/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#include "cfg80211.h"
#include "debug.h"
#include "hif-ops.h"
#define RATETAB_ENT(_rate, _rateid, _flags) { \
.bitrate = (_rate), \
.flags = (_flags), \
.hw_value = (_rateid), \
}
#define CHAN2G(_channel, _freq, _flags) { \
.band = IEEE80211_BAND_2GHZ, \
.hw_value = (_channel), \
.center_freq = (_freq), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
#define CHAN5G(_channel, _flags) { \
.band = IEEE80211_BAND_5GHZ, \
.hw_value = (_channel), \
.center_freq = 5000 + (5 * (_channel)), \
.flags = (_flags), \
.max_antenna_gain = 0, \
.max_power = 30, \
}
static struct ieee80211_rate ath6kl_rates[] = {
RATETAB_ENT(10, 0x1, 0),
RATETAB_ENT(20, 0x2, 0),
RATETAB_ENT(55, 0x4, 0),
RATETAB_ENT(110, 0x8, 0),
RATETAB_ENT(60, 0x10, 0),
RATETAB_ENT(90, 0x20, 0),
RATETAB_ENT(120, 0x40, 0),
RATETAB_ENT(180, 0x80, 0),
RATETAB_ENT(240, 0x100, 0),
RATETAB_ENT(360, 0x200, 0),
RATETAB_ENT(480, 0x400, 0),
RATETAB_ENT(540, 0x800, 0),
};
#define ath6kl_a_rates (ath6kl_rates + 4)
#define ath6kl_a_rates_size 8
#define ath6kl_g_rates (ath6kl_rates + 0)
#define ath6kl_g_rates_size 12
static struct ieee80211_channel ath6kl_2ghz_channels[] = {
CHAN2G(1, 2412, 0),
CHAN2G(2, 2417, 0),
CHAN2G(3, 2422, 0),
CHAN2G(4, 2427, 0),
CHAN2G(5, 2432, 0),
CHAN2G(6, 2437, 0),
CHAN2G(7, 2442, 0),
CHAN2G(8, 2447, 0),
CHAN2G(9, 2452, 0),
CHAN2G(10, 2457, 0),
CHAN2G(11, 2462, 0),
CHAN2G(12, 2467, 0),
CHAN2G(13, 2472, 0),
CHAN2G(14, 2484, 0),
};
static struct ieee80211_channel ath6kl_5ghz_a_channels[] = {
CHAN5G(34, 0), CHAN5G(36, 0),
CHAN5G(38, 0), CHAN5G(40, 0),
CHAN5G(42, 0), CHAN5G(44, 0),
CHAN5G(46, 0), CHAN5G(48, 0),
CHAN5G(52, 0), CHAN5G(56, 0),
CHAN5G(60, 0), CHAN5G(64, 0),
CHAN5G(100, 0), CHAN5G(104, 0),
CHAN5G(108, 0), CHAN5G(112, 0),
CHAN5G(116, 0), CHAN5G(120, 0),
CHAN5G(124, 0), CHAN5G(128, 0),
CHAN5G(132, 0), CHAN5G(136, 0),
CHAN5G(140, 0), CHAN5G(149, 0),
CHAN5G(153, 0), CHAN5G(157, 0),
CHAN5G(161, 0), CHAN5G(165, 0),
CHAN5G(184, 0), CHAN5G(188, 0),
CHAN5G(192, 0), CHAN5G(196, 0),
CHAN5G(200, 0), CHAN5G(204, 0),
CHAN5G(208, 0), CHAN5G(212, 0),
CHAN5G(216, 0),
};
static struct ieee80211_supported_band ath6kl_band_2ghz = {
.n_channels = ARRAY_SIZE(ath6kl_2ghz_channels),
.channels = ath6kl_2ghz_channels,
.n_bitrates = ath6kl_g_rates_size,
.bitrates = ath6kl_g_rates,
};
static struct ieee80211_supported_band ath6kl_band_5ghz = {
.n_channels = ARRAY_SIZE(ath6kl_5ghz_a_channels),
.channels = ath6kl_5ghz_a_channels,
.n_bitrates = ath6kl_a_rates_size,
.bitrates = ath6kl_a_rates,
};
static int ath6kl_set_wpa_version(struct ath6kl *ar,
enum nl80211_wpa_versions wpa_version)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: %u\n", __func__, wpa_version);
if (!wpa_version) {
ar->auth_mode = NONE_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_2) {
ar->auth_mode = WPA2_AUTH;
} else if (wpa_version & NL80211_WPA_VERSION_1) {
ar->auth_mode = WPA_AUTH;
} else {
ath6kl_err("%s: %u not supported\n", __func__, wpa_version);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_auth_type(struct ath6kl *ar,
enum nl80211_auth_type auth_type)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, auth_type);
switch (auth_type) {
case NL80211_AUTHTYPE_OPEN_SYSTEM:
ar->dot11_auth_mode = OPEN_AUTH;
break;
case NL80211_AUTHTYPE_SHARED_KEY:
ar->dot11_auth_mode = SHARED_AUTH;
break;
case NL80211_AUTHTYPE_NETWORK_EAP:
ar->dot11_auth_mode = LEAP_AUTH;
break;
case NL80211_AUTHTYPE_AUTOMATIC:
ar->dot11_auth_mode = OPEN_AUTH;
ar->auto_auth_stage = AUTH_OPEN_IN_PROGRESS;
break;
default:
ath6kl_err("%s: 0x%x not spported\n", __func__, auth_type);
return -ENOTSUPP;
}
return 0;
}
static int ath6kl_set_cipher(struct ath6kl *ar, u32 cipher, bool ucast)
{
u8 *ar_cipher = ucast ? &ar->prwise_crypto : &ar->grp_crypto;
u8 *ar_cipher_len = ucast ? &ar->prwise_crypto_len : &ar->grp_crpto_len;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: cipher 0x%x, ucast %u\n",
__func__, cipher, ucast);
switch (cipher) {
case 0:
/* our own hack to use value 0 as no crypto used */
*ar_cipher = NONE_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_WEP40:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 5;
break;
case WLAN_CIPHER_SUITE_WEP104:
*ar_cipher = WEP_CRYPT;
*ar_cipher_len = 13;
break;
case WLAN_CIPHER_SUITE_TKIP:
*ar_cipher = TKIP_CRYPT;
*ar_cipher_len = 0;
break;
case WLAN_CIPHER_SUITE_CCMP:
*ar_cipher = AES_CRYPT;
*ar_cipher_len = 0;
break;
default:
ath6kl_err("cipher 0x%x not supported\n", cipher);
return -ENOTSUPP;
}
return 0;
}
static void ath6kl_set_key_mgmt(struct ath6kl *ar, u32 key_mgmt)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: 0x%x\n", __func__, key_mgmt);
if (key_mgmt == WLAN_AKM_SUITE_PSK) {
if (ar->auth_mode == WPA_AUTH)
ar->auth_mode = WPA_PSK_AUTH;
else if (ar->auth_mode == WPA2_AUTH)
ar->auth_mode = WPA2_PSK_AUTH;
} else if (key_mgmt != WLAN_AKM_SUITE_8021X) {
ar->auth_mode = NONE_AUTH;
}
}
static bool ath6kl_cfg80211_ready(struct ath6kl *ar)
{
if (!test_bit(WMI_READY, &ar->flag)) {
ath6kl_err("wmi is not ready\n");
return false;
}
if (!test_bit(WLAN_ENABLED, &ar->flag)) {
ath6kl_err("wlan disabled\n");
return false;
}
return true;
}
static int ath6kl_cfg80211_connect(struct wiphy *wiphy, struct net_device *dev,
struct cfg80211_connect_params *sme)
{
struct ath6kl *ar = ath6kl_priv(dev);
int status;
