/*
* New driver for Marvell Yukon 2 chipset.
* Based on earlier sk98lin, and skge driver.
*
* This driver intentionally does not support all the features
* of the original driver such as link fail-over and link management because
* those should be done at higher levels.
*
* Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/crc32.h>
#include <linux/kernel.h>
#include <linux/version.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/pci.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/if_vlan.h>
#include <linux/prefetch.h>
#include <linux/mii.h>
#include <asm/irq.h>
#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
#define SKY2_VLAN_TAG_USED 1
#endif
#include "sky2.h"
#define DRV_NAME "sky2"
#define DRV_VERSION "1.10"
#define PFX DRV_NAME " "
/*
* The Yukon II chipset takes 64 bit command blocks (called list elements)
* that are organized into three (receive, transmit, status) different rings
* similar to Tigon3.
*/
#define RX_LE_SIZE 1024
#define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
#define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
#define RX_DEF_PENDING RX_MAX_PENDING
#define RX_SKB_ALIGN 8
#define RX_BUF_WRITE 16
#define TX_RING_SIZE 512
#define TX_DEF_PENDING (TX_RING_SIZE - 1)
#define TX_MIN_PENDING 64
#define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
#define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
#define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
#define TX_WATCHDOG (5 * HZ)
#define NAPI_WEIGHT 64
#define PHY_RETRIES 1000
#define RING_NEXT(x,s) (((x)+1) & ((s)-1))
static const u32 default_msg =
NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
| NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
| NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
static int debug = -1; /* defaults above */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static int copybreak __read_mostly = 128;
module_param(copybreak, int, 0);
MODULE_PARM_DESC(copybreak, "Receive copy threshold");
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
static int idle_timeout = 0;
module_param(idle_timeout, int, 0);
MODULE_PARM_DESC(idle_timeout, "Watchdog timer for lost interrupts (ms)");
static const struct pci_device_id sky2_id_table[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) },
{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) },
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) },
{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, sky2_id_table);
/* Avoid conditionals by using array */
static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
/* This driver supports yukon2 chipset only */
static const char *yukon2_name[] = {
"XL", /* 0xb3 */
"EC Ultra", /* 0xb4 */
"UNKNOWN", /* 0xb5 */
"EC", /* 0xb6 */
"FE", /* 0xb7 */
};
/* Access to external PHY */
static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
{
int i;
gma_write16(hw, port, GM_SMI_DATA, val);
gma_write16(hw, port, GM_SMI_CTRL,
GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
for (i = 0; i < PHY_RETRIES; i++) {
if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
return 0;
udelay(1);
}
printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
return -ETIMEDOUT;
}
static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
{
int i;
gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
for (i = 0; i < PHY_RETRIES; i++) {
if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
*val = gma_read16(hw, port, GM_SMI_DATA);
return 0;
}
udelay(1);
}
return -ETIMEDOUT;
}
static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
{
u16 v;
if (__gm_phy_read(hw, port, reg, &v) != 0)
printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
return v;
}
static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
{
u16 power_control;
int vaux;
pr_debug("sky2_set_power_state %d\n", state);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
(power_control & PCI_PM_CAP_PME_D3cold);
power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
power_control |= PCI_PM_CTRL_PME_STATUS;
power_control &= ~(PCI_PM_CTRL_STATE_MASK);
switch (state) {
case PCI_D0:
/* switch power to VCC (WA for VAUX problem) */
sky2_write8(hw, B0_POWER_CTRL,
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
/* disable Core Clock Division, */
sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
else
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
u32 reg1;
sky2_pci_write32(hw, PCI_DEV_REG3, 0);
reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
reg1 &= P_ASPM_CONTROL_MSK;
sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
sky2_pci_write32(hw, PCI_DEV_REG5, 0);
}
break;
case PCI_D3hot:
case PCI_D3cold:
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
sky2_write8(hw, B2_Y2_CLK_GATE, 0);
else
/* enable bits are inverted */
sky2_write8(hw, B2_Y2_CLK_GATE,
Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
/* switch power to VAUX */
if (vaux && state != PCI_D3cold)
sky2_write8(hw, B0_POWER_CTRL,
(PC_VAUX_ENA | PC_VCC_ENA |
PC_VAUX_ON | PC_VCC_OFF));
break;
default:
printk(KERN_ERR PFX "Unknown power state %d\n", state);
}
sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
{
u16 reg;
/* disable all GMAC IRQ's */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
/* disable PHY IRQs */
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
gma_write16(hw, port, GM_MC_ADDR_H2, 0);
gma_write16(hw, port, GM_MC_ADDR_H3, 0);
gma_write16(hw, port, GM_MC_ADDR_H4, 0);
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* flow control to advertise bits */
static const u16 copper_fc_adv[] = {
[FC_NONE] = 0,
[FC_TX] = PHY_M_AN_ASP,
[FC_RX] = PHY_M_AN_PC,
[FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
};
/* flow control to advertise bits when using 1000BaseX */
static const u16 fiber_fc_adv[] = {
[FC_BOTH] = PHY_M_P_BOTH_MD_X,
[FC_TX] = PHY_M_P_ASYM_MD_X,
[FC_RX] = PHY_M_P_SYM_MD_X,
[FC_NONE] = PHY_M_P_NO_PAUSE_X,
};
/* flow control to GMA disable bits */
static const u16 gm_fc_disable[] = {
[FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
[FC_TX] = GM_GPCR_FC_RX_DIS,
[FC_RX] = GM_GPCR_FC_TX_DIS,
[FC_BOTH] = 0,
};
static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
if (sky2->autoneg == AUTONEG_ENABLE &&
!(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
PHY_M_EC_MAC_S_MSK);
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
if (hw->chip_id == CHIP_ID_YUKON_EC)
ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
else
ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
}
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
if (sky2_is_copper(hw)) {
if (hw->chip_id == CHIP_ID_YUKON_FE) {
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
} else {
/* disable energy detect */
ctrl &= ~PHY_M_PC_EN_DET_MSK;
/* enable automatic crossover */
ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
if (sky2->autoneg == AUTONEG_ENABLE &&
(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
ctrl &= ~PHY_M_PC_DSC_MSK;
ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
}
}
} else {
/* workaround for deviation #4.88 (CRC errors) */
/* disable Automatic Crossover */
ctrl &= ~PHY_M_PC_MDIX_MSK;
}
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
/* special setup for PHY 88E1112 Fiber */
if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl &= ~PHY_M_MAC_MD_MSK;
ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
if (hw->pmd_type == 'P') {
/* select page 1 to access Fiber registers */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
/* for SFP-module set SIGDET polarity to low */
ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
ctrl |= PHY_M_FIB_SIGD_POL;
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
}
ctrl = PHY_CT_RESET;
ct1000 = 0;
adv = PHY_AN_CSMA;
reg = 0;
if (sky2->autoneg == AUTONEG_ENABLE) {
if (sky2_is_copper(hw)) {
if (sky2->advertising & ADVERTISED_1000baseT_Full)
ct1000 |= PHY_M_1000C_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
ct1000 |= PHY_M_1000C_AHD;
if (sky2->advertising & ADVERTISED_100baseT_Full)
adv |= PHY_M_AN_100_FD;
if (sky2->advertising & ADVERTISED_100baseT_Half)
adv |= PHY_M_AN_100_HD;
if (sky2->advertising & ADVERTISED_10baseT_Full)
adv |= PHY_M_AN_10_FD;
if (sky2->advertising & ADVERTISED_10baseT_Half)
adv |= PHY_M_AN_10_HD;
adv |= copper_fc_adv[sky2->flow_mode];
} else { /* special defines for FIBER (88E1040S only) */
if (sky2->advertising & ADVERTISED_1000baseT_Full)
adv |= PHY_M_AN_1000X_AFD;
if (sky2->advertising & ADVERTISED_1000baseT_Half)
adv |= PHY_M_AN_1000X_AHD;
adv |= fiber_fc_adv[sky2->flow_mode];
}
/* Restart Auto-negotiation */
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
} else {
/* forced speed/duplex settings */
ct1000 = PHY_M_1000C_MSE;
/* Disable auto update for duplex flow control and speed */
reg |= GM_GPCR_AU_ALL_DIS;
switch (sky2->speed) {
case SPEED_1000:
ctrl |= PHY_CT_SP1000;
reg |= GM_GPCR_SPEED_1000;
break;
case SPEED_100:
ctrl |= PHY_CT_SP100;
reg |= GM_GPCR_SPEED_100;
break;
}
if (sky2->duplex == DUPLEX_FULL) {
reg |= GM_GPCR_DUP_FULL;
ctrl |= PHY_CT_DUP_MD;
} else if (sky2->speed < SPEED_1000)
sky2->flow_mode = FC_NONE;
reg |= gm_fc_disable[sky2->flow_mode];
/* Forward pause packets to GMAC? */
if (sky2->flow_mode & FC_RX)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
}
gma_write16(hw, port, GM_GP_CTRL, reg);
if (hw->chip_id != CHIP_ID_YUKON_FE)
gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
/* Setup Phy LED's */
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
ledover = 0;
switch (hw->chip_id) {
