rate) {
ndx = i;
break;
}
}
return ndx;
}
/* Check if it's okay to send out aggregates */
static int ath_aggr_query(struct ath_softc *sc,
struct ath_node *an, u8 tidno)
{
struct ath_atx_tid *tid;
tid = ATH_AN_2_TID(an, tidno);
if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
return 1;
else
return 0;
}
static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
{
enum ath9k_pkt_type htype;
__le16 fc;
fc = hdr->frame_control;
/* Calculate Atheros packet type from IEEE80211 packet header */
if (ieee80211_is_beacon(fc))
htype = ATH9K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc))
htype = ATH9K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc))
htype = ATH9K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc))
htype = ATH9K_PKT_TYPE_PSPOLL;
else
htype = ATH9K_PKT_TYPE_NORMAL;
return htype;
}
static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
{
struct ieee80211_hdr *hdr;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_tx_info_priv *tx_info_priv;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
txctl->use_minrate = 1;
txctl->min_rate = tx_info_priv->min_rate;
} else if (ieee80211_is_data(fc)) {
if (ieee80211_is_nullfunc(fc) ||
/* Port Access Entity (IEEE 802.1X) */
(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
txctl->use_minrate = 1;
txctl->min_rate = tx_info_priv->min_rate;
}
if (is_multicast_ether_addr(hdr->addr1))
txctl->mcast_rate = tx_info_priv->min_rate;
}
}
/* This function will setup additional txctl information, mostly rate stuff */
/* FIXME: seqno, ps */
static int ath_tx_prepare(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_hdr *hdr;
struct ath_rc_series *rcs;
struct ath_txq *txq = NULL;
const struct ath9k_rate_table *rt;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_tx_info_priv *tx_info_priv;
int hdrlen;
u8 rix, antenna;
__le16 fc;
u8 *qc;
txctl->dev = sc;
hdr = (struct ieee80211_hdr *)skb->data;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
fc = hdr->frame_control;
rt = sc->sc_currates;
BUG_ON(!rt);
if (ieee80211_is_data_qos(fc)) {
qc = ieee80211_get_qos_ctl(hdr);
txctl->tidno = qc[0] & 0xf;
}
txctl->if_id = 0;
txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3);
/* Always try at highest power possible unless the the device
* was configured by the user to use another power. */
if (likely(sc->sc_config.txpowlimit == ATH_TXPOWER_MAX))
txctl->txpower = ATH_TXPOWER_MAX;
else
txctl->txpower = sc->sc_config.txpowlimit;
/* Fill Key related fields */
txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
txctl->keyix = ATH9K_TXKEYIX_INVALID;
if (tx_info->control.hw_key) {
txctl->keyix = tx_info->control.hw_key->hw_key_idx;
txctl->frmlen += tx_info->control.hw_key->icv_len;
if (tx_info->control.hw_key->alg == ALG_WEP)
txctl->keytype = ATH9K_KEY_TYPE_WEP;
else if (tx_info->control.hw_key->alg == ALG_TKIP)
txctl->keytype = ATH9K_KEY_TYPE_TKIP;
else if (tx_info->control.hw_key->alg == ALG_CCMP)
txctl->keytype = ATH9K_KEY_TYPE_AES;
}
/* Fill packet type */
txctl->atype = get_hal_packet_type(hdr);
/* Fill qnum */
if (unlikely(txctl->flags & ATH9K_TXDESC_CAB)) {
txctl->qnum = 0;
txq = sc->sc_cabq;
} else {
txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
txq = &sc->sc_txq[txctl->qnum];
}
spin_lock_bh(&txq->axq_lock);
/* Try to avoid running out of descriptors */
if (txq->axq_depth >= (ATH_TXBUF - 20) &&
!(txctl->flags & ATH9K_TXDESC_CAB)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: TX queue: %d is full, depth: %d\n",
__func__,
txctl->qnum,
txq->axq_depth);
ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
txq->stopped = 1;
spin_unlock_bh(&txq->axq_lock);
return -1;
}
spin_unlock_bh(&txq->axq_lock);
/* Fill rate */
fill_min_rates(skb, txctl);
/* Fill flags */
txctl->flags |= ATH9K_TXDESC_CLRDMASK /* needed for crypto errors */
| ATH9K_TXDESC_INTREQ; /* Generate an interrupt */
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
txctl->flags |= ATH9K_TXDESC_NOACK;
if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
txctl->flags |= ATH9K_TXDESC_RTSENA;
/*
* Setup for rate calculations.
*/
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
rcs = tx_info_priv->rcs;
if (ieee80211_is_data(fc) && !txctl->use_minrate) {
/* Enable HT only for DATA frames and not for EAPOL */
/* XXX why AMPDU only?? */
txctl->ht = (hw->conf.ht.enabled &&
(tx_info->flags & IEEE80211_TX_CTL_AMPDU));
if (is_multicast_ether_addr(hdr->addr1)) {
rcs[0].rix = (u8)
ath_tx_findindex(rt, txctl->mcast_rate);
/*
* mcast packets are not re-tried.
*/
rcs[0].tries = 1;
}
/* For HT capable stations, we save tidno for later use.
* We also override seqno set by upper layer with the one
* in tx aggregation state.
*
* First, the fragmentation stat is determined.
* If fragmentation is on, the sequence number is
* not overridden, since it has been
* incremented by the fragmentation routine.
*/
if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
struct ath_atx_tid *tid;
tid = ATH_AN_2_TID(txctl->an, txctl->tidno);
hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
IEEE80211_SEQ_SEQ_SHIFT);
txctl->seqno = tid->seq_next;
INCR(tid->seq_next, IEEE80211_SEQ_MAX);
}
} else {
/* for management and control frames,
* or for NULL and EAPOL frames */
if (txctl->min_rate)
rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate);
else
rcs[0].rix = 0;
rcs[0].tries = ATH_MGT_TXMAXTRY;
}
rix = rcs[0].rix;
if (ieee80211_has_morefrags(fc) ||
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
/*
** Force hardware to use computed duration for next
** fragment by disabling multi-rate retry, which
** updates duration based on the multi-rate
** duration table.
*/
rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
/* reset tries but keep rate index */
rcs[0].tries = ATH_TXMAXTRY;
}
if (is_multicast_ether_addr(hdr->addr1)) {
antenna = sc->sc_mcastantenna + 1;
sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1;
}
return 0;
}
/* To complete a chain of buffers associated a frame */
static void ath_tx_complete_buf(struct ath_softc *sc,
struct ath_buf *bf,
struct list_head *bf_q,
int txok, int sendbar)
{
struct sk_buff *skb = bf->bf_mpdu;
struct ath_xmit_status tx_status;
/*
* Set retry information.
* NB: Don't use the information in the descriptor, because the frame
* could be software retried.