ar->sme_state = SME_CONNECTING;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("destroy in progress\n");
return -EBUSY;
}
if (test_bit(SKIP_SCAN, &ar->flag) &&
((sme->channel && sme->channel->center_freq == 0) ||
(sme->bssid && is_zero_ether_addr(sme->bssid)))) {
ath6kl_err("SkipScan: channel or bssid invalid\n");
return -EINVAL;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
up(&ar->sem);
return -EBUSY;
}
if (ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)]) {
/*
* sleep until the command queue drains
*/
wait_event_interruptible_timeout(ar->event_wq,
ar->tx_pending[ath6kl_wmi_get_control_ep(ar->wmi)] == 0,
WMI_TIMEOUT);
if (signal_pending(current)) {
ath6kl_err("cmd queue drain timeout\n");
up(&ar->sem);
return -EINTR;
}
}
if (test_bit(CONNECTED, &ar->flag) &&
ar->ssid_len == sme->ssid_len &&
!memcmp(ar->ssid, sme->ssid, ar->ssid_len)) {
ar->reconnect_flag = true;
status = ath6kl_wmi_reconnect_cmd(ar->wmi, ar->req_bssid,
ar->ch_hint);
up(&ar->sem);
if (status) {
ath6kl_err("wmi_reconnect_cmd failed\n");
return -EIO;
}
return 0;
} else if (ar->ssid_len == sme->ssid_len &&
!memcmp(ar->ssid, sme->ssid, ar->ssid_len)) {
ath6kl_disconnect(ar);
}
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = sme->ssid_len;
memcpy(ar->ssid, sme->ssid, sme->ssid_len);
if (sme->channel)
ar->ch_hint = sme->channel->center_freq;
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
if (sme->bssid && !is_broadcast_ether_addr(sme->bssid))
memcpy(ar->req_bssid, sme->bssid, sizeof(ar->req_bssid));
ath6kl_set_wpa_version(ar, sme->crypto.wpa_versions);
status = ath6kl_set_auth_type(ar, sme->auth_type);
if (status) {
up(&ar->sem);
return status;
}
if (sme->crypto.n_ciphers_pairwise)
ath6kl_set_cipher(ar, sme->crypto.ciphers_pairwise[0], true);
else
ath6kl_set_cipher(ar, 0, true);
ath6kl_set_cipher(ar, sme->crypto.cipher_group, false);
if (sme->crypto.n_akm_suites)
ath6kl_set_key_mgmt(ar, sme->crypto.akm_suites[0]);
if ((sme->key_len) &&
(ar->auth_mode == NONE_AUTH) && (ar->prwise_crypto == WEP_CRYPT)) {
struct ath6kl_key *key = NULL;
if (sme->key_idx < WMI_MIN_KEY_INDEX ||
sme->key_idx > WMI_MAX_KEY_INDEX) {
ath6kl_err("key index %d out of bounds\n",
sme->key_idx);
up(&ar->sem);
return -ENOENT;
}
key = &ar->keys[sme->key_idx];
key->key_len = sme->key_len;
memcpy(key->key, sme->key, key->key_len);
key->cipher = ar->prwise_crypto;
ar->def_txkey_index = sme->key_idx;
ath6kl_wmi_addkey_cmd(ar->wmi, sme->key_idx,
ar->prwise_crypto,
GROUP_USAGE | TX_USAGE,
key->key_len,
NULL,
key->key, KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
}
if (!ar->usr_bss_filter) {
if (ath6kl_wmi_bssfilter_cmd(ar->wmi, ALL_BSS_FILTER, 0) != 0) {
ath6kl_err("couldn't set bss filtering\n");
up(&ar->sem);
return -EIO;
}
}
ar->nw_type = ar->next_mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto,
ar->prwise_crypto_len, ar->grp_crypto,
ar->grp_crpto_len, ar->ch_hint);
ar->reconnect_flag = 0;
status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type,
ar->dot11_auth_mode, ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto, ar->grp_crpto_len,
ar->ssid_len, ar->ssid,
ar->req_bssid, ar->ch_hint,
ar->connect_ctrl_flags);
up(&ar->sem);
if (status == -EINVAL) {
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
ath6kl_err("invalid request\n");
return -ENOENT;
} else if (status) {
ath6kl_err("ath6kl_wmi_connect_cmd failed\n");
return -EIO;
}
if ((!(ar->connect_ctrl_flags & CONNECT_DO_WPA_OFFLOAD)) &&
((ar->auth_mode == WPA_PSK_AUTH)
|| (ar->auth_mode == WPA2_PSK_AUTH))) {
mod_timer(&ar->disconnect_timer,
jiffies + msecs_to_jiffies(DISCON_TIMER_INTVAL));
}
ar->connect_ctrl_flags &= ~CONNECT_DO_WPA_OFFLOAD;
set_bit(CONNECT_PEND, &ar->flag);
return 0;
}
void ath6kl_cfg80211_connect_event(struct ath6kl *ar, u16 channel,
u8 *bssid, u16 listen_intvl,
u16 beacon_intvl,
enum network_type nw_type,
u8 beacon_ie_len, u8 assoc_req_len,
u8 assoc_resp_len, u8 *assoc_info)
{
u16 size = 0;
u16 capability = 0;
struct cfg80211_bss *bss = NULL;
struct ieee80211_mgmt *mgmt = NULL;
struct ieee80211_channel *ibss_ch = NULL;
s32 signal = 50 * 100;
u8 ie_buf_len = 0;
unsigned char ie_buf[256];
unsigned char *ptr_ie_buf = ie_buf;
unsigned char *ieeemgmtbuf = NULL;
u8 source_mac[ETH_ALEN];
/* capinfo + listen interval */
u8 assoc_req_ie_offset = sizeof(u16) + sizeof(u16);
/* capinfo + status code + associd */
u8 assoc_resp_ie_offset = sizeof(u16) + sizeof(u16) + sizeof(u16);
u8 *assoc_req_ie = assoc_info + beacon_ie_len + assoc_req_ie_offset;
u8 *assoc_resp_ie = assoc_info + beacon_ie_len + assoc_req_len +
assoc_resp_ie_offset;
assoc_req_len -= assoc_req_ie_offset;
assoc_resp_len -= assoc_resp_ie_offset;
ar->auto_auth_stage = AUTH_IDLE;
if (nw_type & ADHOC_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
}
if (nw_type & INFRA_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_STATION) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
/*
* Earlier we were updating the cfg about bss by making a beacon frame
* only if the entry for bss is not there. This can have some issue if
* ROAM event is generated and a heavy traffic is ongoing. The ROAM
* event is handled through a work queue and by the time it really gets
* handled, BSS would have been aged out. So it is better to update the
* cfg about BSS irrespective of its entry being present right now or
* not.