case CHIP_ID_YUKON_FE:
/* on 88E3082 these bits are at 11..9 (shifted left) */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
/* delete ACT LED control bits */
ctrl &= ~PHY_M_FELP_LED1_MSK;
/* change ACT LED control to blink mode */
ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
break;
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
/* set Polarity Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
(PHY_M_POLC_LS1_P_MIX(4) |
PHY_M_POLC_IS0_P_MIX(4) |
PHY_M_POLC_LOS_CTRL(2) |
PHY_M_POLC_INIT_CTRL(2) |
PHY_M_POLC_STA1_CTRL(2) |
PHY_M_POLC_STA0_CTRL(2)));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
case CHIP_ID_YUKON_EC_U:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
/* select page 3 to access LED control register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
/* set LED Function Control register */
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
(PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
/* set Blink Rate in LED Timer Control Register */
gm_phy_write(hw, port, PHY_MARV_INT_MASK,
ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
/* restore page register */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
/* apply fixes in PHY AFE */
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
/* increase differential signal amplitude in 10BASE-T */
gm_phy_write(hw, port, 0x18, 0xaa99);
gm_phy_write(hw, port, 0x17, 0x2011);
/* fix for IEEE A/B Symmetry failure in 1000BASE-T */
gm_phy_write(hw, port, 0x18, 0xa204);
gm_phy_write(hw, port, 0x17, 0x2002);
/* set page register to 0 */
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
}
if (ledover)
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
}
/* Enable phy interrupt on auto-negotiation complete (or link up) */
if (sky2->autoneg == AUTONEG_ENABLE)
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
else
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
}
static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
{
u32 reg1;
static const u32 phy_power[]
= { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
/* looks like this XL is back asswards .. */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
onoff = !onoff;
reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
if (onoff)
/* Turn off phy power saving */
reg1 &= ~phy_power[port];
else
reg1 |= phy_power[port];
sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
sky2_pci_read32(hw, PCI_DEV_REG1);
udelay(100);
}
/* Force a renegotiation */
static void sky2_phy_reinit(struct sky2_port *sky2)
{
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(sky2->hw, sky2->port);
spin_unlock_bh(&sky2->phy_lock);
}
static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
{
struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
u16 reg;
int i;
const u8 *addr = hw->dev[port]->dev_addr;
sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
/* WA DEV_472 -- looks like crossed wires on port 2 */
/* clear GMAC 1 Control reset */
sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
do {
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
} while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
}
sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
/* Enable Transmit FIFO Underrun */
sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
spin_lock_bh(&sky2->phy_lock);
sky2_phy_init(hw, port);
spin_unlock_bh(&sky2->phy_lock);
/* MIB clear */
reg = gma_read16(hw, port, GM_PHY_ADDR);
gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
gma_read16(hw, port, i);
gma_write16(hw, port, GM_PHY_ADDR, reg);
/* transmit control */
gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
/* receive control reg: unicast + multicast + no FCS */
gma_write16(hw, port, GM_RX_CTRL,
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
/* transmit flow control */
gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
/* transmit parameter */
gma_write16(hw, port, GM_TX_PARAM,
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
/* serial mode register */
reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (hw->dev[port]->mtu > ETH_DATA_LEN)
reg |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, port, GM_SERIAL_MODE, reg);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
/* ignore counter overflows */
gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
/* Configure Rx MAC FIFO */
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
GMF_OPER_ON | GMF_RX_F_FL_ON);
/* Flush Rx MAC FIFO on any flow control or error */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
/* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
/* Configure Tx MAC FIFO */
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
/* set Tx GMAC FIFO Almost Empty Threshold */
sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
/* Disable Store & Forward mode for TX */
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
}
}
}
/* Assign Ram Buffer allocation in units of 64bit (8 bytes) */
static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 end)
{
pr_debug(PFX "q %d %#x %#x\n", q, start, end);
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
sky2_write32(hw, RB_ADDR(q, RB_START), start);
sky2_write32(hw, RB_ADDR(q, RB_END), end);
sky2_write32(hw, RB_ADDR(q, RB_WP), start);
sky2_write32(hw, RB_ADDR(q, RB_RP), start);
if (q == Q_R1 || q == Q_R2) {
u32 space = end - start + 1;
u32 tp = space - space/4;
/* On receive queue's set the thresholds
* give receiver priority when > 3/4 full
* send pause when down to 2K
*/
sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
tp = space - 2048/8;
sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
} else {
/* Enable store & forward on Tx queue's because
* Tx FIFO is only 1K on Yukon
*/
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
}
sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
sky2_read8(hw, RB_ADDR(q, RB_CTRL));
}
/* Setup Bus Memory Interface */
static void sky2_qset(struct sky2_hw *hw, u16 q)
{
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
}
/* Setup prefetch unit registers. This is the interface between
* hardware and driver list elements
*/
static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
u64 addr, u32 last)
{
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
}
static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
{
struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
le->ctrl = 0;
return le;
}
static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
struct sky2_tx_le *le)
{
return sky2->tx_ring + (le - sky2->tx_le);
}
/* Update chip's next pointer */
static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
{
q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
wmb();
sky2_write16(hw, q, idx);
sky2_read16(hw, q);
}
static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
{
struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
le->ctrl = 0;
return le;
}
/* Return high part of DMA address (could be 32 or 64 bit) */
static inline u32 high32(dma_addr_t a)
{
return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
}
/* Build description to hardware for one receive segment */
static void sky2_rx_add(struct sky2_port *sky2, u8 op,
dma_addr_t map, unsigned len)
{
struct sky2_rx_le *le;
u32 hi = high32(map);
if (sky2->rx_addr64 != hi) {
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32(hi);
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->rx_addr64 = high32(map + len);
}
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((u32) map);
le->length = cpu_to_le16(len);
le->opcode = op | HW_OWNER;
}
/* Build description to hardware for one possibly fragmented skb */
static void sky2_rx_submit(struct sky2_port *sky2,
const struct rx_ring_info *re)
{
int i;
sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
}
static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
unsigned size)
{
struct sk_buff *skb = re->skb;
int i;
re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
pci_unmap_len_set(re, data_size, size);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
re->frag_addr[i] = pci_map_page(pdev,
skb_shinfo(skb)->frags[i].page,
skb_shinfo(skb)->frags[i].page_offset,
skb_shinfo(skb)->frags[i].size,
PCI_DMA_FROMDEVICE);
}
static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
{
struct sk_buff *skb = re->skb;
int i;
pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
PCI_DMA_FROMDEVICE);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
pci_unmap_page(pdev, re->frag_addr[i],
skb_shinfo(skb)->frags[i].size,
PCI_DMA_FROMDEVICE);
}
/* Tell chip where to start receive checksum.
* Actually has two checksums, but set both same to avoid possible byte
* order problems.
*/
static void rx_set_checksum(struct sky2_port *sky2)
{
struct sky2_rx_le *le;
le = sky2_next_rx(sky2);
le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
le->ctrl = 0;
le->opcode = OP_TCPSTART | HW_OWNER;
sky2_write32(sky2->hw,
Q_ADDR(rxqaddr[sky2->port], Q_CSR),
sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
}
/*
* The RX Stop command will not work for Yukon-2 if the BMU does not
* reach the end of packet and since we can't make sure that we have
* incoming data, we must reset the BMU while it is not doing a DMA
* transfer. Since it is possible that the RX path is still active,
* the RX RAM buffer will be stopped first, so any possible incoming
* data will not trigger a DMA. After the RAM buffer is stopped, the
* BMU is polled until any DMA in progress is ended and only then it
* will be reset.