*/
tx_status.retries = bf->bf_retries;
tx_status.flags = 0;
if (sendbar)
tx_status.flags = ATH_TX_BAR;
if (!txok) {
tx_status.flags |= ATH_TX_ERROR;
if (bf_isxretried(bf))
tx_status.flags |= ATH_TX_XRETRY;
}
/* Unmap this frame */
pci_unmap_single(sc->pdev,
bf->bf_dmacontext,
skb->len,
PCI_DMA_TODEVICE);
/* complete this frame */
ath_tx_complete(sc, skb, &tx_status, bf->bf_node);
/*
* Return the list of ath_buf of this mpdu to free queue
*/
spin_lock_bh(&sc->sc_txbuflock);
list_splice_tail_init(bf_q, &sc->sc_txbuf);
spin_unlock_bh(&sc->sc_txbuflock);
}
/*
* queue up a dest/ac pair for tx scheduling
* NB: must be called with txq lock held
*/
static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
{
struct ath_atx_ac *ac = tid->ac;
/*
* if tid is paused, hold off
*/
if (tid->paused)
return;
/*
* add tid to ac atmost once
*/
if (tid->sched)
return;
tid->sched = true;
list_add_tail(&tid->list, &ac->tid_q);
/*
* add node ac to txq atmost once
*/
if (ac->sched)
return;
ac->sched = true;
list_add_tail(&ac->list, &txq->axq_acq);
}
/* pause a tid */
static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
spin_lock_bh(&txq->axq_lock);
tid->paused++;
spin_unlock_bh(&txq->axq_lock);
}
/* resume a tid and schedule aggregate */
void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
ASSERT(tid->paused > 0);
spin_lock_bh(&txq->axq_lock);
tid->paused--;
if (tid->paused > 0)
goto unlock;
if (list_empty(&tid->buf_q))
goto unlock;
/*
* Add this TID to scheduler and try to send out aggregates
*/
ath_tx_queue_tid(txq, tid);
ath_txq_schedule(sc, txq);
unlock:
spin_unlock_bh(&txq->axq_lock);
}
/* Compute the number of bad frames */
static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
int txok)
{
struct ath_buf *bf_last = bf->bf_lastbf;
struct ath_desc *ds = bf_last->bf_desc;
u16 seq_st = 0;
u32 ba[WME_BA_BMP_SIZE >> 5];
int ba_index;
int nbad = 0;
int isaggr = 0;
if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
return 0;
isaggr = bf_isaggr(bf);
if (isaggr) {
seq_st = ATH_DS_BA_SEQ(ds);
memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
}
while (bf) {
ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
nbad++;
bf = bf->bf_next;
}
return nbad;
}
static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
bf->bf_state.bf_type |= BUF_RETRY;
bf->bf_retries++;
skb = bf->bf_mpdu;
hdr = (struct ieee80211_hdr *)skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
}
/* Update block ack window */
static void ath_tx_update_baw(struct ath_softc *sc,
struct ath_atx_tid *tid, int seqno)
{
int index, cindex;
index = ATH_BA_INDEX(tid->seq_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
tid->tx_buf[cindex] = NULL;
while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
}
}
/*
* ath_pkt_dur - compute packet duration (NB: not NAV)
*
* rix - rate index
* pktlen - total bytes (delims + data + fcs + pads + pad delims)
* width - 0 for 20 MHz, 1 for 40 MHz
* half_gi - to use 4us v/s 3.6 us for symbol time
*/
static u32 ath_pkt_duration(struct ath_softc *sc,
u8 rix,
struct ath_buf *bf,
int width,
int half_gi,
bool shortPreamble)
{
const struct ath9k_rate_table *rt = sc->sc_currates;
u32 nbits, nsymbits, duration, nsymbols;
u8 rc;
int streams, pktlen;
pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
rc = rt->info[rix].rateCode;
/*
* for legacy rates, use old function to compute packet duration
*/
if (!IS_HT_RATE(rc))
return ath9k_hw_computetxtime(sc->sc_ah,
rt,
pktlen,
rix,
shortPreamble);
/*
* find number of symbols: PLCP + data
*/
nbits = (pktlen << 3) + OFDM_PLCP_BITS;
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
nsymbols = (nbits + nsymbits - 1) / nsymbits;
if (!half_gi)
duration = SYMBOL_TIME(nsymbols);
else
duration = SYMBOL_TIME_HALFGI(nsymbols);
/*
* addup duration for legacy/ht training and signal fields
*/
streams = HT_RC_2_STREAMS(rc);
duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
return duration;
}
/* Rate module function to set rate related fields in tx descriptor */
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
const struct ath9k_rate_table *rt;
struct ath_desc *ds = bf->bf_desc;
struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
struct ath9k_11n_rate_series series[4];
int i, flags, rtsctsena = 0, dynamic_mimops = 0;
u32 ctsduration = 0;
u8 rix = 0, cix, ctsrate = 0;
u32 aggr_limit_with_rts = ah->ah_caps.rts_aggr_limit;
struct ath_node *an = (struct ath_node *) bf->bf_node;
/*
* get the cix for the lowest valid rix.
*/
rt = sc->sc_currates;
for (i = 4; i--;) {
if (bf->bf_rcs[i].tries) {
rix = bf->bf_rcs[i].rix;
break;
}
}
flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
cix = rt->info[rix].controlRate;
/*
* If 802.11g protection is enabled, determine whether
* to use RTS/CTS or just CTS. Note that this is only
* done for OFDM/HT unicast frames.
*/
if (sc->sc_protmode != PROT_M_NONE &&
(rt->info[rix].phy == PHY_OFDM ||
rt->info[rix].phy == PHY_HT) &&
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
if (sc->sc_protmode == PROT_M_RTSCTS)
flags = ATH9K_TXDESC_RTSENA;
else if (sc->sc_protmode == PROT_M_CTSONLY)
flags = ATH9K_TXDESC_CTSENA;
cix = rt->info[sc->sc_protrix].controlRate;
rtsctsena = 1;
}
/* For 11n, the default behavior is to enable RTS for
* hw retried frames. We enable the global flag here and
* let rate series flags determine which rates will actually
* use RTS.
*/
if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
BUG_ON(!an);
/*
* 802.11g protection not needed, use our default behavior
*/
if (!rtsctsena)
flags = ATH9K_TXDESC_RTSENA;
/*
* For dynamic MIMO PS, RTS needs to precede the first aggregate
* and the second aggregate should have any protection at all.
*/
if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
if (!bf_isaggrburst(bf)) {
flags = ATH9K_TXDESC_RTSENA;
dynamic_mimops = 1;
} else {
flags = 0;
}
}
}
/*
* Set protection if aggregate protection on
*/
if (sc->sc_config.ath_aggr_prot &&
(!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
flags = ATH9K_TXDESC_RTSENA;
cix = rt->info[sc->sc_protrix].controlRate;
rtsctsena = 1;
}
/*
* For AR5416 - RTS cannot be followed by a frame larger than 8K.
*/
if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) {
/*
* Ensure that in the case of SM Dynamic power save
* while we are bursting the second aggregate the
* RTS is cleared.
*/
flags &= ~(ATH9K_TXDESC_RTSENA);
}
/*
* CTS transmit rate is derived from the transmit rate
* by looking in the h/w rate table. We must also factor
* in whether or not a short preamble is to be used.
*/
/* NB: cix is set above where RTS/CTS is enabled */
BUG_ON(cix == 0xff);
ctsrate = rt->info[cix].rateCode |
(bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
/*
* Setup HAL rate series
*/
memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
for (i = 0; i < 4; i++) {
if (!bf->bf_rcs[i].tries)
continue;
rix = bf->bf_rcs[i].rix;
series[i].Rate = rt->info[rix].rateCode |
(bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
series[i].Tries = bf->bf_rcs[i].tries;
series[i].RateFlags = (
(bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
ATH9K_RATESERIES_RTS_CTS : 0) |
((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
ATH9K_RATESERIES_2040 : 0) |
((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
ATH9K_RATESERIES_HALFGI : 0);
series[i].PktDuration = ath_pkt_duration(
sc, rix, bf,
(bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
(bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
bf_isshpreamble(bf));
if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
(bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
/*
* When sending to an HT node that has enabled static
* SM/MIMO power save, send at single stream rates but
* use maximum allowed transmit chains per user,
* hardware, regulatory, or country limits for
* better range.
