/*
* Copyright (c) 2010-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/export.h>
#include "hw.h"
#include "ar9003_phy.h"
void ar9003_paprd_enable(struct ath_hw *ah, bool val)
{
struct ath9k_channel *chan = ah->curchan;
struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
/*
* 3 bits for modalHeader5G.papdRateMaskHt20
* is used for sub-band disabling of PAPRD.
* 5G band is divided into 3 sub-bands -- upper,
* middle, lower.
* if bit 30 of modalHeader5G.papdRateMaskHt20 is set
* -- disable PAPRD for upper band 5GHz
* if bit 29 of modalHeader5G.papdRateMaskHt20 is set
* -- disable PAPRD for middle band 5GHz
* if bit 28 of modalHeader5G.papdRateMaskHt20 is set
* -- disable PAPRD for lower band 5GHz
*/
if (IS_CHAN_5GHZ(chan)) {
if (chan->channel >= UPPER_5G_SUB_BAND_START) {
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
& BIT(30))
val = false;
} else if (chan->channel >= MID_5G_SUB_BAND_START) {
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
& BIT(29))
val = false;
} else {
if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
& BIT(28))
val = false;
}
}
if (val) {
ah->paprd_table_write_done = true;
ath9k_hw_apply_txpower(ah, chan);
}
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
if (ah->caps.tx_chainmask & BIT(2))
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
}
EXPORT_SYMBOL(ar9003_paprd_enable);
static int ar9003_get_training_power_2g(struct ath_hw *ah)
{
struct ath9k_channel *chan = ah->curchan;
unsigned int power, scale, delta;
scale = ar9003_get_paprd_scale_factor(ah, chan);
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
delta = abs((int) ah->paprd_target_power - (int) power);
if (delta > scale)
return -1;
if (delta < 4)
power -= 4 - delta;
return power;
}
static int ar9003_get_training_power_5g(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
struct ath9k_channel *chan = ah->curchan;
unsigned int power, scale, delta;
scale = ar9003_get_paprd_scale_factor(ah, chan);
if (IS_CHAN_HT40(chan))
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
else
power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
power += scale;
delta = abs((int) ah->paprd_target_power - (int) power);
if (delta > scale)
return -1;
switch (get_streams(ah->txchainmask)) {
case 1:
delta = 6;
break;
case 2:
delta = 4;
break;
case 3:
delta = 2;
break;
default:
delta = 0;
ath_dbg(common, CALIBRATE, "Invalid tx-chainmask: %u\n",
ah->txchainmask);
}
power += delta;
return power;
}
static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
{
struct ath_common *common = ath9k_hw_common(ah);
static const u32 ctrl0[3] = {
AR_PHY_PAPRD_CTRL0_B0,
AR_PHY_PAPRD_CTRL0_B1,
AR_PHY_PAPRD_CTRL0_B2
};
static const u32 ctrl1[3] = {
AR_PHY_PAPRD_CTRL1_B0,
AR_PHY_PAPRD_CTRL1_B1,
AR_PHY_PAPRD_CTRL1_B2
};
int training_power;
int i, val;
if (IS_CHAN_2GHZ(ah->curchan))
training_power = ar9003_get_training_power_2g(ah);
else
training_power = ar9003_get_training_power_5g(ah);
ath_dbg(common, CALIBRATE, "Training power: %d, Target power: %d\n",
training_power, ah->paprd_target_power);
if (training_power < 0) {
ath_dbg(common, CALIBRATE,
"PAPRD target power delta out of range\n");
return -ERANGE;
}
ah->paprd_training_power = training_power;
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
ah->paprd_ratemask);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
ah->paprd_ratemask);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
ah->paprd_ratemask_ht40);
for (i = 0; i < ah->caps.max_txchains; i++) {
REG_RMW_FIELD(ah, ctrl0[i],
AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
REG_RMW_FIELD(ah, ctrl1[i],
AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
REG_RMW_FIELD(ah, ctrl0[i],
AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
}
ar9003_paprd_enable(ah, false);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
val = AR_SREV_9462(ah) ? 0x91 : 147;
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
if (AR_SREV_9485(ah) || AR_SREV_9462(ah))
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
-3);
else
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
-6);
val = AR_SREV_9462(ah) ? -10 : -15;
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
val);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
100);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
return 0;
}
static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
{
u32 *entry = ah->paprd_gain_table_entries;
u8 *index = ah->paprd_gain_table_index;