*/
static void sky2_rx_stop(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned rxq = rxqaddr[sky2->port];
int i;
/* disable the RAM Buffer receive queue */
sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
for (i = 0; i < 0xffff; i++)
if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
== sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
goto stopped;
printk(KERN_WARNING PFX "%s: receiver stop failed\n",
sky2->netdev->name);
stopped:
sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
/* reset the Rx prefetch unit */
sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
}
/* Clean out receive buffer area, assumes receiver hardware stopped */
static void sky2_rx_clean(struct sky2_port *sky2)
{
unsigned i;
memset(sky2->rx_le, 0, RX_LE_BYTES);
for (i = 0; i < sky2->rx_pending; i++) {
struct rx_ring_info *re = sky2->rx_ring + i;
if (re->skb) {
sky2_rx_unmap_skb(sky2->hw->pdev, re);
kfree_skb(re->skb);
re->skb = NULL;
}
}
}
/* Basic MII support */
static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err = -EOPNOTSUPP;
if (!netif_running(dev))
return -ENODEV; /* Phy still in reset */
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = PHY_ADDR_MARV;
/* fallthru */
case SIOCGMIIREG: {
u16 val = 0;
spin_lock_bh(&sky2->phy_lock);
err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
spin_unlock_bh(&sky2->phy_lock);
data->val_out = val;
break;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
spin_lock_bh(&sky2->phy_lock);
err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
data->val_in);
spin_unlock_bh(&sky2->phy_lock);
break;
}
return err;
}
#ifdef SKY2_VLAN_TAG_USED
static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
netif_tx_lock_bh(dev);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
sky2->vlgrp = grp;
netif_tx_unlock_bh(dev);
}
static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
u16 port = sky2->port;
netif_tx_lock_bh(dev);
sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
if (sky2->vlgrp)
sky2->vlgrp->vlan_devices[vid] = NULL;
netif_tx_unlock_bh(dev);
}
#endif
/*
* Allocate an skb for receiving. If the MTU is large enough
* make the skb non-linear with a fragment list of pages.
*
* It appears the hardware has a bug in the FIFO logic that
* cause it to hang if the FIFO gets overrun and the receive buffer
* is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
* aligned except if slab debugging is enabled.
*/
static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
{
struct sk_buff *skb;
unsigned long p;
int i;
skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + RX_SKB_ALIGN);
if (!skb)
goto nomem;
p = (unsigned long) skb->data;
skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
for (i = 0; i < sky2->rx_nfrags; i++) {
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
goto free_partial;
skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
}
return skb;
free_partial:
kfree_skb(skb);
nomem:
return NULL;
}
/*
* Allocate and setup receiver buffer pool.
* Normal case this ends up creating one list element for skb
* in the receive ring. Worst case if using large MTU and each
* allocation falls on a different 64 bit region, that results
* in 6 list elements per ring entry.
* One element is used for checksum enable/disable, and one
* extra to avoid wrap.
*/
static int sky2_rx_start(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
struct rx_ring_info *re;
unsigned rxq = rxqaddr[sky2->port];
unsigned i, size, space, thresh;
sky2->rx_put = sky2->rx_next = 0;
sky2_qset(hw, rxq);
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
(hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0)) {
/* MAC Rx RAM Read is controlled by hardware */
sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
}
sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
rx_set_checksum(sky2);
/* Space needed for frame data + headers rounded up */
size = ALIGN(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8)
+ 8;
/* Stopping point for hardware truncation */
thresh = (size - 8) / sizeof(u32);
/* Account for overhead of skb - to avoid order > 0 allocation */
space = SKB_DATA_ALIGN(size) + NET_SKB_PAD
+ sizeof(struct skb_shared_info);
sky2->rx_nfrags = space >> PAGE_SHIFT;
BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
if (sky2->rx_nfrags != 0) {
/* Compute residue after pages */
space = sky2->rx_nfrags << PAGE_SHIFT;
if (space < size)
size -= space;
else
size = 0;
/* Optimize to handle small packets and headers */
if (size < copybreak)
size = copybreak;
if (size < ETH_HLEN)
size = ETH_HLEN;
}
sky2->rx_data_size = size;
/* Fill Rx ring */
for (i = 0; i < sky2->rx_pending; i++) {
re = sky2->rx_ring + i;
re->skb = sky2_rx_alloc(sky2);
if (!re->skb)
goto nomem;
sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
sky2_rx_submit(sky2, re);
}
/*
* The receiver hangs if it receives frames larger than the
* packet buffer. As a workaround, truncate oversize frames, but
* the register is limited to 9 bits, so if you do frames > 2052
* you better get the MTU right!
*/
if (thresh > 0x1ff)
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
else {
sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
}
/* Tell chip about available buffers */
sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
return 0;
nomem:
sky2_rx_clean(sky2);
return -ENOMEM;
}
/* Bring up network interface. */
static int sky2_up(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u32 ramsize, rxspace, imask;
int cap, err = -ENOMEM;
struct net_device *otherdev = hw->dev[sky2->port^1];
/*
* On dual port PCI-X card, there is an problem where status
* can be received out of order due to split transactions
*/
if (otherdev && netif_running(otherdev) &&
(cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
struct sky2_port *osky2 = netdev_priv(otherdev);
u16 cmd;
cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
cmd &= ~PCI_X_CMD_MAX_SPLIT;
sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
sky2->rx_csum = 0;
osky2->rx_csum = 0;
}
if (netif_msg_ifup(sky2))
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
/* must be power of 2 */
sky2->tx_le = pci_alloc_consistent(hw->pdev,
TX_RING_SIZE *
sizeof(struct sky2_tx_le),
&sky2->tx_le_map);
if (!sky2->tx_le)
goto err_out;
sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
GFP_KERNEL);
if (!sky2->tx_ring)
goto err_out;
sky2->tx_prod = sky2->tx_cons = 0;
sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
&sky2->rx_le_map);
if (!sky2->rx_le)
goto err_out;
memset(sky2->rx_le, 0, RX_LE_BYTES);
sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
GFP_KERNEL);
if (!sky2->rx_ring)
goto err_out;
sky2_phy_power(hw, port, 1);
sky2_mac_init(hw, port);
/* Determine available ram buffer space in qwords. */
ramsize = sky2_read8(hw, B2_E_0) * 4096/8;
if (ramsize > 6*1024/8)
rxspace = ramsize - (ramsize + 2) / 3;
else
rxspace = ramsize / 2;
sky2_ramset(hw, rxqaddr[port], 0, rxspace-1);
sky2_ramset(hw, txqaddr[port], rxspace, ramsize-1);
/* Make sure SyncQ is disabled */
sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
RB_RST_SET);
sky2_qset(hw, txqaddr[port]);
/* Set almost empty threshold */
if (hw->chip_id == CHIP_ID_YUKON_EC_U
&& hw->chip_rev == CHIP_REV_YU_EC_U_A0)
sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
TX_RING_SIZE - 1);
err = sky2_rx_start(sky2);
if (err)
goto err_out;
/* Enable interrupts from phy/mac for port */
imask = sky2_read32(hw, B0_IMSK);
imask |= portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
return 0;
err_out:
if (sky2->rx_le) {
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
sky2->rx_le = NULL;
}
if (sky2->tx_le) {
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
sky2->tx_le = NULL;
}
kfree(sky2->tx_ring);
kfree(sky2->rx_ring);
sky2->tx_ring = NULL;
sky2->rx_ring = NULL;
return err;
}
/* Modular subtraction in ring */
static inline int tx_dist(unsigned tail, unsigned head)
{
return (head - tail) & (TX_RING_SIZE - 1);
}
/* Number of list elements available for next tx */
static inline int tx_avail(const struct sky2_port *sky2)
{
return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
}
/* Estimate of number of transmit list elements required */
static unsigned tx_le_req(const struct sk_buff *skb)
{
unsigned count;
count = sizeof(dma_addr_t) / sizeof(u32);
count += skb_shinfo(skb)->nr_frags * count;
if (skb_is_gso(skb))
++count;
if (skb->ip_summed == CHECKSUM_PARTIAL)
++count;
return count;
}
/*
* Put one packet in ring for transmit.
* A single packet can generate multiple list elements, and
* the number of ring elements will probably be less than the number
* of list elements used.