*/
series[i].ChSel = sc->sc_tx_chainmask;
} else {
if (bf_isht(bf))
series[i].ChSel =
ath_chainmask_sel_logic(sc, an);
else
series[i].ChSel = sc->sc_tx_chainmask;
}
if (rtsctsena)
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
/*
* Set RTS for all rates if node is in dynamic powersave
* mode and we are using dual stream rates.
*/
if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
}
/*
* For non-HT devices, calculate RTS/CTS duration in software
* and disable multi-rate retry.
*/
if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
/*
* Compute the transmit duration based on the frame
* size and the size of an ACK frame. We call into the
* HAL to do the computation since it depends on the
* characteristics of the actual PHY being used.
*
* NB: CTS is assumed the same size as an ACK so we can
* use the precalculated ACK durations.
*/
if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
ctsduration += bf_isshpreamble(bf) ?
rt->info[cix].spAckDuration :
rt->info[cix].lpAckDuration;
}
ctsduration += series[0].PktDuration;
if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
ctsduration += bf_isshpreamble(bf) ?
rt->info[rix].spAckDuration :
rt->info[rix].lpAckDuration;
}
/*
* Disable multi-rate retry when using RTS/CTS by clearing
* series 1, 2 and 3.
*/
memset(&series[1], 0, sizeof(struct ath9k_11n_rate_series) * 3);
}
/*
* set dur_update_en for l-sig computation except for PS-Poll frames
*/
ath9k_hw_set11n_ratescenario(ah, ds, lastds,
!bf_ispspoll(bf),
ctsrate,
ctsduration,
series, 4, flags);
if (sc->sc_config.ath_aggr_prot && flags)
ath9k_hw_set11n_burstduration(ah, ds, 8192);
}
/*
* Function to send a normal HT (non-AMPDU) frame
* NB: must be called with txq lock held
*/
static int ath_tx_send_normal(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid,
struct list_head *bf_head)
{
struct ath_buf *bf;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv;
BUG_ON(list_empty(bf_head));
bf = list_first_entry(bf_head, struct ath_buf, list);
bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
skb = (struct sk_buff *)bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
/* update starting sequence number for subsequent ADDBA request */
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
/* Queue to h/w without aggregation */
bf->bf_nframes = 1;
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txq, bf_head);
return 0;
}
/* flush tid's software queue and send frames as non-ampdu's */
static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
ASSERT(tid->paused > 0);
spin_lock_bh(&txq->axq_lock);
tid->paused--;
if (tid->paused > 0) {
spin_unlock_bh(&txq->axq_lock);
return;
}
while (!list_empty(&tid->buf_q)) {
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
ASSERT(!bf_isretried(bf));
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
ath_tx_send_normal(sc, txq, tid, &bf_head);
}
spin_unlock_bh(&txq->axq_lock);
}
/* Completion routine of an aggregate */
static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_buf *bf,
struct list_head *bf_q,
int txok)
{
struct ath_node *an = bf->bf_node;
struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno);
struct ath_buf *bf_last = bf->bf_lastbf;
struct ath_desc *ds = bf_last->bf_desc;
struct ath_buf *bf_next, *bf_lastq = NULL;
struct list_head bf_head, bf_pending;
u16 seq_st = 0;
u32 ba[WME_BA_BMP_SIZE >> 5];
int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
isaggr = bf_isaggr(bf);
if (isaggr) {
if (txok) {
if (ATH_DS_TX_BA(ds)) {
/*
* extract starting sequence and
* block-ack bitmap
*/
seq_st = ATH_DS_BA_SEQ(ds);
memcpy(ba,
ATH_DS_BA_BITMAP(ds),
WME_BA_BMP_SIZE >> 3);
} else {
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
/*
* AR5416 can become deaf/mute when BA
* issue happens. Chip needs to be reset.
* But AP code may have sychronization issues
* when perform internal reset in this routine.
* Only enable reset in STA mode for now.
*/
if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
needreset = 1;
}
} else {
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
}
}
INIT_LIST_HEAD(&bf_pending);
INIT_LIST_HEAD(&bf_head);
while (bf) {
txfail = txpending = 0;
bf_next = bf->bf_next;
if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
/* transmit completion, subframe is
* acked by block ack */
} else if (!isaggr && txok) {
/* transmit completion */
} else {
if (!tid->cleanup_inprogress &&
ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
ath_tx_set_retry(sc, bf);
txpending = 1;
} else {
bf->bf_state.bf_type |= BUF_XRETRY;
txfail = 1;
sendbar = 1;
}
} else {
/*
* cleanup in progress, just fail
* the un-acked sub-frames
*/
txfail = 1;
}
}
/*
* Remove ath_buf's of this sub-frame from aggregate queue.
*/
if (bf_next == NULL) { /* last subframe in the aggregate */
ASSERT(bf->bf_lastfrm == bf_last);
/*
* The last descriptor of the last sub frame could be
* a holding descriptor for h/w. If that's the case,
* bf->bf_lastfrm won't be in the bf_q.
* Make sure we handle bf_q properly here.
*/
if (!list_empty(bf_q)) {
bf_lastq = list_entry(bf_q->prev,
struct ath_buf, list);
list_cut_position(&bf_head,
bf_q, &bf_lastq->list);
} else {
/*
* XXX: if the last subframe only has one
* descriptor which is also being used as
* a holding descriptor. Then the ath_buf
* is not in the bf_q at all.
*/
INIT_LIST_HEAD(&bf_head);
}
} else {
ASSERT(!list_empty(bf_q));
list_cut_position(&bf_head,
bf_q, &bf->bf_lastfrm->list);
}
if (!txpending) {
/*
* complete the acked-ones/xretried ones; update
* block-ack window
*/
spin_lock_bh(&txq->axq_lock);
ath_tx_update_baw(sc, tid, bf->bf_seqno);
spin_unlock_bh(&txq->axq_lock);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
} else {
/*
* retry the un-acked ones
*/
/*
* XXX: if the last descriptor is holding descriptor,
* in order to requeue the frame to software queue, we
* need to allocate a new descriptor and
* copy the content of holding descriptor to it.