u32 reg = AR_PHY_TXGAIN_TABLE;
int i;
memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
memset(index, 0, sizeof(ah->paprd_gain_table_index));
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
entry[i] = REG_READ(ah, reg);
index[i] = (entry[i] >> 24) & 0xff;
reg += 4;
}
}
static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
int target_power)
{
int olpc_gain_delta = 0, cl_gain_mod;
int alpha_therm, alpha_volt;
int therm_cal_value, volt_cal_value;
int therm_value, volt_value;
int thermal_gain_corr, voltage_gain_corr;
int desired_scale, desired_gain = 0;
u32 reg_olpc = 0, reg_cl_gain = 0;
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_THERM);
alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
AR_PHY_TPC_19_ALPHA_VOLT);
therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
AR_PHY_TPC_18_THERM_CAL_VALUE);
volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
AR_PHY_TPC_18_VOLT_CAL_VALUE);
therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
switch (chain) {
case 0:
reg_olpc = AR_PHY_TPC_11_B0;
reg_cl_gain = AR_PHY_CL_TAB_0;
break;
case 1:
reg_olpc = AR_PHY_TPC_11_B1;
reg_cl_gain = AR_PHY_CL_TAB_1;
break;
case 2:
reg_olpc = AR_PHY_TPC_11_B2;
reg_cl_gain = AR_PHY_CL_TAB_2;
break;
default:
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
"Invalid chainmask: %d\n", chain);
break;
}
olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
AR_PHY_TPC_11_OLPC_GAIN_DELTA);
cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
AR_PHY_CL_TAB_CL_GAIN_MOD);
if (olpc_gain_delta >= 128)
olpc_gain_delta = olpc_gain_delta - 256;
thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
(256 / 2)) / 256;
voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
(128 / 2)) / 128;
desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
voltage_gain_corr + desired_scale + cl_gain_mod;
return desired_gain;
}
static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
{
int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
u32 *gain_table_entries = ah->paprd_gain_table_entries;
selected_gain_entry = gain_table_entries[gain_index];
txbb1dbgain = selected_gain_entry & 0x7;
txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
txmxrgain = (selected_gain_entry >> 5) & 0xf;
padrvgnA = (selected_gain_entry >> 9) & 0xf;
padrvgnB = (selected_gain_entry >> 13) & 0xf;
padrvgnC = (selected_gain_entry >> 17) & 0xf;
padrvgnD = (selected_gain_entry >> 21) & 0x3;
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
}
static inline int find_expn(int num)
{
return fls(num) - 1;
}
static inline int find_proper_scale(int expn, int N)
{
return (expn > N) ? expn - 10 : 0;
}
#define NUM_BIN 23
static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
{
unsigned int thresh_accum_cnt;
int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
int PA_in[NUM_BIN + 1];
int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
unsigned int B1_abs_max, B2_abs_max;
int max_index, scale_factor;
int y_est[NUM_BIN + 1];
int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
unsigned int x_tilde_abs;
int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
int y5, y3, tmp;
int theta_low_bin = 0;
int i;
/* disregard any bin that contains <= 16 samples */
thresh_accum_cnt = 16;
scale_factor = 5;
max_index = 0;
memset(theta, 0, sizeof(theta));
memset(x_est, 0, sizeof(x_est));
memset(Y, 0, sizeof(Y));
memset(y_est, 0, sizeof(y_est));
memset(x_tilde, 0, sizeof(x_tilde));
for (i = 0; i < NUM_BIN; i++) {
s32 accum_cnt, accum_tx, accum_rx, accum_ang;
/* number of samples */
accum_cnt = data_L[i] & 0xffff;
if (accum_cnt <= thresh_accum_cnt)
continue;
/* sum(tx amplitude) */
accum_tx = ((data_L[i] >> 16) & 0xffff) |
((data_U[i] & 0x7ff) << 16);
/* sum(rx amplitude distance to lower bin edge) */
accum_rx = ((data_U[i] >> 11) & 0x1f) |
((data_L[i + 23] & 0xffff) << 5);
/* sum(angles) */
accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
((data_U[i + 23] & 0x7ff) << 16);
accum_tx <<= scale_factor;
accum_rx <<= scale_factor;
x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
scale_factor;
Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
scale_factor) +
(1 << scale_factor) * max_index + 16;
if (accum_ang >= (1 << 26))
accum_ang -= 1 << 27;
theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
accum_cnt;
max_index++;
}
/*
* Find average theta of first 5 bin and all of those to same value.
* Curve is linear at that range.