*/
static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
struct sky2_tx_le *le = NULL;
struct tx_ring_info *re;
unsigned i, len;
dma_addr_t mapping;
u32 addr64;
u16 mss;
u8 ctrl;
if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
return NETDEV_TX_BUSY;
if (unlikely(netif_msg_tx_queued(sky2)))
printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
dev->name, sky2->tx_prod, skb->len);
len = skb_headlen(skb);
mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
addr64 = high32(mapping);
/* Send high bits if changed or crosses boundary */
if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(addr64);
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->tx_addr64 = high32(mapping + len);
}
/* Check for TCP Segmentation Offload */
mss = skb_shinfo(skb)->gso_size;
if (mss != 0) {
mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
mss += ETH_HLEN;
if (mss != sky2->tx_last_mss) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(mss);
le->opcode = OP_LRGLEN | HW_OWNER;
sky2->tx_last_mss = mss;
}
}
ctrl = 0;
#ifdef SKY2_VLAN_TAG_USED
/* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
if (!le) {
le = get_tx_le(sky2);
le->addr = 0;
le->opcode = OP_VLAN|HW_OWNER;
} else
le->opcode |= OP_VLAN;
le->length = cpu_to_be16(vlan_tx_tag_get(skb));
ctrl |= INS_VLAN;
}
#endif
/* Handle TCP checksum offload */
if (skb->ip_summed == CHECKSUM_PARTIAL) {
unsigned offset = skb->h.raw - skb->data;
u32 tcpsum;
tcpsum = offset << 16; /* sum start */
tcpsum |= offset + skb->csum; /* sum write */
ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
if (skb->nh.iph->protocol == IPPROTO_UDP)
ctrl |= UDPTCP;
if (tcpsum != sky2->tx_tcpsum) {
sky2->tx_tcpsum = tcpsum;
le = get_tx_le(sky2);
le->addr = cpu_to_le32(tcpsum);
le->length = 0; /* initial checksum value */
le->ctrl = 1; /* one packet */
le->opcode = OP_TCPLISW | HW_OWNER;
}
}
le = get_tx_le(sky2);
le->addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(len);
le->ctrl = ctrl;
le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
re = tx_le_re(sky2, le);
re->skb = skb;
pci_unmap_addr_set(re, mapaddr, mapping);
pci_unmap_len_set(re, maplen, len);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
frag->size, PCI_DMA_TODEVICE);
addr64 = high32(mapping);
if (addr64 != sky2->tx_addr64) {
le = get_tx_le(sky2);
le->addr = cpu_to_le32(addr64);
le->ctrl = 0;
le->opcode = OP_ADDR64 | HW_OWNER;
sky2->tx_addr64 = addr64;
}
le = get_tx_le(sky2);
le->addr = cpu_to_le32((u32) mapping);
le->length = cpu_to_le16(frag->size);
le->ctrl = ctrl;
le->opcode = OP_BUFFER | HW_OWNER;
re = tx_le_re(sky2, le);
re->skb = skb;
pci_unmap_addr_set(re, mapaddr, mapping);
pci_unmap_len_set(re, maplen, frag->size);
}
le->ctrl |= EOP;
if (tx_avail(sky2) <= MAX_SKB_TX_LE)
netif_stop_queue(dev);
sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
dev->trans_start = jiffies;
return NETDEV_TX_OK;
}
/*
* Free ring elements from starting at tx_cons until "done"
*
* NB: the hardware will tell us about partial completion of multi-part
* buffers so make sure not to free skb to early.
*/
static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
{
struct net_device *dev = sky2->netdev;
struct pci_dev *pdev = sky2->hw->pdev;
unsigned idx;
BUG_ON(done >= TX_RING_SIZE);
for (idx = sky2->tx_cons; idx != done;
idx = RING_NEXT(idx, TX_RING_SIZE)) {
struct sky2_tx_le *le = sky2->tx_le + idx;
struct tx_ring_info *re = sky2->tx_ring + idx;
switch(le->opcode & ~HW_OWNER) {
case OP_LARGESEND:
case OP_PACKET:
pci_unmap_single(pdev,
pci_unmap_addr(re, mapaddr),
pci_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
break;
case OP_BUFFER:
pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
pci_unmap_len(re, maplen),
PCI_DMA_TODEVICE);
break;
}
if (le->ctrl & EOP) {
if (unlikely(netif_msg_tx_done(sky2)))
printk(KERN_DEBUG "%s: tx done %u\n",
dev->name, idx);
dev_kfree_skb_any(re->skb);
}
le->opcode = 0; /* paranoia */
}
sky2->tx_cons = idx;
if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
netif_wake_queue(dev);
}
/* Cleanup all untransmitted buffers, assume transmitter not running */
static void sky2_tx_clean(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
netif_tx_lock_bh(dev);
sky2_tx_complete(sky2, sky2->tx_prod);
netif_tx_unlock_bh(dev);
}
/* Network shutdown */
static int sky2_down(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ctrl;
u32 imask;
/* Never really got started! */
if (!sky2->tx_le)
return 0;
if (netif_msg_ifdown(sky2))
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
/* Stop more packets from being queued */
netif_stop_queue(dev);
/* Disable port IRQ */
imask = sky2_read32(hw, B0_IMSK);
imask &= ~portirq_msk[port];
sky2_write32(hw, B0_IMSK, imask);
sky2_gmac_reset(hw, port);
/* Stop transmitter */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
RB_RST_SET | RB_DIS_OP_MD);
/* WA for dev. #4.209 */
if (hw->chip_id == CHIP_ID_YUKON_EC_U
&& (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
sky2->speed != SPEED_1000 ?
TX_STFW_ENA : TX_STFW_DIS);
ctrl = gma_read16(hw, port, GM_GP_CTRL);
ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
gma_write16(hw, port, GM_GP_CTRL, ctrl);
sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
/* Workaround shared GMAC reset */
if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
&& port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
/* Disable Force Sync bit and Enable Alloc bit */
sky2_write8(hw, SK_REG(port, TXA_CTRL),
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
/* Reset the PCI FIFO of the async Tx queue */
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
BMU_RST_SET | BMU_FIFO_RST);
/* Reset the Tx prefetch units */
sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
PREF_UNIT_RST_SET);
sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
sky2_rx_stop(sky2);
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
sky2_phy_power(hw, port, 0);
/* turn off LED's */
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
synchronize_irq(hw->pdev->irq);
sky2_tx_clean(dev);
sky2_rx_clean(sky2);
pci_free_consistent(hw->pdev, RX_LE_BYTES,
sky2->rx_le, sky2->rx_le_map);
kfree(sky2->rx_ring);
pci_free_consistent(hw->pdev,
TX_RING_SIZE * sizeof(struct sky2_tx_le),
sky2->tx_le, sky2->tx_le_map);
kfree(sky2->tx_ring);
sky2->tx_le = NULL;
sky2->rx_le = NULL;
sky2->rx_ring = NULL;
sky2->tx_ring = NULL;
return 0;
}
static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
{
if (!sky2_is_copper(hw))
return SPEED_1000;
if (hw->chip_id == CHIP_ID_YUKON_FE)
return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
switch (aux & PHY_M_PS_SPEED_MSK) {
case PHY_M_PS_SPEED_1000:
return SPEED_1000;
case PHY_M_PS_SPEED_100:
return SPEED_100;
default:
return SPEED_10;
}
}
static void sky2_link_up(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
static const char *fc_name[] = {
[FC_NONE] = "none",
[FC_TX] = "tx",
[FC_RX] = "rx",
[FC_BOTH] = "both",
};
/* enable Rx/Tx */
reg = gma_read16(hw, port, GM_GP_CTRL);
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
gma_write16(hw, port, GM_GP_CTRL, reg);
gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
netif_carrier_on(sky2->netdev);
netif_wake_queue(sky2->netdev);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG),
LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
switch(sky2->speed) {
case SPEED_10:
led |= PHY_M_LEDC_INIT_CTRL(7);
break;
case SPEED_100:
led |= PHY_M_LEDC_STA1_CTRL(7);
break;
case SPEED_1000:
led |= PHY_M_LEDC_STA0_CTRL(7);
break;
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
}
if (netif_msg_link(sky2))
printk(KERN_INFO PFX
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
sky2->netdev->name, sky2->speed,
sky2->duplex == DUPLEX_FULL ? "full" : "half",
fc_name[sky2->flow_status]);
}
static void sky2_link_down(struct sky2_port *sky2)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 reg;
gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
reg = gma_read16(hw, port, GM_GP_CTRL);
reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
gma_write16(hw, port, GM_GP_CTRL, reg);
if (sky2->flow_status == FC_RX) {
/* restore Asymmetric Pause bit */
gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
| PHY_M_AN_ASP);
}
netif_carrier_off(sky2->netdev);
netif_stop_queue(sky2->netdev);
/* Turn on link LED */
sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
if (netif_msg_link(sky2))
printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
sky2_phy_init(hw, port);
}
static enum flow_control sky2_flow(int rx, int tx)
{
if (rx)
return tx ? FC_BOTH : FC_RX;
else
return tx ? FC_TX : FC_NONE;
}
static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 lpa;
lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
if (lpa & PHY_M_AN_RF) {
printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
return -1;
}
if (!(aux & PHY_M_PS_SPDUP_RES)) {
printk(KERN_ERR PFX "%s: speed/duplex mismatch",
sky2->netdev->name);
return -1;
}
sky2->speed = sky2_phy_speed(hw, aux);
sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
/* Pause bits are offset (9..8) */
if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
aux >>= 6;
sky2->flow_status = sky2_flow(aux & PHY_M_PS_RX_P_EN,
aux & PHY_M_PS_TX_P_EN);
if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
&& hw->chip_id != CHIP_ID_YUKON_EC_U)
sky2->flow_status = FC_NONE;
if (aux & PHY_M_PS_RX_P_EN)
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
else
sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
return 0;
}
/* Interrupt from PHY */
static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u16 istatus, phystat;
if (!netif_running(dev))
return;
spin_lock(&sky2->phy_lock);
istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
sky2->netdev->name, istatus, phystat);
if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
if (sky2_autoneg_done(sky2, phystat) == 0)
sky2_link_up(sky2);
goto out;
}
if (istatus & PHY_M_IS_LSP_CHANGE)
sky2->speed = sky2_phy_speed(hw, phystat);
if (istatus & PHY_M_IS_DUP_CHANGE)
sky2->duplex =
(phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
if (istatus & PHY_M_IS_LST_CHANGE) {
if (phystat & PHY_M_PS_LINK_UP)
sky2_link_up(sky2);
else
sky2_link_down(sky2);
}
out:
spin_unlock(&sky2->phy_lock);
}
/* Transmit timeout is only called if we are running, carries is up
* and tx queue is full (stopped).