*/
if (bf->bf_next == NULL &&
bf_last->bf_status & ATH_BUFSTATUS_STALE) {
struct ath_buf *tbf;
/* allocate new descriptor */
spin_lock_bh(&sc->sc_txbuflock);
ASSERT(!list_empty((&sc->sc_txbuf)));
tbf = list_first_entry(&sc->sc_txbuf,
struct ath_buf, list);
list_del(&tbf->list);
spin_unlock_bh(&sc->sc_txbuflock);
ATH_TXBUF_RESET(tbf);
/* copy descriptor content */
tbf->bf_mpdu = bf_last->bf_mpdu;
tbf->bf_node = bf_last->bf_node;
tbf->bf_buf_addr = bf_last->bf_buf_addr;
*(tbf->bf_desc) = *(bf_last->bf_desc);
/* link it to the frame */
if (bf_lastq) {
bf_lastq->bf_desc->ds_link =
tbf->bf_daddr;
bf->bf_lastfrm = tbf;
ath9k_hw_cleartxdesc(sc->sc_ah,
bf->bf_lastfrm->bf_desc);
} else {
tbf->bf_state = bf_last->bf_state;
tbf->bf_lastfrm = tbf;
ath9k_hw_cleartxdesc(sc->sc_ah,
tbf->bf_lastfrm->bf_desc);
/* copy the DMA context */
tbf->bf_dmacontext =
bf_last->bf_dmacontext;
}
list_add_tail(&tbf->list, &bf_head);
} else {
/*
* Clear descriptor status words for
* software retry
*/
ath9k_hw_cleartxdesc(sc->sc_ah,
bf->bf_lastfrm->bf_desc);
}
/*
* Put this buffer to the temporary pending
* queue to retain ordering
*/
list_splice_tail_init(&bf_head, &bf_pending);
}
bf = bf_next;
}
if (tid->cleanup_inprogress) {
/* check to see if we're done with cleaning the h/w queue */
spin_lock_bh(&txq->axq_lock);
if (tid->baw_head == tid->baw_tail) {
tid->addba_exchangecomplete = 0;
tid->addba_exchangeattempts = 0;
spin_unlock_bh(&txq->axq_lock);
tid->cleanup_inprogress = false;
/* send buffered frames as singles */
ath_tx_flush_tid(sc, tid);
} else
spin_unlock_bh(&txq->axq_lock);
return;
}
/*
* prepend un-acked frames to the beginning of the pending frame queue
*/
if (!list_empty(&bf_pending)) {
spin_lock_bh(&txq->axq_lock);
/* Note: we _prepend_, we _do_not_ at to
* the end of the queue ! */
list_splice(&bf_pending, &tid->buf_q);
ath_tx_queue_tid(txq, tid);
spin_unlock_bh(&txq->axq_lock);
}
if (needreset)
ath_reset(sc, false);
return;
}
/* Process completed xmit descriptors from the specified queue */
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf, *lastbf, *bf_held = NULL;
struct list_head bf_head;
struct ath_desc *ds, *tmp_ds;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv;
int nacked, txok, nbad = 0, isrifs = 0;
int status;
DPRINTF(sc, ATH_DBG_QUEUE,
"%s: tx queue %d (%x), link %p\n", __func__,
txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
nacked = 0;
for (;;) {
spin_lock_bh(&txq->axq_lock);
if (list_empty(&txq->axq_q)) {
txq->axq_link = NULL;
txq->axq_linkbuf = NULL;
spin_unlock_bh(&txq->axq_lock);
break;
}
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
/*
* There is a race condition that a BH gets scheduled
* after sw writes TxE and before hw re-load the last
* descriptor to get the newly chained one.
* Software must keep the last DONE descriptor as a
* holding descriptor - software does so by marking
* it with the STALE flag.
*/
bf_held = NULL;
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
bf_held = bf;
if (list_is_last(&bf_held->list, &txq->axq_q)) {
/* FIXME:
* The holding descriptor is the last
* descriptor in queue. It's safe to remove
* the last holding descriptor in BH context.
*/
spin_unlock_bh(&txq->axq_lock);
break;
} else {
/* Lets work with the next buffer now */
bf = list_entry(bf_held->list.next,
struct ath_buf, list);
}
}
lastbf = bf->bf_lastbf;
ds = lastbf->bf_desc; /* NB: last decriptor */
status = ath9k_hw_txprocdesc(ah, ds);
if (status == -EINPROGRESS) {
spin_unlock_bh(&txq->axq_lock);
break;
}
if (bf->bf_desc == txq->axq_lastdsWithCTS)
txq->axq_lastdsWithCTS = NULL;
if (ds == txq->axq_gatingds)
txq->axq_gatingds = NULL;
/*
* Remove ath_buf's of the same transmit unit from txq,
* however leave the last descriptor back as the holding
* descriptor for hw.
*/
lastbf->bf_status |= ATH_BUFSTATUS_STALE;
INIT_LIST_HEAD(&bf_head);
if (!list_is_singular(&lastbf->list))
list_cut_position(&bf_head,
&txq->axq_q, lastbf->list.prev);
txq->axq_depth--;
if (bf_isaggr(bf))
txq->axq_aggr_depth--;
txok = (ds->ds_txstat.ts_status == 0);
spin_unlock_bh(&txq->axq_lock);
if (bf_held) {
list_del(&bf_held->list);
spin_lock_bh(&sc->sc_txbuflock);
list_add_tail(&bf_held->list, &sc->sc_txbuf);
spin_unlock_bh(&sc->sc_txbuflock);
}
if (!bf_isampdu(bf)) {
/*
* This frame is sent out as a single frame.
* Use hardware retry status for this frame.
*/
bf->bf_retries = ds->ds_txstat.ts_longretry;
if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
bf->bf_state.bf_type |= BUF_XRETRY;
nbad = 0;
} else {
nbad = ath_tx_num_badfrms(sc, bf, txok);
}
skb = bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *) tx_info->control.vif;
if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
if (ds->ds_txstat.ts_status == 0)
nacked++;
if (bf_isdata(bf)) {
if (isrifs)
tmp_ds = bf->bf_rifslast->bf_desc;
else
tmp_ds = ds;
memcpy(&tx_info_priv->tx,
&tmp_ds->ds_txstat,
sizeof(tx_info_priv->tx));
tx_info_priv->n_frames = bf->bf_nframes;
tx_info_priv->n_bad_frames = nbad;
}
}
/*
* Complete this transmit unit
*/
if (bf_isampdu(bf))
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
else
ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
/* Wake up mac80211 queue */
spin_lock_bh(&txq->axq_lock);
if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
(ATH_TXBUF - 20)) {
int qnum;
qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
if (qnum != -1) {
ieee80211_wake_queue(sc->hw, qnum);
txq->stopped = 0;
}
}
/*
* schedule any pending packets if aggregation is enabled
*/
if (sc->sc_flags & SC_OP_TXAGGR)
ath_txq_schedule(sc, txq);
spin_unlock_bh(&txq->axq_lock);
}
return nacked;
}
static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
(void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
__func__, txq->axq_qnum,
ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
}
/* Drain only the data queues */
static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
{
struct ath_hal *ah = sc->sc_ah;
int i;
int npend = 0;
/* XXX return value */
if (!(sc->sc_flags & SC_OP_INVALID)) {
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_tx_stopdma(sc, &sc->sc_txq[i]);
/* The TxDMA may not really be stopped.
* Double check the hal tx pending count */
npend += ath9k_hw_numtxpending(ah,
sc->sc_txq[i].axq_qnum);
}
}
}
if (npend) {
int status;
/* TxDMA not stopped, reset the hal */
DPRINTF(sc, ATH_DBG_XMIT,
"%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah,
sc->sc_ah->ah_curchan,
sc->sc_ht_info.tx_chan_width,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, true, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to reset hardware; hal status %u\n",
__func__,
status);
}
spin_unlock_bh(&sc->sc_resetlock);
}
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i))
ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
}
}
/* Add a sub-frame to block ack window */
static void ath_tx_addto_baw(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct ath_buf *bf)
{
int index, cindex;
if (bf_isretried(bf))
return;
index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
ASSERT(tid->tx_buf[cindex] == NULL);
tid->tx_buf[cindex] = bf;
if (index >= ((tid->baw_tail - tid->baw_head) &
(ATH_TID_MAX_BUFS - 1))) {
tid->baw_tail = cindex;
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
}
}
/*
* Function to send an A-MPDU
* NB: must be called with txq lock held
*/
static int ath_tx_send_ampdu(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid,
struct list_head *bf_head,
struct ath_tx_control *txctl)
{
struct ath_buf *bf;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv;
BUG_ON(list_empty(bf_head));
bf = list_first_entry(bf_head, struct ath_buf, list);
bf->bf_state.bf_type |= BUF_AMPDU;
bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */
bf->bf_tidno = txctl->tidno;
/*
* Do not queue to h/w when any of the following conditions is true:
* - there are pending frames in software queue
* - the TID is currently paused for ADDBA/BAR request
* - seqno is not within block-ack window
* - h/w queue depth exceeds low water mark
*/
if (!list_empty(&tid->buf_q) || tid->paused ||
!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
/*
* Add this frame to software queue for scheduling later
* for aggregation.