*/
if (nw_type & ADHOC_NETWORK) {
/* construct 802.11 mgmt beacon */
if (ptr_ie_buf) {
*ptr_ie_buf++ = WLAN_EID_SSID;
*ptr_ie_buf++ = ar->ssid_len;
memcpy(ptr_ie_buf, ar->ssid, ar->ssid_len);
ptr_ie_buf += ar->ssid_len;
*ptr_ie_buf++ = WLAN_EID_IBSS_PARAMS;
*ptr_ie_buf++ = 2; /* length */
*ptr_ie_buf++ = 0; /* ATIM window */
*ptr_ie_buf++ = 0; /* ATIM window */
/* TODO: update ibss params and include supported rates,
* DS param set, extened support rates, wmm. */
ie_buf_len = ptr_ie_buf - ie_buf;
}
capability |= WLAN_CAPABILITY_IBSS;
if (ar->prwise_crypto == WEP_CRYPT)
capability |= WLAN_CAPABILITY_PRIVACY;
memcpy(source_mac, ar->net_dev->dev_addr, ETH_ALEN);
ptr_ie_buf = ie_buf;
} else {
capability = *(u16 *) (&assoc_info[beacon_ie_len]);
memcpy(source_mac, bssid, ETH_ALEN);
ptr_ie_buf = assoc_req_ie;
ie_buf_len = assoc_req_len;
}
size = offsetof(struct ieee80211_mgmt, u)
+ sizeof(mgmt->u.beacon)
+ ie_buf_len;
ieeemgmtbuf = kzalloc(size, GFP_ATOMIC);
if (!ieeemgmtbuf) {
ath6kl_err("ieee mgmt buf alloc error\n");
return;
}
mgmt = (struct ieee80211_mgmt *)ieeemgmtbuf;
mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
IEEE80211_STYPE_BEACON);
memset(mgmt->da, 0xff, ETH_ALEN); /* broadcast addr */
memcpy(mgmt->sa, source_mac, ETH_ALEN);
memcpy(mgmt->bssid, bssid, ETH_ALEN);
mgmt->u.beacon.beacon_int = cpu_to_le16(beacon_intvl);
mgmt->u.beacon.capab_info = cpu_to_le16(capability);
memcpy(mgmt->u.beacon.variable, ptr_ie_buf, ie_buf_len);
ibss_ch = ieee80211_get_channel(ar->wdev->wiphy, (int)channel);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: inform bss with bssid %pM channel %d beacon_intvl %d capability 0x%x\n",
__func__, mgmt->bssid, ibss_ch->hw_value,
beacon_intvl, capability);
bss = cfg80211_inform_bss_frame(ar->wdev->wiphy,
ibss_ch, mgmt,
size, signal, GFP_KERNEL);
kfree(ieeemgmtbuf);
cfg80211_put_bss(bss);
if (nw_type & ADHOC_NETWORK) {
cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL);
return;
}
if (ar->sme_state == SME_CONNECTING) {
/* inform connect result to cfg80211 */
ar->sme_state = SME_CONNECTED;
cfg80211_connect_result(ar->net_dev, bssid,
assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len,
WLAN_STATUS_SUCCESS, GFP_KERNEL);
} else if (ar->sme_state == SME_CONNECTED) {
/* inform roam event to cfg80211 */
cfg80211_roamed(ar->net_dev, ibss_ch, bssid,
assoc_req_ie, assoc_req_len,
assoc_resp_ie, assoc_resp_len, GFP_KERNEL);
}
}
static int ath6kl_cfg80211_disconnect(struct wiphy *wiphy,
struct net_device *dev, u16 reason_code)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: reason=%u\n", __func__,
reason_code);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(DESTROY_IN_PROGRESS, &ar->flag)) {
ath6kl_err("busy, destroy in progress\n");
return -EBUSY;
}
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return -ERESTARTSYS;
}
ar->reconnect_flag = 0;
ath6kl_disconnect(ar);
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
if (!test_bit(SKIP_SCAN, &ar->flag))
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
up(&ar->sem);
return 0;
}
void ath6kl_cfg80211_disconnect_event(struct ath6kl *ar, u8 reason,
u8 *bssid, u8 assoc_resp_len,
u8 *assoc_info, u16 proto_reason)
{
struct ath6kl_key *key = NULL;
u16 status;
if (ar->scan_req) {
cfg80211_scan_done(ar->scan_req, true);
ar->scan_req = NULL;
}
if (ar->nw_type & ADHOC_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_ADHOC) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in ibss mode\n", __func__);
return;
}
memset(bssid, 0, ETH_ALEN);
cfg80211_ibss_joined(ar->net_dev, bssid, GFP_KERNEL);
return;
}
if (ar->nw_type & INFRA_NETWORK) {
if (ar->wdev->iftype != NL80211_IFTYPE_STATION) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: ath6k not in station mode\n", __func__);
return;
}
}
if (!test_bit(CONNECT_PEND, &ar->flag)) {
if (reason != DISCONNECT_CMD)
ath6kl_wmi_disconnect_cmd(ar->wmi);
return;
}
if (reason == NO_NETWORK_AVAIL) {
/* connect cmd failed */
ath6kl_wmi_disconnect_cmd(ar->wmi);
return;
}
if (reason != DISCONNECT_CMD)
return;
if (!ar->auto_auth_stage) {
clear_bit(CONNECT_PEND, &ar->flag);
if (ar->sme_state == SME_CONNECTING) {
cfg80211_connect_result(ar->net_dev,
bssid, NULL, 0,
NULL, 0,
WLAN_STATUS_UNSPECIFIED_FAILURE,
GFP_KERNEL);
} else if (ar->sme_state == SME_CONNECTED) {
cfg80211_disconnected(ar->net_dev, reason,
NULL, 0, GFP_KERNEL);
}
ar->sme_state = SME_DISCONNECTED;
return;
}
if (ar->dot11_auth_mode != OPEN_AUTH)
return;
/*
* If the current auth algorithm is open, try shared and
* make autoAuthStage idle. We do not make it leap for now
* being.