*/
for (i = 1; i < 6; i++)
theta_low_bin += theta[i];
theta_low_bin = theta_low_bin / 5;
for (i = 1; i < 6; i++)
theta[i] = theta_low_bin;
/* Set values at origin */
theta[0] = theta_low_bin;
for (i = 0; i <= max_index; i++)
theta[i] -= theta_low_bin;
x_est[0] = 0;
Y[0] = 0;
scale_factor = 8;
/* low signal gain */
if (x_est[6] == x_est[3])
return false;
G_fxp =
(((Y[6] - Y[3]) * 1 << scale_factor) +
(x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
/* prevent division by zero */
if (G_fxp == 0)
return false;
Y_intercept =
(G_fxp * (x_est[0] - x_est[3]) +
(1 << scale_factor)) / (1 << scale_factor) + Y[3];
for (i = 0; i <= max_index; i++)
y_est[i] = Y[i] - Y_intercept;
for (i = 0; i <= 3; i++) {
y_est[i] = i * 32;
x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
}
if (y_est[max_index] == 0)
return false;
x_est_fxp1_nonlin =
x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
G_fxp) / G_fxp;
order_x_by_y =
(x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
if (order_x_by_y == 0)
M = 10;
else if (order_x_by_y == 1)
M = 9;
else
M = 8;
I = (max_index > 15) ? 7 : max_index >> 1;
L = max_index - I;
scale_factor = 8;
sum_y_sqr = 0;
sum_y_quad = 0;
x_tilde_abs = 0;
for (i = 0; i <= L; i++) {
unsigned int y_sqr;
unsigned int y_quad;
unsigned int tmp_abs;
/* prevent division by zero */
if (y_est[i + I] == 0)
return false;
x_est_fxp1_nonlin =
x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
G_fxp) / G_fxp;
x_tilde[i] =
(x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
I];
x_tilde[i] =
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
x_tilde[i] =
(x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
y_sqr =
(y_est[i + I] * y_est[i + I] +
(scale_factor * scale_factor)) / (scale_factor *
scale_factor);
tmp_abs = abs(x_tilde[i]);
if (tmp_abs > x_tilde_abs)
x_tilde_abs = tmp_abs;
y_quad = y_sqr * y_sqr;
sum_y_sqr = sum_y_sqr + y_sqr;
sum_y_quad = sum_y_quad + y_quad;
B1_tmp[i] = y_sqr * (L + 1);
B2_tmp[i] = y_sqr;
}
B1_abs_max = 0;
B2_abs_max = 0;
for (i = 0; i <= L; i++) {
int abs_val;
B1_tmp[i] -= sum_y_sqr;
B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
abs_val = abs(B1_tmp[i]);
if (abs_val > B1_abs_max)
B1_abs_max = abs_val;
abs_val = abs(B2_tmp[i]);
if (abs_val > B2_abs_max)
B2_abs_max = abs_val;
}
Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
beta_raw = 0;
alpha_raw = 0;
for (i = 0; i <= L; i++) {
x_tilde[i] = x_tilde[i] / (1 << Q_x);
B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
}
scale_B =
((sum_y_quad / scale_factor) * (L + 1) -
(sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
scale_B = scale_B / (1 << Q_scale_B);
if (scale_B == 0)
return false;
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
beta_raw = beta_raw / (1 << Q_beta);
alpha_raw = alpha_raw / (1 << Q_alpha);
alpha = (alpha_raw << 10) / scale_B;
beta = (beta_raw << 10) / scale_B;
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
order1_5x = order_1 / 5;
order2_3x = order_2 / 3;
order1_5x_rem = order_1 - 5 * order1_5x;
order2_3x_rem = order_2 - 3 * order2_3x;
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
tmp = i * 32;
y5 = ((beta * tmp) >> 6) >> order1_5x;
y5 = (y5 * tmp) >> order1_5x;
y5 = (y5 * tmp) >> order1_5x;
y5 = (y5 * tmp) >> order1_5x;
y5 = (y5 * tmp) >> order1_5x;
y5 = y5 >> order1_5x_rem;
y3 = (alpha * tmp) >> order2_3x;
y3 = (y3 * tmp) >> order2_3x;
y3 = (y3 * tmp) >> order2_3x;
y3 = y3 >> order2_3x_rem;
PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
if (i >= 2) {
tmp = PA_in[i] - PA_in[i - 1];
if (tmp < 0)
PA_in[i] =
PA_in[i - 1] + (PA_in[i - 1] -
PA_in[i - 2]);
}
PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
}
beta_raw = 0;
alpha_raw = 0;
for (i = 0; i <= L; i++) {
int theta_tilde =
((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
theta_tilde =
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
theta_tilde =
((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
}
Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
beta_raw = beta_raw / (1 << Q_beta);
alpha_raw = alpha_raw / (1 << Q_alpha);
alpha = (alpha_raw << 10) / scale_B;
beta = (beta_raw << 10) / scale_B;
order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
order1_5x = order_1 / 5;
order2_3x = order_2 / 3;
order1_5x_rem = order_1 - 5 * order1_5x;