*/
list_splice_tail_init(bf_head, &tid->buf_q);
ath_tx_queue_tid(txq, tid);
return 0;
}
skb = (struct sk_buff *)bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
/* Add sub-frame to BAW */
ath_tx_addto_baw(sc, tid, bf);
/* Queue to h/w without aggregation */
bf->bf_nframes = 1;
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txq, bf_head);
return 0;
}
/*
* looks up the rate
* returns aggr limit based on lowest of the rates
*/
static u32 ath_lookup_rate(struct ath_softc *sc,
struct ath_buf *bf,
struct ath_atx_tid *tid)
{
const struct ath9k_rate_table *rt = sc->sc_currates;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_tx_info_priv *tx_info_priv;
u32 max_4ms_framelen, frame_length;
u16 aggr_limit, legacy = 0, maxampdu;
int i;
skb = (struct sk_buff *)bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
tx_info_priv = (struct ath_tx_info_priv *)
tx_info->control.vif; /* XXX: HACK! */
memcpy(bf->bf_rcs,
tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
/*
* Find the lowest frame length among the rate series that will have a
* 4ms transmit duration.
* TODO - TXOP limit needs to be considered.
*/
max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
for (i = 0; i < 4; i++) {
if (bf->bf_rcs[i].tries) {
frame_length = bf->bf_rcs[i].max_4ms_framelen;
if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
legacy = 1;
break;
}
max_4ms_framelen = min(max_4ms_framelen, frame_length);
}
}
/*
* limit aggregate size by the minimum rate if rate selected is
* not a probe rate, if rate selected is a probe rate then
* avoid aggregation of this packet.
*/
if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
return 0;
aggr_limit = min(max_4ms_framelen,
(u32)ATH_AMPDU_LIMIT_DEFAULT);
/*
* h/w can accept aggregates upto 16 bit lengths (65535).
* The IE, however can hold upto 65536, which shows up here
* as zero. Ignore 65536 since we are constrained by hw.
*/
maxampdu = tid->an->maxampdu;
if (maxampdu)
aggr_limit = min(aggr_limit, maxampdu);
return aggr_limit;
}
/*
* returns the number of delimiters to be added to
* meet the minimum required mpdudensity.
* caller should make sure that the rate is HT rate .
*/
static int ath_compute_num_delims(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct ath_buf *bf,
u16 frmlen)
{
const struct ath9k_rate_table *rt = sc->sc_currates;
u32 nsymbits, nsymbols, mpdudensity;
u16 minlen;
u8 rc, flags, rix;
int width, half_gi, ndelim, mindelim;
/* Select standard number of delimiters based on frame length alone */
ndelim = ATH_AGGR_GET_NDELIM(frmlen);
/*
* If encryption enabled, hardware requires some more padding between
* subframes.
* TODO - this could be improved to be dependent on the rate.
* The hardware can keep up at lower rates, but not higher rates
*/
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
ndelim += ATH_AGGR_ENCRYPTDELIM;
/*
* Convert desired mpdu density from microeconds to bytes based
* on highest rate in rate series (i.e. first rate) to determine
* required minimum length for subframe. Take into account
* whether high rate is 20 or 40Mhz and half or full GI.
*/
mpdudensity = tid->an->mpdudensity;
/*
* If there is no mpdu density restriction, no further calculation
* is needed.
*/
if (mpdudensity == 0)
return ndelim;
rix = bf->bf_rcs[0].rix;
flags = bf->bf_rcs[0].flags;
rc = rt->info[rix].rateCode;
width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
if (half_gi)
nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
else
nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
if (nsymbols == 0)
nsymbols = 1;
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
/* Is frame shorter than required minimum length? */
if (frmlen < minlen) {
/* Get the minimum number of delimiters required. */
mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
ndelim = max(mindelim, ndelim);
}
return ndelim;
}
/*
* For aggregation from software buffer queue.
* NB: must be called with txq lock held
*/
static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct list_head *bf_q,
struct ath_buf **bf_last,
struct aggr_rifs_param *param,
int *prev_frames)
{
#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
struct list_head bf_head;
int rl = 0, nframes = 0, ndelim;
u16 aggr_limit = 0, al = 0, bpad = 0,
al_delta, h_baw = tid->baw_size / 2;
enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
int prev_al = 0, is_ds_rate = 0;
INIT_LIST_HEAD(&bf_head);
BUG_ON(list_empty(&tid->buf_q));
bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
do {
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
/*
* do not step over block-ack window
*/
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
status = ATH_AGGR_BAW_CLOSED;
break;
}
if (!rl) {
aggr_limit = ath_lookup_rate(sc, bf, tid);
rl = 1;
/*
* Is rate dual stream
*/
is_ds_rate =
(bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
}
/*
* do not exceed aggregation limit
*/
al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
if (nframes && (aggr_limit <
(al + bpad + al_delta + prev_al))) {
status = ATH_AGGR_LIMITED;
break;
}
/*
* do not exceed subframe limit
*/
if ((nframes + *prev_frames) >=
min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
status = ATH_AGGR_LIMITED;
break;
}
/*
* add padding for previous frame to aggregation length
*/
al += bpad + al_delta;
/*
* Get the delimiters needed to meet the MPDU
* density for this node.
*/
ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
bpad = PADBYTES(al_delta) + (ndelim << 2);
bf->bf_next = NULL;
bf->bf_lastfrm->bf_desc->ds_link = 0;
/*
* this packet is part of an aggregate
* - remove all descriptors belonging to this frame from
* software queue
* - add it to block ack window
* - set up descriptors for aggregation
*/
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
ath_tx_addto_baw(sc, tid, bf);
list_for_each_entry(tbf, &bf_head, list) {
ath9k_hw_set11n_aggr_middle(sc->sc_ah,
tbf->bf_desc, ndelim);
}
/*
* link buffers of this frame to the aggregate
*/
list_splice_tail_init(&bf_head, bf_q);
nframes++;
if (bf_prev) {
bf_prev->bf_next = bf;
bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
}
bf_prev = bf;
#ifdef AGGR_NOSHORT
/*
* terminate aggregation on a small packet boundary
*/
if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
status = ATH_AGGR_SHORTPKT;
break;
}
#endif
} while (!list_empty(&tid->buf_q));
bf_first->bf_al = al;
bf_first->bf_nframes = nframes;
*bf_last = bf_prev;
return status;
#undef PADBYTES
}
/*
* process pending frames possibly doing a-mpdu aggregation
* NB: must be called with txq lock held
*/
static void ath_tx_sched_aggr(struct ath_softc *sc,
struct ath_txq *txq, struct ath_atx_tid *tid)
{
struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
enum ATH_AGGR_STATUS status;
struct list_head bf_q;
struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
int prev_frames = 0;
do {
if (list_empty(&tid->buf_q))
return;
INIT_LIST_HEAD(&bf_q);
status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, ¶m,
&prev_frames);
/*
* no frames picked up to be aggregated; block-ack
* window is not open
*/
if (list_empty(&bf_q))
break;
bf = list_first_entry(&bf_q, struct ath_buf, list);
bf_last = list_entry(bf_q.prev, struct ath_buf, list);
bf->bf_lastbf = bf_last;
/*
* if only one frame, send as non-aggregate
*/
if (bf->bf_nframes == 1) {
ASSERT(bf->bf_lastfrm == bf_last);
bf->bf_state.bf_type &= ~BUF_AGGR;
/*
* clear aggr bits for every descriptor
* XXX TODO: is there a way to optimize it?