*/
key = &ar->keys[ar->def_txkey_index];
if (down_interruptible(&ar->sem)) {
ath6kl_err("busy, couldn't get access\n");
return;
}
ar->dot11_auth_mode = SHARED_AUTH;
ar->auto_auth_stage = AUTH_IDLE;
ath6kl_wmi_addkey_cmd(ar->wmi,
ar->def_txkey_index,
ar->prwise_crypto,
GROUP_USAGE | TX_USAGE,
key->key_len, NULL,
key->key,
KEY_OP_INIT_VAL, NULL,
NO_SYNC_WMIFLAG);
status = ath6kl_wmi_connect_cmd(ar->wmi,
ar->nw_type,
ar->dot11_auth_mode,
ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto,
ar->grp_crpto_len,
ar->ssid_len,
ar->ssid,
ar->req_bssid,
ar->ch_hint,
ar->connect_ctrl_flags);
up(&ar->sem);
}
static inline bool is_ch_11a(u16 ch)
{
return (!((ch >= 2412) && (ch <= 2484)));
}
/* struct ath6kl_node_table::nt_nodelock is locked when calling this */
void ath6kl_cfg80211_scan_node(struct wiphy *wiphy, struct bss *ni)
{
struct ieee80211_mgmt *mgmt;
struct ieee80211_channel *channel;
struct ieee80211_supported_band *band;
struct ath6kl_common_ie *cie;
s32 signal;
int freq;
cie = &ni->ni_cie;
if (is_ch_11a(cie->ie_chan))
band = wiphy->bands[IEEE80211_BAND_5GHZ]; /* 11a */
else if ((cie->ie_erp) || (cie->ie_xrates))
band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11g */
else
band = wiphy->bands[IEEE80211_BAND_2GHZ]; /* 11b */
freq = cie->ie_chan;
channel = ieee80211_get_channel(wiphy, freq);
signal = ni->ni_snr * 100;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: bssid %pM ch %d freq %d size %d\n", __func__,
ni->ni_macaddr, channel->hw_value, freq, ni->ni_framelen);
/*
* Both Beacon and Probe Response frames have same payload structure,
* so it is fine to share the parser for both.
*/
if (ni->ni_framelen < 8 + 2 + 2)
return;
mgmt = (struct ieee80211_mgmt *) (ni->ni_buf -
offsetof(struct ieee80211_mgmt, u));
cfg80211_inform_bss(wiphy, channel, ni->ni_macaddr,
le64_to_cpu(mgmt->u.beacon.timestamp),
le16_to_cpu(mgmt->u.beacon.capab_info),
le16_to_cpu(mgmt->u.beacon.beacon_int),
mgmt->u.beacon.variable,
ni->ni_buf + ni->ni_framelen -
mgmt->u.beacon.variable,
signal, GFP_ATOMIC);
}
static int ath6kl_cfg80211_scan(struct wiphy *wiphy, struct net_device *ndev,
struct cfg80211_scan_request *request)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
int ret = 0;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (!ar->usr_bss_filter) {
if (ath6kl_wmi_bssfilter_cmd(ar->wmi,
(test_bit(CONNECTED, &ar->flag) ?
ALL_BUT_BSS_FILTER :
ALL_BSS_FILTER), 0) != 0) {
ath6kl_err("couldn't set bss filtering\n");
return -EIO;
}
}
if (request->n_ssids && request->ssids[0].ssid_len) {
u8 i;
if (request->n_ssids > (MAX_PROBED_SSID_INDEX - 1))
request->n_ssids = MAX_PROBED_SSID_INDEX - 1;
for (i = 0; i < request->n_ssids; i++)
ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1,
SPECIFIC_SSID_FLAG,
request->ssids[i].ssid_len,
request->ssids[i].ssid);
}
if (ath6kl_wmi_startscan_cmd(ar->wmi, WMI_LONG_SCAN, 0,
false, 0, 0, 0, NULL) != 0) {
ath6kl_err("wmi_startscan_cmd failed\n");
ret = -EIO;
}
ar->scan_req = request;
return ret;
}
void ath6kl_cfg80211_scan_complete_event(struct ath6kl *ar, int status)
{
int i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: status %d\n", __func__, status);
if (!ar->scan_req)
return;
if ((status == -ECANCELED) || (status == -EBUSY)) {
cfg80211_scan_done(ar->scan_req, true);
goto out;
}
/* Translate data to cfg80211 mgmt format */
wlan_iterate_nodes(&ar->scan_table, ar->wdev->wiphy);
cfg80211_scan_done(ar->scan_req, false);
if (ar->scan_req->n_ssids && ar->scan_req->ssids[0].ssid_len) {
for (i = 0; i < ar->scan_req->n_ssids; i++) {
ath6kl_wmi_probedssid_cmd(ar->wmi, i + 1,
DISABLE_SSID_FLAG,
0, NULL);
}
}
out:
ar->scan_req = NULL;
}
static int ath6kl_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr,
struct key_params *params)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
u8 key_usage;
u8 key_type;
int status = 0;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &ar->keys[key_index];
memset(key, 0, sizeof(struct ath6kl_key));
if (pairwise)
key_usage = PAIRWISE_USAGE;
else
key_usage = GROUP_USAGE;
if (params) {
if (params->key_len > WLAN_MAX_KEY_LEN ||
params->seq_len > sizeof(key->seq))
return -EINVAL;
key->key_len = params->key_len;
memcpy(key->key, params->key, key->key_len);
key->seq_len = params->seq_len;
memcpy(key->seq, params->seq, key->seq_len);
key->cipher = params->cipher;
}
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
key_type = WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
key_type = TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
key_type = AES_CRYPT;
break;
default:
return -ENOTSUPP;
}
if (((ar->auth_mode == WPA_PSK_AUTH)
|| (ar->auth_mode == WPA2_PSK_AUTH))
&& (key_usage & GROUP_USAGE))
del_timer(&ar->disconnect_timer);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d, key_len %d, key_type 0x%x, key_usage 0x%x, seq_len %d\n",
__func__, key_index, key->key_len, key_type,
key_usage, key->seq_len);
ar->def_txkey_index = key_index;
if (ar->nw_type == AP_NETWORK && !pairwise &&
(key_type == TKIP_CRYPT || key_type == AES_CRYPT) && params) {
ar->ap_mode_bkey.valid = true;
ar->ap_mode_bkey.key_index = key_index;
ar->ap_mode_bkey.key_type = key_type;
ar->ap_mode_bkey.key_len = key->key_len;
memcpy(ar->ap_mode_bkey.key, key->key, key->key_len);
if (!test_bit(CONNECTED, &ar->flag)) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delay initial group "
"key configuration until AP mode has been "
"started\n");
/*
* The key will be set in ath6kl_connect_ap_mode() once
* the connected event is received from the target.