*/
static void sky2_tx_timeout(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned txq = txqaddr[sky2->port];
u16 report, done;
if (netif_msg_timer(sky2))
printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
dev->name,
sky2->tx_cons, sky2->tx_prod, report, done);
if (report != done) {
printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
} else if (report != sky2->tx_cons) {
printk(KERN_INFO PFX "status report lost?\n");
netif_tx_lock_bh(dev);
sky2_tx_complete(sky2, report);
netif_tx_unlock_bh(dev);
} else {
printk(KERN_INFO PFX "hardware hung? flushing\n");
sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
sky2_tx_clean(dev);
sky2_qset(hw, txq);
sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
}
}
static int sky2_change_mtu(struct net_device *dev, int new_mtu)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
int err;
u16 ctl, mode;
u32 imask;
if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
return -EINVAL;
if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
return -EINVAL;
if (!netif_running(dev)) {
dev->mtu = new_mtu;
return 0;
}
imask = sky2_read32(hw, B0_IMSK);
sky2_write32(hw, B0_IMSK, 0);
dev->trans_start = jiffies; /* prevent tx timeout */
netif_stop_queue(dev);
netif_poll_disable(hw->dev[0]);
synchronize_irq(hw->pdev->irq);
ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
sky2_rx_stop(sky2);
sky2_rx_clean(sky2);
dev->mtu = new_mtu;
mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
if (dev->mtu > ETH_DATA_LEN)
mode |= GM_SMOD_JUMBO_ENA;
gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
err = sky2_rx_start(sky2);
sky2_write32(hw, B0_IMSK, imask);
if (err)
dev_close(dev);
else {
gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
netif_poll_enable(hw->dev[0]);
netif_wake_queue(dev);
}
return err;
}
/* For small just reuse existing skb for next receive */
static struct sk_buff *receive_copy(struct sky2_port *sky2,
const struct rx_ring_info *re,
unsigned length)
{
struct sk_buff *skb;
skb = netdev_alloc_skb(sky2->netdev, length + 2);
if (likely(skb)) {
skb_reserve(skb, 2);
pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
memcpy(skb->data, re->skb->data, length);
skb->ip_summed = re->skb->ip_summed;
skb->csum = re->skb->csum;
pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
length, PCI_DMA_FROMDEVICE);
re->skb->ip_summed = CHECKSUM_NONE;
skb_put(skb, length);
}
return skb;
}
/* Adjust length of skb with fragments to match received data */
static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
unsigned int length)
{
int i, num_frags;
unsigned int size;
/* put header into skb */
size = min(length, hdr_space);
skb->tail += size;
skb->len += size;
length -= size;
num_frags = skb_shinfo(skb)->nr_frags;
for (i = 0; i < num_frags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
if (length == 0) {
/* don't need this page */
__free_page(frag->page);
--skb_shinfo(skb)->nr_frags;
} else {
size = min(length, (unsigned) PAGE_SIZE);
frag->size = size;
skb->data_len += size;
skb->truesize += size;
skb->len += size;
length -= size;
}
}
}
/* Normal packet - take skb from ring element and put in a new one */
static struct sk_buff *receive_new(struct sky2_port *sky2,
struct rx_ring_info *re,
unsigned int length)
{
struct sk_buff *skb, *nskb;
unsigned hdr_space = sky2->rx_data_size;
pr_debug(PFX "receive new length=%d\n", length);
/* Don't be tricky about reusing pages (yet) */
nskb = sky2_rx_alloc(sky2);
if (unlikely(!nskb))
return NULL;
skb = re->skb;
sky2_rx_unmap_skb(sky2->hw->pdev, re);
prefetch(skb->data);
re->skb = nskb;
sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
if (skb_shinfo(skb)->nr_frags)
skb_put_frags(skb, hdr_space, length);
else
skb_put(skb, length);
return skb;
}
/*
* Receive one packet.
* For larger packets, get new buffer.