*/
list_for_each_entry(tbf, &bf_q, list) {
ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
}
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txq, &bf_q);
continue;
}
/*
* setup first desc with rate and aggr info
*/
bf->bf_state.bf_type |= BUF_AGGR;
ath_buf_set_rate(sc, bf);
ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
/*
* anchor last frame of aggregate correctly
*/
ASSERT(bf_lastaggr);
ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
tbf = bf_lastaggr;
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
/* XXX: We don't enter into this loop, consider removing this */
while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
tbf = list_entry(tbf->list.next, struct ath_buf, list);
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
}
txq->axq_aggr_depth++;
/*
* Normal aggregate, queue to hardware
*/
ath_tx_txqaddbuf(sc, txq, &bf_q);
} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
status != ATH_AGGR_BAW_CLOSED);
}
/* Called with txq lock held */
static void ath_tid_drain(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid)
{
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
for (;;) {
if (list_empty(&tid->buf_q))
break;
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
/* update baw for software retried frame */
if (bf_isretried(bf))
ath_tx_update_baw(sc, tid, bf->bf_seqno);
/*
* do not indicate packets while holding txq spinlock.
* unlock is intentional here
*/
spin_unlock(&txq->axq_lock);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
spin_lock(&txq->axq_lock);
}
/*
* TODO: For frame(s) that are in the retry state, we will reuse the
* sequence number(s) without setting the retry bit. The
* alternative is to give up on these and BAR the receiver's window
* forward.
*/
tid->seq_next = tid->seq_start;
tid->baw_tail = tid->baw_head;
}
/*
* Drain all pending buffers
* NB: must be called with txq lock held
*/
static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
struct ath_txq *txq)
{
struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp;
list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
list_del(&ac->list);
ac->sched = false;
list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
list_del(&tid->list);
tid->sched = false;
ath_tid_drain(sc, txq, tid);
}
}
}
static int ath_tx_start_dma(struct ath_softc *sc,
struct sk_buff *skb,
struct scatterlist *sg,
u32 n_sg,
struct ath_tx_control *txctl)
{
struct ath_node *an = txctl->an;
struct ath_buf *bf = NULL;
struct list_head bf_head;
struct ath_desc *ds;
struct ath_hal *ah = sc->sc_ah;
struct ath_txq *txq;
struct ath_tx_info_priv *tx_info_priv;
struct ath_rc_series *rcs;
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
__le16 fc = hdr->frame_control;
if (unlikely(txctl->flags & ATH9K_TXDESC_CAB))
txq = sc->sc_cabq;
else
txq = &sc->sc_txq[txctl->qnum];
/* For each sglist entry, allocate an ath_buf for DMA */
INIT_LIST_HEAD(&bf_head);
spin_lock_bh(&sc->sc_txbuflock);
if (unlikely(list_empty(&sc->sc_txbuf))) {
spin_unlock_bh(&sc->sc_txbuflock);
return -ENOMEM;
}
bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
list_del(&bf->list);
spin_unlock_bh(&sc->sc_txbuflock);
list_add_tail(&bf->list, &bf_head);
/* set up this buffer */
ATH_TXBUF_RESET(bf);
bf->bf_frmlen = txctl->frmlen;
ieee80211_is_data(fc) ?
(bf->bf_state.bf_type |= BUF_DATA) :
(bf->bf_state.bf_type &= ~BUF_DATA);
ieee80211_is_back_req(fc) ?
(bf->bf_state.bf_type |= BUF_BAR) :
(bf->bf_state.bf_type &= ~BUF_BAR);
ieee80211_is_pspoll(fc) ?
(bf->bf_state.bf_type |= BUF_PSPOLL) :
(bf->bf_state.bf_type &= ~BUF_PSPOLL);
(sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
(bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
(bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
bf->bf_flags = txctl->flags;
bf->bf_keytype = txctl->keytype;
/* XXX: HACK! */
tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
rcs = tx_info_priv->rcs;
bf->bf_rcs[0] = rcs[0];
bf->bf_rcs[1] = rcs[1];
bf->bf_rcs[2] = rcs[2];
bf->bf_rcs[3] = rcs[3];
bf->bf_node = an;
bf->bf_mpdu = skb;
bf->bf_buf_addr = sg_dma_address(sg);
/* setup descriptor */
ds = bf->bf_desc;
ds->ds_link = 0;
ds->ds_data = bf->bf_buf_addr;
/*
* Save the DMA context in the first ath_buf
*/
bf->bf_dmacontext = txctl->dmacontext;
/*
* Formulate first tx descriptor with tx controls.
*/
ath9k_hw_set11n_txdesc(ah,
ds,
bf->bf_frmlen, /* frame length */
txctl->atype, /* Atheros packet type */
min(txctl->txpower, (u16)60), /* txpower */
txctl->keyix, /* key cache index */
txctl->keytype, /* key type */
txctl->flags); /* flags */
ath9k_hw_filltxdesc(ah,
ds,
sg_dma_len(sg), /* segment length */
true, /* first segment */
(n_sg == 1) ? true : false, /* last segment */
ds); /* first descriptor */
bf->bf_lastfrm = bf;
(txctl->ht) ?
(bf->bf_state.bf_type |= BUF_HT) :
(bf->bf_state.bf_type &= ~BUF_HT);
spin_lock_bh(&txq->axq_lock);
if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno);
if (ath_aggr_query(sc, an, txctl->tidno)) {
/*
* Try aggregation if it's a unicast data frame
* and the destination is HT capable.
*/
ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl);
} else {
/*
* Send this frame as regular when ADDBA exchange
* is neither complete nor pending.
*/
ath_tx_send_normal(sc, txq, tid, &bf_head);
}
} else {
bf->bf_lastbf = bf;
bf->bf_nframes = 1;
ath_buf_set_rate(sc, bf);
if (ieee80211_is_back_req(fc)) {
/* This is required for resuming tid
* during BAR completion */
bf->bf_tidno = txctl->tidno;
}
ath_tx_txqaddbuf(sc, txq, &bf_head);
}
spin_unlock_bh(&txq->axq_lock);
return 0;
}
static void xmit_map_sg(struct ath_softc *sc,
struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ath_xmit_status tx_status;
struct ath_atx_tid *tid;
struct scatterlist sg;
txctl->dmacontext = pci_map_single(sc->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
/* setup S/G list */
memset(&sg, 0, sizeof(struct scatterlist));
sg_dma_address(&sg) = txctl->dmacontext;
sg_dma_len(&sg) = skb->len;
if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) {
/*
* We have to do drop frame here.