*/
return 0;
}
}
status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index,
key_type, key_usage, key->key_len,
key->seq, key->key, KEY_OP_INIT_VAL,
(u8 *) mac_addr, SYNC_BOTH_WMIFLAG);
if (status)
return -EIO;
return 0;
}
static int ath6kl_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
if (!ar->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: index %d is empty\n", __func__, key_index);
return 0;
}
ar->keys[key_index].key_len = 0;
return ath6kl_wmi_deletekey_cmd(ar->wmi, key_index);
}
static int ath6kl_cfg80211_get_key(struct wiphy *wiphy, struct net_device *ndev,
u8 key_index, bool pairwise,
const u8 *mac_addr, void *cookie,
void (*callback) (void *cookie,
struct key_params *))
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
struct key_params params;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n", __func__,
key_index);
return -ENOENT;
}
key = &ar->keys[key_index];
memset(¶ms, 0, sizeof(params));
params.cipher = key->cipher;
params.key_len = key->key_len;
params.seq_len = key->seq_len;
params.seq = key->seq;
params.key = key->key;
callback(cookie, ¶ms);
return key->key_len ? 0 : -ENOENT;
}
static int ath6kl_cfg80211_set_default_key(struct wiphy *wiphy,
struct net_device *ndev,
u8 key_index, bool unicast,
bool multicast)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(ndev);
struct ath6kl_key *key = NULL;
int status = 0;
u8 key_usage;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: index %d\n", __func__, key_index);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (key_index < WMI_MIN_KEY_INDEX || key_index > WMI_MAX_KEY_INDEX) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: key index %d out of bounds\n",
__func__, key_index);
return -ENOENT;
}
if (!ar->keys[key_index].key_len) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: invalid key index %d\n",
__func__, key_index);
return -EINVAL;
}
ar->def_txkey_index = key_index;
key = &ar->keys[ar->def_txkey_index];
key_usage = GROUP_USAGE;
if (ar->prwise_crypto == WEP_CRYPT)
key_usage |= TX_USAGE;
if (ar->nw_type == AP_NETWORK && !test_bit(CONNECTED, &ar->flag))
return 0; /* Delay until AP mode has been started */
status = ath6kl_wmi_addkey_cmd(ar->wmi, ar->def_txkey_index,
ar->prwise_crypto, key_usage,
key->key_len, key->seq, key->key,
KEY_OP_INIT_VAL, NULL,
SYNC_BOTH_WMIFLAG);
if (status)
return -EIO;
return 0;
}
void ath6kl_cfg80211_tkip_micerr_event(struct ath6kl *ar, u8 keyid,
bool ismcast)
{
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: keyid %d, ismcast %d\n", __func__, keyid, ismcast);
cfg80211_michael_mic_failure(ar->net_dev, ar->bssid,
(ismcast ? NL80211_KEYTYPE_GROUP :
NL80211_KEYTYPE_PAIRWISE), keyid, NULL,
GFP_KERNEL);
}
static int ath6kl_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
int ret;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: changed 0x%x\n", __func__,
changed);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (changed & WIPHY_PARAM_RTS_THRESHOLD) {
ret = ath6kl_wmi_set_rts_cmd(ar->wmi, wiphy->rts_threshold);
if (ret != 0) {
ath6kl_err("ath6kl_wmi_set_rts_cmd failed\n");
return -EIO;
}
}
return 0;
}
/*
* The type nl80211_tx_power_setting replaces the following
* data type from 2.6.36 onwards
*/
static int ath6kl_cfg80211_set_txpower(struct wiphy *wiphy,
enum nl80211_tx_power_setting type,
int dbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
u8 ath6kl_dbm;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x, dbm %d\n", __func__,
type, dbm);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
switch (type) {
case NL80211_TX_POWER_AUTOMATIC:
return 0;
case NL80211_TX_POWER_LIMITED:
ar->tx_pwr = ath6kl_dbm = dbm;
break;
default:
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type 0x%x not supported\n",
__func__, type);
return -EOPNOTSUPP;
}
ath6kl_wmi_set_tx_pwr_cmd(ar->wmi, ath6kl_dbm);
return 0;
}
static int ath6kl_cfg80211_get_txpower(struct wiphy *wiphy, int *dbm)
{
struct ath6kl *ar = (struct ath6kl *)wiphy_priv(wiphy);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (test_bit(CONNECTED, &ar->flag)) {
ar->tx_pwr = 0;
if (ath6kl_wmi_get_tx_pwr_cmd(ar->wmi) != 0) {
ath6kl_err("ath6kl_wmi_get_tx_pwr_cmd failed\n");
return -EIO;
}
wait_event_interruptible_timeout(ar->event_wq, ar->tx_pwr != 0,
5 * HZ);
if (signal_pending(current)) {
ath6kl_err("target did not respond\n");
return -EINTR;
}
}
*dbm = ar->tx_pwr;
return 0;
}
static int ath6kl_cfg80211_set_power_mgmt(struct wiphy *wiphy,
struct net_device *dev,
bool pmgmt, int timeout)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct wmi_power_mode_cmd mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: pmgmt %d, timeout %d\n",
__func__, pmgmt, timeout);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (pmgmt) {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: max perf\n", __func__);
mode.pwr_mode = REC_POWER;