*/
static struct sk_buff *sky2_receive(struct net_device *dev,
u16 length, u32 status)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
struct sk_buff *skb = NULL;
if (unlikely(netif_msg_rx_status(sky2)))
printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
dev->name, sky2->rx_next, status, length);
sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
prefetch(sky2->rx_ring + sky2->rx_next);
if (status & GMR_FS_ANY_ERR)
goto error;
if (!(status & GMR_FS_RX_OK))
goto resubmit;
if (length > dev->mtu + ETH_HLEN)
goto oversize;
if (length < copybreak)
skb = receive_copy(sky2, re, length);
else
skb = receive_new(sky2, re, length);
resubmit:
sky2_rx_submit(sky2, re);
return skb;
oversize:
++sky2->net_stats.rx_over_errors;
goto resubmit;
error:
++sky2->net_stats.rx_errors;
if (status & GMR_FS_RX_FF_OV) {
sky2->net_stats.rx_fifo_errors++;
goto resubmit;
}
if (netif_msg_rx_err(sky2) && net_ratelimit())
printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
dev->name, status, length);
if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
sky2->net_stats.rx_length_errors++;
if (status & GMR_FS_FRAGMENT)
sky2->net_stats.rx_frame_errors++;
if (status & GMR_FS_CRC_ERR)
sky2->net_stats.rx_crc_errors++;
goto resubmit;
}
/* Transmit complete */
static inline void sky2_tx_done(struct net_device *dev, u16 last)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (netif_running(dev)) {
netif_tx_lock(dev);
sky2_tx_complete(sky2, last);
netif_tx_unlock(dev);
}
}
/* Process status response ring */
static int sky2_status_intr(struct sky2_hw *hw, int to_do)
{
struct sky2_port *sky2;
int work_done = 0;
unsigned buf_write[2] = { 0, 0 };
u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
rmb();
while (hw->st_idx != hwidx) {
struct sky2_status_le *le = hw->st_le + hw->st_idx;
struct net_device *dev;
struct sk_buff *skb;
u32 status;
u16 length;
hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
BUG_ON(le->link >= 2);
dev = hw->dev[le->link];
sky2 = netdev_priv(dev);
length = le16_to_cpu(le->length);
status = le32_to_cpu(le->status);
switch (le->opcode & ~HW_OWNER) {
case OP_RXSTAT:
skb = sky2_receive(dev, length, status);
if (!skb)
goto force_update;
skb->protocol = eth_type_trans(skb, dev);
dev->last_rx = jiffies;
#ifdef SKY2_VLAN_TAG_USED
if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
vlan_hwaccel_receive_skb(skb,
sky2->vlgrp,
be16_to_cpu(sky2->rx_tag));
} else
#endif
netif_receive_skb(skb);
/* Update receiver after 16 frames */
if (++buf_write[le->link] == RX_BUF_WRITE) {
force_update:
sky2_put_idx(hw, rxqaddr[le->link], sky2->rx_put);
buf_write[le->link] = 0;
}
/* Stop after net poll weight */
if (++work_done >= to_do)
goto exit_loop;
break;
#ifdef SKY2_VLAN_TAG_USED
case OP_RXVLAN:
sky2->rx_tag = length;
break;
case OP_RXCHKSVLAN:
sky2->rx_tag = length;
/* fall through */
#endif
case OP_RXCHKS:
skb = sky2->rx_ring[sky2->rx_next].skb;
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = status & 0xffff;
break;
case OP_TXINDEXLE:
/* TX index reports status for both ports */
BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
sky2_tx_done(hw->dev[0], status & 0xfff);
if (hw->dev[1])
sky2_tx_done(hw->dev[1],
((status >> 24) & 0xff)
| (u16)(length & 0xf) << 8);
break;
default:
if (net_ratelimit())
printk(KERN_WARNING PFX
"unknown status opcode 0x%x\n", le->opcode);
goto exit_loop;
}
}
/* Fully processed status ring so clear irq */
sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
exit_loop:
if (buf_write[0]) {
sky2 = netdev_priv(hw->dev[0]);
sky2_put_idx(hw, Q_R1, sky2->rx_put);
}
if (buf_write[1]) {
sky2 = netdev_priv(hw->dev[1]);
sky2_put_idx(hw, Q_R2, sky2->rx_put);
}
return work_done;
}
static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
{
struct net_device *dev = hw->dev[port];
if (net_ratelimit())
printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
dev->name, status);
if (status & Y2_IS_PAR_RD1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data read parity error\n",
dev->name);
/* Clear IRQ */
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
}
if (status & Y2_IS_PAR_WR1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: ram data write parity error\n",
dev->name);
sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
}
if (status & Y2_IS_PAR_MAC1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
}
if (status & Y2_IS_PAR_RX1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
}
if (status & Y2_IS_TCP_TXA1) {
if (net_ratelimit())
printk(KERN_ERR PFX "%s: TCP segmentation error\n",
dev->name);
sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
}
}
static void sky2_hw_intr(struct sky2_hw *hw)
{
u32 status = sky2_read32(hw, B0_HWE_ISRC);
if (status & Y2_IS_TIST_OV)
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
u16 pci_err;
pci_err = sky2_pci_read16(hw, PCI_STATUS);
if (net_ratelimit())
printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
pci_name(hw->pdev), pci_err);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PCI_STATUS,
pci_err | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
}
if (status & Y2_IS_PCI_EXP) {
/* PCI-Express uncorrectable Error occurred */
u32 pex_err;
pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
if (net_ratelimit())
printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
pci_name(hw->pdev), pex_err);
/* clear the interrupt */
sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
0xffffffffUL);
sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
if (pex_err & PEX_FATAL_ERRORS) {
u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
hwmsk &= ~Y2_IS_PCI_EXP;
sky2_write32(hw, B0_HWE_IMSK, hwmsk);
}
}
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 0, status);
status >>= 8;
if (status & Y2_HWE_L1_MASK)
sky2_hw_error(hw, 1, status);
}
static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
if (netif_msg_intr(sky2))
printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
dev->name, status);
if (status & GM_IS_RX_FF_OR) {
++sky2->net_stats.rx_fifo_errors;
sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
}
if (status & GM_IS_TX_FF_UR) {
++sky2->net_stats.tx_fifo_errors;
sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
}
}
/* This should never happen it is a fatal situation */
static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
const char *rxtx, u32 mask)
{
struct net_device *dev = hw->dev[port];
struct sky2_port *sky2 = netdev_priv(dev);
u32 imask;
printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
dev ? dev->name : "<not registered>", rxtx);
imask = sky2_read32(hw, B0_IMSK);
imask &= ~mask;
sky2_write32(hw, B0_IMSK, imask);
if (dev) {
spin_lock(&sky2->phy_lock);
sky2_link_down(sky2);
spin_unlock(&sky2->phy_lock);
}
}
/* If idle then force a fake soft NAPI poll once a second
* to work around cases where sharing an edge triggered interrupt.
*/
static inline void sky2_idle_start(struct sky2_hw *hw)
{
if (idle_timeout > 0)
mod_timer(&hw->idle_timer,
jiffies + msecs_to_jiffies(idle_timeout));
}
static void sky2_idle(unsigned long arg)
{
struct sky2_hw *hw = (struct sky2_hw *) arg;
struct net_device *dev = hw->dev[0];
if (__netif_rx_schedule_prep(dev))
__netif_rx_schedule(dev);
mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
}
static int sky2_poll(struct net_device *dev0, int *budget)
{
struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
int work_limit = min(dev0->quota, *budget);
int work_done = 0;
u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
if (status & Y2_IS_HW_ERR)
sky2_hw_intr(hw);
if (status & Y2_IS_IRQ_PHY1)
sky2_phy_intr(hw, 0);
if (status & Y2_IS_IRQ_PHY2)
sky2_phy_intr(hw, 1);
if (status & Y2_IS_IRQ_MAC1)
sky2_mac_intr(hw, 0);
if (status & Y2_IS_IRQ_MAC2)
sky2_mac_intr(hw, 1);
if (status & Y2_IS_CHK_RX1)
sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
if (status & Y2_IS_CHK_RX2)
sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
if (status & Y2_IS_CHK_TXA1)
sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
if (status & Y2_IS_CHK_TXA2)
sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
work_done = sky2_status_intr(hw, work_limit);
if (work_done < work_limit) {
netif_rx_complete(dev0);
sky2_read32(hw, B0_Y2_SP_LISR);
return 0;
} else {
*budget -= work_done;
dev0->quota -= work_done;
return 1;
}
}
static irqreturn_t sky2_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
struct net_device *dev0 = hw->dev[0];
u32 status;
/* Reading this mask interrupts as side effect */
status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0 || status == ~0)
return IRQ_NONE;
prefetch(&hw->st_le[hw->st_idx]);