*/
pci_unmap_single(sc->pdev, txctl->dmacontext,
skb->len, PCI_DMA_TODEVICE);
tx_status.retries = 0;
tx_status.flags = ATH_TX_ERROR;
if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
/* Reclaim the seqno. */
tid = ATH_AN_2_TID((struct ath_node *)
txctl->an, txctl->tidno);
DECR(tid->seq_next, IEEE80211_SEQ_MAX);
}
ath_tx_complete(sc, skb, &tx_status, txctl->an);
}
}
/* Initialize TX queue and h/w */
int ath_tx_init(struct ath_softc *sc, int nbufs)
{
int error = 0;
do {
spin_lock_init(&sc->sc_txbuflock);
/* Setup tx descriptors */
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
"tx", nbufs, 1);
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: failed to allocate tx descriptors: %d\n",
__func__, error);
break;
}
/* XXX allocate beacon state together with vap */
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
"beacon", ATH_BCBUF, 1);
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: failed to allocate "
"beacon descripotrs: %d\n",
__func__, error);
break;
}
} while (0);
if (error != 0)
ath_tx_cleanup(sc);
return error;
}
/* Reclaim all tx queue resources */
int ath_tx_cleanup(struct ath_softc *sc)
{
/* cleanup beacon descriptors */
if (sc->sc_bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
/* cleanup tx descriptors */
if (sc->sc_txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
return 0;
}
/* Setup a h/w transmit queue */
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
struct ath_hal *ah = sc->sc_ah;
struct ath9k_tx_queue_info qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
qi.tqi_physCompBuf = 0;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*
* The UAPSD queue is an exception, since we take a desc-
* based intr on the EOSP frames.
*/
if (qtype == ATH9K_TX_QUEUE_UAPSD)
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
else
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
TXQ_FLAG_TXDESCINT_ENABLE;
qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: hal qnum %u out of range, max %u!\n",
__func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
ath9k_hw_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
struct ath_txq *txq = &sc->sc_txq[qnum];
txq->axq_qnum = qnum;
txq->axq_link = NULL;
INIT_LIST_HEAD(&txq->axq_q);
INIT_LIST_HEAD(&txq->axq_acq);
spin_lock_init(&txq->axq_lock);
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_totalqueued = 0;
txq->axq_linkbuf = NULL;
sc->sc_txqsetup |= 1<<qnum;
}
return &sc->sc_txq[qnum];
}
/* Reclaim resources for a setup queue */
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
int ath_tx_setup(struct ath_softc *sc, int haltype)
{
struct ath_txq *txq;
if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: HAL AC %u out of range, max %zu!\n",
__func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
return 0;
}
txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
sc->sc_haltype2q[haltype] = txq->axq_qnum;
return 1;
} else
return 0;
}
int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
{
int qnum;
switch (qtype) {
case ATH9K_TX_QUEUE_DATA:
if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: HAL AC %u out of range, max %zu!\n",
__func__,
haltype, ARRAY_SIZE(sc->sc_haltype2q));
return -1;
}
qnum = sc->sc_haltype2q[haltype];
break;
case ATH9K_TX_QUEUE_BEACON:
qnum = sc->sc_bhalq;
break;
case ATH9K_TX_QUEUE_CAB:
qnum = sc->sc_cabq->axq_qnum;
break;
default:
qnum = -1;
}
return qnum;
}
/* Update parameters for a transmit queue */
int ath_txq_update(struct ath_softc *sc, int qnum,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal *ah = sc->sc_ah;
int error = 0;
struct ath9k_tx_queue_info qi;
if (qnum == sc->sc_bhalq) {
/*
* XXX: for beacon queue, we just save the parameter.
* It will be picked up by ath_beaconq_config when
* it's necessary.
*/
sc->sc_beacon_qi = *qinfo;
return 0;
}
ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
ath9k_hw_get_txq_props(ah, qnum, &qi);
qi.tqi_aifs = qinfo->tqi_aifs;
qi.tqi_cwmin = qinfo->tqi_cwmin;
qi.tqi_cwmax = qinfo->tqi_cwmax;
qi.tqi_burstTime = qinfo->tqi_burstTime;
qi.tqi_readyTime = qinfo->tqi_readyTime;
if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
DPRINTF(sc, ATH_DBG_FATAL,
"%s: unable to update hardware queue %u!\n",
__func__, qnum);
error = -EIO;
} else {
ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
}
return error;
}
int ath_cabq_update(struct ath_softc *sc)
{
struct ath9k_tx_queue_info qi;
int qnum = sc->sc_cabq->axq_qnum;
struct ath_beacon_config conf;
ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
/*
* Ensure the readytime % is within the bounds.
*/
if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
qi.tqi_readyTime =
(conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
ath_txq_update(sc, qnum, &qi);
return 0;
}
int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
{
struct ath_tx_control txctl;
int error = 0;
memset(&txctl, 0, sizeof(struct ath_tx_control));
error = ath_tx_prepare(sc, skb, &txctl);
if (error == 0)
/*
* Start DMA mapping.
* ath_tx_start_dma() will be called either synchronously
* or asynchrounsly once DMA is complete.
*/
xmit_map_sg(sc, skb, &txctl);
/* failed packets will be dropped by the caller */
return error;
}
/* Deferred processing of transmit interrupt */
void ath_tx_tasklet(struct ath_softc *sc)
{
int i;
u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
/*
* Process each active queue.
*/
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
ath_tx_processq(sc, &sc->sc_txq[i]);
}
}
void ath_tx_draintxq(struct ath_softc *sc,
struct ath_txq *txq, bool retry_tx)
{
struct ath_buf *bf, *lastbf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_tasklet
*/
for (;;) {
spin_lock_bh(&txq->axq_lock);
if (list_empty(&txq->axq_q)) {
txq->axq_link = NULL;
txq->axq_linkbuf = NULL;
spin_unlock_bh(&txq->axq_lock);
break;
}
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
list_del(&bf->list);
spin_unlock_bh(&txq->axq_lock);
spin_lock_bh(&sc->sc_txbuflock);
list_add_tail(&bf->list, &sc->sc_txbuf);
spin_unlock_bh(&sc->sc_txbuflock);
continue;
}
lastbf = bf->bf_lastbf;
if (!retry_tx)
lastbf->bf_desc->ds_txstat.ts_flags =
ATH9K_TX_SW_ABORTED;
/* remove ath_buf's of the same mpdu from txq */
list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
txq->axq_depth--;
spin_unlock_bh(&txq->axq_lock);
if (bf_isampdu(bf))
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
else
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
}
/* flush any pending frames if aggregation is enabled */
if (sc->sc_flags & SC_OP_TXAGGR) {
if (!retry_tx) {
spin_lock_bh(&txq->axq_lock);
ath_txq_drain_pending_buffers(sc, txq);
spin_unlock_bh(&txq->axq_lock);
}
}
}
/* Drain the transmit queues and reclaim resources */
void ath_draintxq(struct ath_softc *sc, bool retry_tx)
{
/* stop beacon queue. The beacon will be freed when
* we go to INIT state */
if (!(sc->sc_flags & SC_OP_INVALID)) {
(void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
}
ath_drain_txdataq(sc, retry_tx);
}
u32 ath_txq_depth(struct ath_softc *sc, int qnum)
{
return sc->sc_txq[qnum].axq_depth;
}
u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
{
return sc->sc_txq[qnum].axq_aggr_depth;
}
/* Check if an ADDBA is required. A valid node must be passed. */
enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
struct ath_node *an,
u8 tidno)
{
struct ath_atx_tid *txtid;
if (!(sc->sc_flags & SC_OP_TXAGGR))
return AGGR_NOT_REQUIRED;
/* ADDBA exchange must be completed before sending aggregates */
txtid = ATH_AN_2_TID(an, tidno);
if (txtid->addba_exchangecomplete)
return AGGR_EXCHANGE_DONE;
if (txtid->cleanup_inprogress)
return AGGR_CLEANUP_PROGRESS;
if (txtid->addba_exchangeinprogress)
return AGGR_EXCHANGE_PROGRESS;
if (!txtid->addba_exchangecomplete) {
if (!txtid->addba_exchangeinprogress &&
(txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
txtid->addba_exchangeattempts++;
return AGGR_REQUIRED;
}
}
return AGGR_NOT_REQUIRED;
}
/* Start TX aggregation */
int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_atx_tid *txtid;
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR) {
txtid = ATH_AN_2_TID(an, tid);
txtid->addba_exchangeinprogress = 1;
ath_tx_pause_tid(sc, txtid);
}
return 0;
}
/* Stop tx aggregation */
int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
ath_tx_aggr_teardown(sc, an, tid);
return 0;
}
/*
* Performs transmit side cleanup when TID changes from aggregated to
* unaggregated.