} else {
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: rec power\n", __func__);
mode.pwr_mode = MAX_PERF_POWER;
}
if (ath6kl_wmi_powermode_cmd(ar->wmi, mode.pwr_mode) != 0) {
ath6kl_err("wmi_powermode_cmd failed\n");
return -EIO;
}
return 0;
}
static int ath6kl_cfg80211_change_iface(struct wiphy *wiphy,
struct net_device *ndev,
enum nl80211_iftype type, u32 *flags,
struct vif_params *params)
{
struct ath6kl *ar = ath6kl_priv(ndev);
struct wireless_dev *wdev = ar->wdev;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: type %u\n", __func__, type);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
switch (type) {
case NL80211_IFTYPE_STATION:
ar->next_mode = INFRA_NETWORK;
break;
case NL80211_IFTYPE_ADHOC:
ar->next_mode = ADHOC_NETWORK;
break;
default:
ath6kl_err("invalid interface type %u\n", type);
return -EOPNOTSUPP;
}
wdev->iftype = type;
return 0;
}
static int ath6kl_cfg80211_join_ibss(struct wiphy *wiphy,
struct net_device *dev,
struct cfg80211_ibss_params *ibss_param)
{
struct ath6kl *ar = ath6kl_priv(dev);
int status;
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
ar->ssid_len = ibss_param->ssid_len;
memcpy(ar->ssid, ibss_param->ssid, ar->ssid_len);
if (ibss_param->channel)
ar->ch_hint = ibss_param->channel->center_freq;
if (ibss_param->channel_fixed) {
/*
* TODO: channel_fixed: The channel should be fixed, do not
* search for IBSSs to join on other channels. Target
* firmware does not support this feature, needs to be
* updated.
*/
return -EOPNOTSUPP;
}
memset(ar->req_bssid, 0, sizeof(ar->req_bssid));
if (ibss_param->bssid && !is_broadcast_ether_addr(ibss_param->bssid))
memcpy(ar->req_bssid, ibss_param->bssid, sizeof(ar->req_bssid));
ath6kl_set_wpa_version(ar, 0);
status = ath6kl_set_auth_type(ar, NL80211_AUTHTYPE_OPEN_SYSTEM);
if (status)
return status;
if (ibss_param->privacy) {
ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, true);
ath6kl_set_cipher(ar, WLAN_CIPHER_SUITE_WEP40, false);
} else {
ath6kl_set_cipher(ar, 0, true);
ath6kl_set_cipher(ar, 0, false);
}
ar->nw_type = ar->next_mode;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG,
"%s: connect called with authmode %d dot11 auth %d"
" PW crypto %d PW crypto len %d GRP crypto %d"
" GRP crypto len %d channel hint %u\n",
__func__,
ar->auth_mode, ar->dot11_auth_mode, ar->prwise_crypto,
ar->prwise_crypto_len, ar->grp_crypto,
ar->grp_crpto_len, ar->ch_hint);
status = ath6kl_wmi_connect_cmd(ar->wmi, ar->nw_type,
ar->dot11_auth_mode, ar->auth_mode,
ar->prwise_crypto,
ar->prwise_crypto_len,
ar->grp_crypto, ar->grp_crpto_len,
ar->ssid_len, ar->ssid,
ar->req_bssid, ar->ch_hint,
ar->connect_ctrl_flags);
set_bit(CONNECT_PEND, &ar->flag);
return 0;
}
static int ath6kl_cfg80211_leave_ibss(struct wiphy *wiphy,
struct net_device *dev)
{
struct ath6kl *ar = (struct ath6kl *)ath6kl_priv(dev);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
ath6kl_disconnect(ar);
memset(ar->ssid, 0, sizeof(ar->ssid));
ar->ssid_len = 0;
return 0;
}
static const u32 cipher_suites[] = {
WLAN_CIPHER_SUITE_WEP40,
WLAN_CIPHER_SUITE_WEP104,
WLAN_CIPHER_SUITE_TKIP,
WLAN_CIPHER_SUITE_CCMP,
};
static bool is_rate_legacy(s32 rate)
{
static const s32 legacy[] = { 1000, 2000, 5500, 11000,
6000, 9000, 12000, 18000, 24000,
36000, 48000, 54000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(legacy); i++)
if (rate == legacy[i])
return true;
return false;
}
static bool is_rate_ht20(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht20[] = { 6500, 13000, 19500, 26000, 39000,
52000, 58500, 65000, 72200
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht20); i++) {
if (rate == ht20[i]) {
if (i == ARRAY_SIZE(ht20) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static bool is_rate_ht40(s32 rate, u8 *mcs, bool *sgi)
{
static const s32 ht40[] = { 13500, 27000, 40500, 54000,
81000, 108000, 121500, 135000,
150000
};
u8 i;
for (i = 0; i < ARRAY_SIZE(ht40); i++) {
if (rate == ht40[i]) {
if (i == ARRAY_SIZE(ht40) - 1)
/* last rate uses sgi */
*sgi = true;
else
*sgi = false;
*mcs = i;
return true;
}
}
return false;
}
static int ath6kl_get_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_info *sinfo)
{
struct ath6kl *ar = ath6kl_priv(dev);
long left;
bool sgi;
s32 rate;
int ret;
u8 mcs;
if (memcmp(mac, ar->bssid, ETH_ALEN) != 0)
return -ENOENT;
if (down_interruptible(&ar->sem))
return -EBUSY;
set_bit(STATS_UPDATE_PEND, &ar->flag);
ret = ath6kl_wmi_get_stats_cmd(ar->wmi);
if (ret != 0) {
up(&ar->sem);
return -EIO;
}
left = wait_event_interruptible_timeout(ar->event_wq,
!test_bit(STATS_UPDATE_PEND,
&ar->flag),
WMI_TIMEOUT);
up(&ar->sem);
if (left == 0)
return -ETIMEDOUT;
else if (left < 0)
return left;
if (ar->target_stats.rx_byte) {
sinfo->rx_bytes = ar->target_stats.rx_byte;
sinfo->filled |= STATION_INFO_RX_BYTES;