order2_3x_rem = order_2 - 3 * order2_3x;
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
int PA_angle;
/* pa_table[4] is calculated from PA_angle for i=5 */
if (i == 4)
continue;
tmp = i * 32;
if (beta > 0)
y5 = (((beta * tmp - 64) >> 6) -
(1 << order1_5x)) / (1 << order1_5x);
else
y5 = ((((beta * tmp - 64) >> 6) +
(1 << order1_5x)) / (1 << order1_5x));
y5 = (y5 * tmp) / (1 << order1_5x);
y5 = (y5 * tmp) / (1 << order1_5x);
y5 = (y5 * tmp) / (1 << order1_5x);
y5 = (y5 * tmp) / (1 << order1_5x);
y5 = y5 / (1 << order1_5x_rem);
if (beta > 0)
y3 = (alpha * tmp -
(1 << order2_3x)) / (1 << order2_3x);
else
y3 = (alpha * tmp +
(1 << order2_3x)) / (1 << order2_3x);
y3 = (y3 * tmp) / (1 << order2_3x);
y3 = (y3 * tmp) / (1 << order2_3x);
y3 = y3 / (1 << order2_3x_rem);
if (i < 4) {
PA_angle = 0;
} else {
PA_angle = y5 + y3;
if (PA_angle < -150)
PA_angle = -150;
else if (PA_angle > 150)
PA_angle = 150;
}
pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
if (i == 5) {
PA_angle = (PA_angle + 2) >> 1;
pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
(PA_angle & 0x7ff);
}
}
*gain = G_fxp;
return true;
}
void ar9003_paprd_populate_single_table(struct ath_hw *ah,
struct ath9k_hw_cal_data *caldata,
int chain)
{
u32 *paprd_table_val = caldata->pa_table[chain];
u32 small_signal_gain = caldata->small_signal_gain[chain];
u32 training_power = ah->paprd_training_power;
u32 reg = 0;
int i;
if (chain == 0)
reg = AR_PHY_PAPRD_MEM_TAB_B0;
else if (chain == 1)
reg = AR_PHY_PAPRD_MEM_TAB_B1;
else if (chain == 2)
reg = AR_PHY_PAPRD_MEM_TAB_B2;
for (i = 0; i < PAPRD_TABLE_SZ; i++) {
REG_WRITE(ah, reg, paprd_table_val[i]);
reg = reg + 4;
}
if (chain == 0)
reg = AR_PHY_PA_GAIN123_B0;
else if (chain == 1)
reg = AR_PHY_PA_GAIN123_B1;
else
reg = AR_PHY_PA_GAIN123_B2;
REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
training_power);
if (ah->caps.tx_chainmask & BIT(1))
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
training_power);
if (ah->caps.tx_chainmask & BIT(2))
/* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
training_power);
}
EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
{
unsigned int i, desired_gain, gain_index;
unsigned int train_power = ah->paprd_training_power;
desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
gain_index = 0;
for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
if (ah->paprd_gain_table_index[i] >= desired_gain)
break;
gain_index++;
}
ar9003_tx_force_gain(ah, gain_index);
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
return 0;
}
EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
int ar9003_paprd_create_curve(struct ath_hw *ah,
struct ath9k_hw_cal_data *caldata, int chain)
{
u16 *small_signal_gain = &caldata->small_signal_gain[chain];
u32 *pa_table = caldata->pa_table[chain];
u32 *data_L, *data_U;
int i, status = 0;
u32 *buf;
u32 reg;
memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
if (!buf)
return -ENOMEM;
data_L = &buf[0];
data_U = &buf[48];
REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
reg = AR_PHY_CHAN_INFO_TAB_0;
for (i = 0; i < 48; i++)
data_L[i] = REG_READ(ah, reg + (i << 2));
REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
for (i = 0; i < 48; i++)
data_U[i] = REG_READ(ah, reg + (i << 2));
if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
status = -2;
REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
kfree(buf);
return status;
}
EXPORT_SYMBOL(ar9003_paprd_create_curve);
int ar9003_paprd_init_table(struct ath_hw *ah)
{
int ret;
ret = ar9003_paprd_setup_single_table(ah);
if (ret < 0)
return ret;
ar9003_paprd_get_gain_table(ah);
return 0;
}
EXPORT_SYMBOL(ar9003_paprd_init_table);
bool ar9003_paprd_is_done(struct ath_hw *ah)
{
int paprd_done, agc2_pwr;
paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
if (paprd_done == 0x1) {
agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
ath_dbg(ath9k_hw_common(ah), CALIBRATE,
"AGC2_PWR = 0x%x training done = 0x%x\n",
agc2_pwr, paprd_done);
/*
* agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
* when the training is completely done, otherwise retraining is
* done to make sure the value is in ideal range
*/
if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
paprd_done = 0;
}
return !!paprd_done;
}
EXPORT_SYMBOL(ar9003_paprd_is_done);