* - Pause the TID and mark cleanup in progress
* - Discard all retry frames from the s/w queue.
*/
void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
{
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
if (txtid->cleanup_inprogress) /* cleanup is in progress */
return;
if (!txtid->addba_exchangecomplete) {
txtid->addba_exchangeattempts = 0;
return;
}
/* TID must be paused first */
ath_tx_pause_tid(sc, txtid);
/* drop all software retried frames and mark this TID */
spin_lock_bh(&txq->axq_lock);
while (!list_empty(&txtid->buf_q)) {
bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
if (!bf_isretried(bf)) {
/*
* NB: it's based on the assumption that
* software retried frame will always stay
* at the head of software queue.
*/
break;
}
list_cut_position(&bf_head,
&txtid->buf_q, &bf->bf_lastfrm->list);
ath_tx_update_baw(sc, txtid, bf->bf_seqno);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
}
if (txtid->baw_head != txtid->baw_tail) {
spin_unlock_bh(&txq->axq_lock);
txtid->cleanup_inprogress = true;
} else {
txtid->addba_exchangecomplete = 0;
txtid->addba_exchangeattempts = 0;
spin_unlock_bh(&txq->axq_lock);
ath_tx_flush_tid(sc, txtid);
}
}
/*
* Tx scheduling logic
* NB: must be called with txq lock held
*/
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_atx_ac *ac;
struct ath_atx_tid *tid;
/* nothing to schedule */
if (list_empty(&txq->axq_acq))
return;
/*
* get the first node/ac pair on the queue
*/
ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
list_del(&ac->list);
ac->sched = false;
/*
* process a single tid per destination
*/
do {
/* nothing to schedule */
if (list_empty(&ac->tid_q))
return;
tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
list_del(&tid->list);
tid->sched = false;
if (tid->paused) /* check next tid to keep h/w busy */
continue;
if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
((txq->axq_depth % 2) == 0)) {
ath_tx_sched_aggr(sc, txq, tid);
}
/*
* add tid to round-robin queue if more frames
* are pending for the tid
*/
if (!list_empty(&tid->buf_q))
ath_tx_queue_tid(txq, tid);
/* only schedule one TID at a time */
break;
} while (!list_empty(&ac->tid_q));
/*
* schedule AC if more TIDs need processing
*/
if (!list_empty(&ac->tid_q)) {
/*
* add dest ac to txq if not already added
*/
if (!ac->sched) {
ac->sched = true;
list_add_tail(&ac->list, &txq->axq_acq);
}
}
}
/* Initialize per-node transmit state */
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
{
if (sc->sc_flags & SC_OP_TXAGGR) {
struct ath_atx_tid *tid;
struct ath_atx_ac *ac;
int tidno, acno;
/*
* Init per tid tx state
*/
for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
tidno < WME_NUM_TID;
tidno++, tid++) {
tid->an = an;
tid->tidno = tidno;
tid->seq_start = tid->seq_next = 0;
tid->baw_size = WME_MAX_BA;
tid->baw_head = tid->baw_tail = 0;
tid->sched = false;
tid->paused = false;
tid->cleanup_inprogress = false;
INIT_LIST_HEAD(&tid->buf_q);
acno = TID_TO_WME_AC(tidno);
tid->ac = &an->an_aggr.tx.ac[acno];
/* ADDBA state */
tid->addba_exchangecomplete = 0;
tid->addba_exchangeinprogress = 0;
tid->addba_exchangeattempts = 0;
}
/*
* Init per ac tx state
*/
for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
acno < WME_NUM_AC; acno++, ac++) {
ac->sched = false;
INIT_LIST_HEAD(&ac->tid_q);
switch (acno) {
case WME_AC_BE:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
break;
case WME_AC_BK:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
break;
case WME_AC_VI:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
break;
case WME_AC_VO:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
break;
}
}
}
}
/* Cleanupthe pending buffers for the node. */
void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
int i;
struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp;
struct ath_txq *txq;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
txq = &sc->sc_txq[i];
spin_lock(&txq->axq_lock);
list_for_each_entry_safe(ac,
ac_tmp, &txq->axq_acq, list) {
tid = list_first_entry(&ac->tid_q,
struct ath_atx_tid, list);
if (tid && tid->an != an)
continue;
list_del(&ac->list);
ac->sched = false;
list_for_each_entry_safe(tid,
tid_tmp, &ac->tid_q, list) {
list_del(&tid->list);
tid->sched = false;
ath_tid_drain(sc, txq, tid);
tid->addba_exchangecomplete = 0;
tid->addba_exchangeattempts = 0;
tid->cleanup_inprogress = false;
}
}
spin_unlock(&txq->axq_lock);
}
}
}
/* Cleanup per node transmit state */
void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an)
{
if (sc->sc_flags & SC_OP_TXAGGR) {
struct ath_atx_tid *tid;
int tidno, i;
/* Init per tid rx state */
for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
tidno < WME_NUM_TID;
tidno++, tid++) {
for (i = 0; i < ATH_TID_MAX_BUFS; i++)
ASSERT(tid->tx_buf[i] == NULL);
}
}
}
void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
{
int hdrlen, padsize;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath_tx_control txctl;
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->seq_no);
}
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize) {
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ padding "
"failed\n", __func__);
dev_kfree_skb_any(skb);
return;
}
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
DPRINTF(sc, ATH_DBG_XMIT, "%s: transmitting CABQ packet, skb: %p\n",
__func__,
skb);
memset(&txctl, 0, sizeof(struct ath_tx_control));
txctl.flags = ATH9K_TXDESC_CAB;
if (ath_tx_prepare(sc, skb, &txctl) == 0) {
/*
* Start DMA mapping.
* ath_tx_start_dma() will be called either synchronously
* or asynchrounsly once DMA is complete.
*/
xmit_map_sg(sc, skb, &txctl);
} else {
DPRINTF(sc, ATH_DBG_XMIT, "%s: TX CABQ failed\n", __func__);
dev_kfree_skb_any(skb);
}
}