if (likely(__netif_rx_schedule_prep(dev0)))
__netif_rx_schedule(dev0);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void sky2_netpoll(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct net_device *dev0 = sky2->hw->dev[0];
if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
__netif_rx_schedule(dev0);
}
#endif
/* Chip internal frequency for clock calculations */
static inline u32 sky2_mhz(const struct sky2_hw *hw)
{
switch (hw->chip_id) {
case CHIP_ID_YUKON_EC:
case CHIP_ID_YUKON_EC_U:
return 125; /* 125 Mhz */
case CHIP_ID_YUKON_FE:
return 100; /* 100 Mhz */
default: /* YUKON_XL */
return 156; /* 156 Mhz */
}
}
static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
{
return sky2_mhz(hw) * us;
}
static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
{
return clk / sky2_mhz(hw);
}
static int sky2_reset(struct sky2_hw *hw)
{
u16 status;
u8 t8;
int i;
sky2_write8(hw, B0_CTST, CS_RST_CLR);
hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
pci_name(hw->pdev), hw->chip_id);
return -EOPNOTSUPP;
}
hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
/* This rev is really old, and requires untested workarounds */
if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
hw->chip_id, hw->chip_rev);
return -EOPNOTSUPP;
}
/* disable ASF */
if (hw->chip_id <= CHIP_ID_YUKON_EC) {
sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
}
/* do a SW reset */
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_write8(hw, B0_CTST, CS_RST_CLR);
/* clear PCI errors, if any */
status = sky2_pci_read16(hw, PCI_STATUS);
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
sky2_write8(hw, B0_CTST, CS_MRST_CLR);
/* clear any PEX errors */
if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
hw->ports = 1;
t8 = sky2_read8(hw, B2_Y2_HW_RES);
if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
++hw->ports;
}
sky2_set_power_state(hw, PCI_D0);
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
}
sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
/* Clear I2C IRQ noise */
sky2_write32(hw, B2_I2C_IRQ, 1);
/* turn off hardware timer (unused) */
sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
/* Turn off descriptor polling */
sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
/* Turn off receive timestamp */
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
/* enable the Tx Arbiters */
for (i = 0; i < hw->ports; i++)
sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
/* Initialize ram interface */
for (i = 0; i < hw->ports; i++) {
sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
}
sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
for (i = 0; i < hw->ports; i++)
sky2_gmac_reset(hw, i);
memset(hw->st_le, 0, STATUS_LE_BYTES);
hw->st_idx = 0;
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
/* Set the list last index */
sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
sky2_write16(hw, STAT_TX_IDX_TH, 10);
sky2_write8(hw, STAT_FIFO_WM, 16);
/* set Status-FIFO ISR watermark */
if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
else
sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
/* enable status unit */
sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
return 0;
}
static u32 sky2_supported_modes(const struct sky2_hw *hw)
{
if (sky2_is_copper(hw)) {
u32 modes = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP;
if (hw->chip_id != CHIP_ID_YUKON_FE)
modes |= SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full;
return modes;
} else
return SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg
| SUPPORTED_FIBRE;
}
static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->supported = sky2_supported_modes(hw);
ecmd->phy_address = PHY_ADDR_MARV;
if (sky2_is_copper(hw)) {
ecmd->supported = SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
| SUPPORTED_Autoneg | SUPPORTED_TP;
ecmd->port = PORT_TP;
ecmd->speed = sky2->speed;
} else {
ecmd->speed = SPEED_1000;
ecmd->port = PORT_FIBRE;
}
ecmd->advertising = sky2->advertising;
ecmd->autoneg = sky2->autoneg;
ecmd->duplex = sky2->duplex;
return 0;
}
static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
const struct sky2_hw *hw = sky2->hw;
u32 supported = sky2_supported_modes(hw);
if (ecmd->autoneg == AUTONEG_ENABLE) {
ecmd->advertising = supported;
sky2->duplex = -1;
sky2->speed = -1;
} else {
u32 setting;
switch (ecmd->speed) {
case SPEED_1000:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_1000baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_1000baseT_Half;
else
return -EINVAL;
break;
case SPEED_100:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_100baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_100baseT_Half;
else
return -EINVAL;
break;
case SPEED_10:
if (ecmd->duplex == DUPLEX_FULL)
setting = SUPPORTED_10baseT_Full;
else if (ecmd->duplex == DUPLEX_HALF)
setting = SUPPORTED_10baseT_Half;
else
return -EINVAL;
break;
default:
return -EINVAL;
}
if ((setting & supported) == 0)
return -EINVAL;
sky2->speed = ecmd->speed;
sky2->duplex = ecmd->duplex;
}
sky2->autoneg = ecmd->autoneg;
sky2->advertising = ecmd->advertising;
if (netif_running(dev))
sky2_phy_reinit(sky2);
return 0;
}
static void sky2_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct sky2_port *sky2 = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->fw_version, "N/A");
strcpy(info->bus_info, pci_name(sky2->hw->pdev));
}
static const struct sky2_stat {
char name[ETH_GSTRING_LEN];
u16 offset;
} sky2_stats[] = {
{ "tx_bytes", GM_TXO_OK_HI },
{ "rx_bytes", GM_RXO_OK_HI },
{ "tx_broadcast", GM_TXF_BC_OK },
{ "rx_broadcast", GM_RXF_BC_OK },
{ "tx_multicast", GM_TXF_MC_OK },
{ "rx_multicast", GM_RXF_MC_OK },
{ "tx_unicast", GM_TXF_UC_OK },
{ "rx_unicast", GM_RXF_UC_OK },
{ "tx_mac_pause", GM_TXF_MPAUSE },
{ "rx_mac_pause", GM_RXF_MPAUSE },
{ "collisions", GM_TXF_COL },
{ "late_collision",GM_TXF_LAT_COL },
{ "aborted", GM_TXF_ABO_COL },
{ "single_collisions", GM_TXF_SNG_COL },
{ "multi_collisions", GM_TXF_MUL_COL },
{ "rx_short", GM_RXF_SHT },
{ "rx_runt", GM_RXE_FRAG },
{ "rx_64_byte_packets", GM_RXF_64B },
{ "rx_65_to_127_byte_packets", GM_RXF_127B },
{ "rx_128_to_255_byte_packets", GM_RXF_255B },
{ "rx_256_to_511_byte_packets", GM_RXF_511B },
{ "rx_512_to_1023_byte_packets", GM_RXF_1023B },
{ "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
{ "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
{ "rx_too_long", GM_RXF_LNG_ERR },
{ "rx_fifo_overflow", GM_RXE_FIFO_OV },
{ "rx_jabber", GM_RXF_JAB_PKT },
{ "rx_fcs_error", GM_RXF_FCS_ERR },
{ "tx_64_byte_packets", GM_TXF_64B },
{ "tx_65_to_127_byte_packets", GM_TXF_127B },
{ "tx_128_to_255_byte_packets", GM_TXF_255B },
{ "tx_256_to_511_byte_packets", GM_TXF_511B },
{ "tx_512_to_1023_byte_packets", GM_TXF_1023B },
{ "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
{ "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
{ "tx_fifo_underrun", GM_TXE_FIFO_UR },
};
static u32 sky2_get_rx_csum(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
return sky2->rx_csum;
}
static int sky2_set_rx_csum(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2->rx_csum = data;
sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
return 0;
}
static u32 sky2_get_msglevel(struct net_device *netdev)
{
struct sky2_port *sky2 = netdev_priv(netdev);
return sky2->msg_enable;
}
static int sky2_nway_reset(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
return -EINVAL;
sky2_phy_reinit(sky2);
return 0;
}
static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
{
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
int i;
data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_TXO_OK_LO);
data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
| (u64) gma_read32(hw, port, GM_RXO_OK_LO);
for (i = 2; i < count; i++)
data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
}
static void sky2_set_msglevel(struct net_device *netdev, u32 value)
{
struct sky2_port *sky2 = netdev_priv(netdev);
sky2->msg_enable = value;
}
static int sky2_get_stats_count(struct net_device *dev)
{
return ARRAY_SIZE(sky2_stats);
}
static void sky2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 * data)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
}
static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
{
int i;
switch (stringset) {
case ETH_SS_STATS:
for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
memcpy(data + i * ETH_GSTRING_LEN,
sky2_stats[i].name, ETH_GSTRING_LEN);
break;
}
}
/* Use hardware MIB variables for critical path statistics and
* transmit feedback not reported at interrupt.
* Other errors are accounted for in interrupt handler.