sinfo->rx_packets = ar->target_stats.rx_pkt;
sinfo->filled |= STATION_INFO_RX_PACKETS;
}
if (ar->target_stats.tx_byte) {
sinfo->tx_bytes = ar->target_stats.tx_byte;
sinfo->filled |= STATION_INFO_TX_BYTES;
sinfo->tx_packets = ar->target_stats.tx_pkt;
sinfo->filled |= STATION_INFO_TX_PACKETS;
}
sinfo->signal = ar->target_stats.cs_rssi;
sinfo->filled |= STATION_INFO_SIGNAL;
rate = ar->target_stats.tx_ucast_rate;
if (is_rate_legacy(rate)) {
sinfo->txrate.legacy = rate / 100;
} else if (is_rate_ht20(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else if (is_rate_ht40(rate, &mcs, &sgi)) {
if (sgi) {
sinfo->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI;
sinfo->txrate.mcs = mcs - 1;
} else {
sinfo->txrate.mcs = mcs;
}
sinfo->txrate.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
sinfo->txrate.flags |= RATE_INFO_FLAGS_MCS;
} else {
ath6kl_warn("invalid rate: %d\n", rate);
return 0;
}
sinfo->filled |= STATION_INFO_TX_BITRATE;
return 0;
}
static int ath6kl_set_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid,
pmksa->pmkid, true);
}
static int ath6kl_del_pmksa(struct wiphy *wiphy, struct net_device *netdev,
struct cfg80211_pmksa *pmksa)
{
struct ath6kl *ar = ath6kl_priv(netdev);
return ath6kl_wmi_setpmkid_cmd(ar->wmi, pmksa->bssid,
pmksa->pmkid, false);
}
static int ath6kl_flush_pmksa(struct wiphy *wiphy, struct net_device *netdev)
{
struct ath6kl *ar = ath6kl_priv(netdev);
if (test_bit(CONNECTED, &ar->flag))
return ath6kl_wmi_setpmkid_cmd(ar->wmi, ar->bssid, NULL, false);
return 0;
}
#ifdef CONFIG_PM
static int ar6k_cfg80211_suspend(struct wiphy *wiphy,
struct cfg80211_wowlan *wow)
{
struct ath6kl *ar = wiphy_priv(wiphy);
return ath6kl_hif_suspend(ar);
}
#endif
static int ath6kl_set_channel(struct wiphy *wiphy, struct net_device *dev,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type)
{
struct ath6kl *ar = ath6kl_priv(dev);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: center_freq=%u hw_value=%u\n",
__func__, chan->center_freq, chan->hw_value);
ar->next_chan = chan->center_freq;
return 0;
}
static int ath6kl_ap_beacon(struct wiphy *wiphy, struct net_device *dev,
struct beacon_parameters *info, bool add)
{
struct ath6kl *ar = ath6kl_priv(dev);
struct ieee80211_mgmt *mgmt;
u8 *ies;
int ies_len;
struct wmi_connect_cmd p;
int res;
int i;
ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "%s: add=%d\n", __func__, add);
if (!ath6kl_cfg80211_ready(ar))
return -EIO;
if (ar->next_mode != AP_NETWORK)
return -EOPNOTSUPP;
if (info->beacon_ies) {
res = ath6kl_wmi_set_appie_cmd(ar->wmi, WMI_FRAME_BEACON,
info->beacon_ies,
info->beacon_ies_len);
if (res)
return res;
}
if (info->proberesp_ies) {
res = ath6kl_wmi_set_appie_cmd(ar->wmi, WMI_FRAME_PROBE_RESP,
info->proberesp_ies,
info->proberesp_ies_len);
if (res)
return res;
}
if (info->assocresp_ies) {
res = ath6kl_wmi_set_appie_cmd(ar->wmi, WMI_FRAME_ASSOC_RESP,
info->assocresp_ies,
info->assocresp_ies_len);
if (res)
return res;
}
if (!add)
return 0;
ar->ap_mode_bkey.valid = false;
/* TODO:
* info->interval
* info->dtim_period
*/
if (info->head == NULL)
return -EINVAL;
mgmt = (struct ieee80211_mgmt *) info->head;
ies = mgmt->u.beacon.variable;
if (ies > info->head + info->head_len)
return -EINVAL;
ies_len = info->head + info->head_len - ies;
if (info->ssid == NULL)
return -EINVAL;
memcpy(ar->ssid, info->ssid, info->ssid_len);
ar->ssid_len = info->ssid_len;
if (info->hidden_ssid != NL80211_HIDDEN_SSID_NOT_IN_USE)
return -EOPNOTSUPP; /* TODO */
ar->dot11_auth_mode = OPEN_AUTH;
memset(&p, 0, sizeof(p));
for (i = 0; i < info->crypto.n_akm_suites; i++) {
switch (info->crypto.akm_suites[i]) {
case WLAN_AKM_SUITE_8021X:
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_1)
p.auth_mode |= WPA_AUTH;
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_2)
p.auth_mode |= WPA2_AUTH;
break;
case WLAN_AKM_SUITE_PSK:
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_1)
p.auth_mode |= WPA_PSK_AUTH;
if (info->crypto.wpa_versions & NL80211_WPA_VERSION_2)
p.auth_mode |= WPA2_PSK_AUTH;
break;
}
}
if (p.auth_mode == 0)
p.auth_mode = NONE_AUTH;
ar->auth_mode = p.auth_mode;
for (i = 0; i < info->crypto.n_ciphers_pairwise; i++) {
switch (info->crypto.ciphers_pairwise[i]) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
p.prwise_crypto_type |= WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
p.prwise_crypto_type |= TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
p.prwise_crypto_type |= AES_CRYPT;
break;
}
}
if (p.prwise_crypto_type == 0)
p.prwise_crypto_type = NONE_CRYPT;
switch (info->crypto.cipher_group) {
case WLAN_CIPHER_SUITE_WEP40:
case WLAN_CIPHER_SUITE_WEP104:
p.grp_crypto_type = WEP_CRYPT;
break;
case WLAN_CIPHER_SUITE_TKIP:
p.grp_crypto_type = TKIP_CRYPT;
break;
case WLAN_CIPHER_SUITE_CCMP:
p.grp_crypto_type = AES_CRYPT;
break;
default:
p.grp_crypto_type = NONE_CRYPT;
break;
}
p.nw_type = AP_NETWORK;
ar->nw_type = ar->next_mode;
p.ssid_len = ar->ssid_len;
memcpy(p.ssid, ar->ssid, ar->ssid_len);
p.dot11_auth_mode = ar->dot11_auth_mode;
p.ch = cpu_to_le16(ar->next_chan);
res = ath6kl_wmi_ap_profile_commit(ar->wmi, &p);
if (res < 0)
return res;
return 0;
}
static int ath6kl_add_beacon(struct wiphy *wiphy, struct net_device *dev,
struct beacon_parameters *info)
{
return ath6kl_ap_beacon(wiphy, dev, info, true);
}
static int ath6kl_set_beacon(struct wiphy *wiphy, struct net_device *dev,
struct beacon_parameters *info)
{
return ath6kl_ap_beacon(wiphy, dev, info, false);
}
static int ath6kl_del_beacon(struct wiphy *wiphy, struct net_device *dev)
{
struct ath6kl *ar = ath6kl_priv(dev);
if (ar->nw_type != AP_NETWORK)
return -EOPNOTSUPP;
if (!test_bit(CONNECTED, &ar->flag))
return -ENOTCONN;
ath6kl_wmi_disconnect_cmd(ar->wmi);
clear_bit(CONNECTED, &ar->flag);
return 0;
}
static int ath6kl_change_station(struct wiphy *wiphy, struct net_device *dev,
u8 *mac, struct station_parameters *params)
{
struct ath6kl *ar = ath6kl_priv(dev);
if (ar->nw_type != AP_NETWORK)
return -EOPNOTSUPP;
/* Use this only for authorizing/unauthorizing a station */
if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED)))
return -EOPNOTSUPP;
if (params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED))
return ath6kl_wmi_ap_set_mlme(ar->wmi, WMI_AP_MLME_AUTHORIZE,
mac, 0);
return ath6kl_wmi_ap_set_mlme(ar->wmi, WMI_AP_MLME_UNAUTHORIZE, mac,
0);
}
static int ath6kl_remain_on_channel(struct wiphy *wiphy,
struct net_device *dev,
struct ieee80211_channel *chan,
enum nl80211_channel_type channel_type,
unsigned int duration,
u64 *cookie)
{
struct ath6kl *ar = ath6kl_priv(dev);
/* TODO: if already pending or ongoing remain-on-channel,
* return -EBUSY */
*cookie = 1; /* only a single pending request is supported */
return ath6kl_wmi_remain_on_chnl_cmd(ar->wmi, chan->center_freq,
duration);
}
static int ath6kl_cancel_remain_on_channel(struct wiphy *wiphy,
struct net_device *dev,
u64 cookie)
{
struct ath6kl *ar = ath6kl_priv(dev);
if (cookie != 1)
return -ENOENT;
return ath6kl_wmi_cancel_remain_on_chnl_cmd(ar->wmi);
}
static struct cfg80211_ops ath6kl_cfg80211_ops = {
.change_virtual_intf = ath6kl_cfg80211_change_iface,
.scan = ath6kl_cfg80211_scan,
.connect = ath6kl_cfg80211_connect,
.disconnect = ath6kl_cfg80211_disconnect,
.add_key = ath6kl_cfg80211_add_key,
.get_key = ath6kl_cfg80211_get_key,
.del_key = ath6kl_cfg80211_del_key,
.set_default_key = ath6kl_cfg80211_set_default_key,
.set_wiphy_params = ath6kl_cfg80211_set_wiphy_params,
.set_tx_power = ath6kl_cfg80211_set_txpower,
.get_tx_power = ath6kl_cfg80211_get_txpower,
.set_power_mgmt = ath6kl_cfg80211_set_power_mgmt,
.join_ibss = ath6kl_cfg80211_join_ibss,
.leave_ibss = ath6kl_cfg80211_leave_ibss,
.get_station = ath6kl_get_station,
.set_pmksa = ath6kl_set_pmksa,
.del_pmksa = ath6kl_del_pmksa,
.flush_pmksa = ath6kl_flush_pmksa,
#ifdef CONFIG_PM
.suspend = ar6k_cfg80211_suspend,
#endif
.set_channel = ath6kl_set_channel,
.add_beacon = ath6kl_add_beacon,
.set_beacon = ath6kl_set_beacon,
.del_beacon = ath6kl_del_beacon,
.change_station = ath6kl_change_station,
.remain_on_channel = ath6kl_remain_on_channel,
.cancel_remain_on_channel = ath6kl_cancel_remain_on_channel,
};
struct wireless_dev *ath6kl_cfg80211_init(struct device *dev)
{
int ret = 0;
struct wireless_dev *wdev;
wdev = kzalloc(sizeof(struct wireless_dev), GFP_KERNEL);
if (!wdev) {
ath6kl_err("couldn't allocate wireless device\n");
return NULL;
}
/* create a new wiphy for use with cfg80211 */
wdev->wiphy = wiphy_new(&ath6kl_cfg80211_ops, sizeof(struct ath6kl));
if (!wdev->wiphy) {
ath6kl_err("couldn't allocate wiphy device\n");
kfree(wdev);
return NULL;
}
wdev->wiphy->max_remain_on_channel_duration = 5000;
/* set device pointer for wiphy */
set_wiphy_dev(wdev->wiphy, dev);
wdev->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC);
/* max num of ssids that can be probed during scanning */
wdev->wiphy->max_scan_ssids = MAX_PROBED_SSID_INDEX;
wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = &ath6kl_band_2ghz;
wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = &ath6kl_band_5ghz;
wdev->wiphy->signal_type = CFG80211_SIGNAL_TYPE_MBM;
wdev->wiphy->cipher_suites = cipher_suites;
wdev->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
ret = wiphy_register(wdev->wiphy);
if (ret < 0) {
ath6kl_err("couldn't register wiphy device\n");
wiphy_free(wdev->wiphy);
kfree(wdev);
return NULL;
}
return wdev;
}
void ath6kl_cfg80211_deinit(struct ath6kl *ar)
{
struct wireless_dev *wdev = ar->wdev;
if (ar->scan_req) {
cfg80211_scan_done(ar->scan_req, true);
ar->scan_req = NULL;
}
if (!wdev)
return;
wiphy_unregister(wdev->wiphy);
wiphy_free(wdev->wiphy);
kfree(wdev);
}