*/
static struct net_device_stats *sky2_get_stats(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
u64 data[13];
sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
sky2->net_stats.tx_bytes = data[0];
sky2->net_stats.rx_bytes = data[1];
sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
sky2->net_stats.multicast = data[3] + data[5];
sky2->net_stats.collisions = data[10];
sky2->net_stats.tx_aborted_errors = data[12];
return &sky2->net_stats;
}
static int sky2_set_mac_address(struct net_device *dev, void *p)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
const struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
dev->dev_addr, ETH_ALEN);
memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
dev->dev_addr, ETH_ALEN);
/* virtual address for data */
gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
/* physical address: used for pause frames */
gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
return 0;
}
static void inline sky2_add_filter(u8 filter[8], const u8 *addr)
{
u32 bit;
bit = ether_crc(ETH_ALEN, addr) & 63;
filter[bit >> 3] |= 1 << (bit & 7);
}
static void sky2_set_multicast(struct net_device *dev)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
struct dev_mc_list *list = dev->mc_list;
u16 reg;
u8 filter[8];
int rx_pause;
static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
memset(filter, 0, sizeof(filter));
reg = gma_read16(hw, port, GM_RX_CTRL);
reg |= GM_RXCR_UCF_ENA;
if (dev->flags & IFF_PROMISC) /* promiscuous */
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
else if (dev->flags & IFF_ALLMULTI)
memset(filter, 0xff, sizeof(filter));
else if (dev->mc_count == 0 && !rx_pause)
reg &= ~GM_RXCR_MCF_ENA;
else {
int i;
reg |= GM_RXCR_MCF_ENA;
if (rx_pause)
sky2_add_filter(filter, pause_mc_addr);
for (i = 0; list && i < dev->mc_count; i++, list = list->next)
sky2_add_filter(filter, list->dmi_addr);
}
gma_write16(hw, port, GM_MC_ADDR_H1,
(u16) filter[0] | ((u16) filter[1] << 8));
gma_write16(hw, port, GM_MC_ADDR_H2,
(u16) filter[2] | ((u16) filter[3] << 8));
gma_write16(hw, port, GM_MC_ADDR_H3,
(u16) filter[4] | ((u16) filter[5] << 8));
gma_write16(hw, port, GM_MC_ADDR_H4,
(u16) filter[6] | ((u16) filter[7] << 8));
gma_write16(hw, port, GM_RX_CTRL, reg);
}
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
{
u16 pg;
switch (hw->chip_id) {
case CHIP_ID_YUKON_XL:
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
on ? (PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(7) |
PHY_M_LEDC_STA1_CTRL(7) |
PHY_M_LEDC_STA0_CTRL(7))
: 0);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
on ? PHY_M_LED_MO_DUP(MO_LED_ON) |
PHY_M_LED_MO_10(MO_LED_ON) |
PHY_M_LED_MO_100(MO_LED_ON) |
PHY_M_LED_MO_1000(MO_LED_ON) |
PHY_M_LED_MO_RX(MO_LED_ON)
: PHY_M_LED_MO_DUP(MO_LED_OFF) |
PHY_M_LED_MO_10(MO_LED_OFF) |
PHY_M_LED_MO_100(MO_LED_OFF) |
PHY_M_LED_MO_1000(MO_LED_OFF) |
PHY_M_LED_MO_RX(MO_LED_OFF));
}
}
/* blink LED's for finding board */
static int sky2_phys_id(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ledctrl, ledover = 0;
long ms;
int interrupted;
int onoff = 1;
if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
else
ms = data * 1000;
/* save initial values */
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
}
interrupted = 0;
while (!interrupted && ms > 0) {
sky2_led(hw, port, onoff);
onoff = !onoff;
spin_unlock_bh(&sky2->phy_lock);
interrupted = msleep_interruptible(250);
spin_lock_bh(&sky2->phy_lock);
ms -= 250;
}
/* resume regularly scheduled programming */
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
}
spin_unlock_bh(&sky2->phy_lock);
return 0;
}
static void sky2_get_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
switch (sky2->flow_mode) {
case FC_NONE:
ecmd->tx_pause = ecmd->rx_pause = 0;
break;
case FC_TX:
ecmd->tx_pause = 1, ecmd->rx_pause = 0;
break;
case FC_RX:
ecmd->tx_pause = 0, ecmd->rx_pause = 1;
break;
case FC_BOTH:
ecmd->tx_pause = ecmd->rx_pause = 1;
}
ecmd->autoneg = sky2->autoneg;
}
static int sky2_set_pauseparam(struct net_device *dev,
struct ethtool_pauseparam *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
sky2->autoneg = ecmd->autoneg;
sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
if (netif_running(dev))
sky2_phy_reinit(sky2);
return 0;
}
static int sky2_get_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
ecmd->tx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs = 0;
else {
u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
ecmd->rx_coalesce_usecs_irq = 0;
else {
u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
}
ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
return 0;
}
/* Note: this affect both ports */
static int sky2_set_coalesce(struct net_device *dev,
struct ethtool_coalesce *ecmd)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
if (ecmd->tx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs > tmax ||
ecmd->rx_coalesce_usecs_irq > tmax)
return -EINVAL;
if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
return -EINVAL;
if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
return -EINVAL;
if (ecmd->tx_coalesce_usecs == 0)
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_TX_TIMER_INI,
sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
}
sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs == 0)
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_LEV_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
if (ecmd->rx_coalesce_usecs_irq == 0)
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
else {
sky2_write32(hw, STAT_ISR_TIMER_INI,
sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
}
sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
return 0;
}
static void sky2_get_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
ering->rx_max_pending = RX_MAX_PENDING;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = 0;
ering->tx_max_pending = TX_RING_SIZE - 1;
ering->rx_pending = sky2->rx_pending;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = 0;
ering->tx_pending = sky2->tx_pending;
}
static int sky2_set_ringparam(struct net_device *dev,
struct ethtool_ringparam *ering)
{
struct sky2_port *sky2 = netdev_priv(dev);
int err = 0;
if (ering->rx_pending > RX_MAX_PENDING ||
ering->rx_pending < 8 ||
ering->tx_pending < MAX_SKB_TX_LE ||
ering->tx_pending > TX_RING_SIZE - 1)
return -EINVAL;
if (netif_running(dev))
sky2_down(dev);
sky2->rx_pending = ering->rx_pending;
sky2->tx_pending = ering->tx_pending;
if (netif_running(dev)) {
err = sky2_up(dev);
if (err)
dev_close(dev);
else
sky2_set_multicast(dev);
}
return err;
}
static int sky2_get_regs_len(struct net_device *dev)
{
return 0x4000;
}
/*
* Returns copy of control register region
* Note: access to the RAM address register set will cause timeouts.
*/
static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *p)
{
const struct sky2_port *sky2 = netdev_priv(dev);
const void __iomem *io = sky2->hw->regs;
BUG_ON(regs->len < B3_RI_WTO_R1);
regs->version = 1;
memset(p, 0, regs->len);
memcpy_fromio(p, io, B3_RAM_ADDR);
memcpy_fromio(p + B3_RI_WTO_R1,
io + B3_RI_WTO_R1,
regs->len - B3_RI_WTO_R1);
}
static const struct ethtool_ops sky2_ethtool_ops = {
.get_settings = sky2_get_settings,
.set_settings = sky2_set_settings,
.get_drvinfo = sky2_get_drvinfo,
.get_msglevel = sky2_get_msglevel,
.set_msglevel = sky2_set_msglevel,
.nway_reset = sky2_nway_reset,
.get_regs_len = sky2_get_regs_len,
.get_regs = sky2_get_regs,
.get_link = ethtool_op_get_link,
.get_sg = ethtool_op_get_sg,
.set_sg = ethtool_op_set_sg,
.get_tx_csum = ethtool_op_get_tx_csum,
.set_tx_csum = ethtool_op_set_tx_csum,
.get_tso = ethtool_op_get_tso,
.set_tso = ethtool_op_set_tso,
.get_rx_csum = sky2_get_rx_csum,
.set_rx_csum = sky2_set_rx_csum,
.get_strings = sky2_get_strings,
.get_coalesce = sky2_get_coalesce,
.set_coalesce = sky2_set_coalesce,
.get_ringparam = sky2_get_ringparam,
.set_ringparam = sky2_set_ringparam,
.get_pauseparam = sky2_get_pauseparam,
.set_pauseparam = sky2_set_pauseparam,
.phys_id = sky2_phys_id,
.get_stats_count = sky2_get_stats_count,
.get_ethtool_stats = sky2_get_ethtool_stats,
.get_perm_addr = ethtool_op_get_perm_addr,
};
/* Initialize network device */
static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
unsigned port, int highmem)
{
struct sky2_port *sky2;
struct net_device *dev = alloc_etherdev(sizeof(*sky2));
if (!dev) {
printk(KERN_ERR "sky2 etherdev alloc failed");
return NULL;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &hw->pdev->dev);
dev->irq = hw->pdev->irq;
dev->open = sky2_up;
dev->stop = sky2_down;
dev->do_ioctl = sky2_ioctl;
dev->hard_start_xmit = sky2_xmit_frame;
dev->get_stats = sky2_get_stats;
dev->set_multicast_list = sky2_set_multicast;
dev->set_mac_address = sky2_set_mac_address;
dev->change_mtu = sky2_change_mtu;
SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
dev->tx_timeout = sky2_tx_timeout;
dev->watchdog_timeo = TX_WATCHDOG;
if (port == 0)
dev->poll = sky2_poll;
dev->weight = NAPI_WEIGHT;
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Network console (only works on port 0)
* because netpoll makes assumptions about NAPI
*/
if (port == 0)
dev->poll_controller = sky2_netpoll;
#endif
sky2 = netdev_priv(dev);
sky2->netdev = dev;
sky2->hw = hw;
sky2->msg_enable = netif_msg_init(debug, default_msg);
/* Auto speed and flow control */
sky2->autoneg = AUTONEG_ENABLE;
sky2->flow_mode = FC_BOTH;
sky2->duplex = -1;
sky2->speed = -1;
sky2->advertising = sky2_supported_modes(hw);
sky2->rx_csum = 1;
spin_lock_init(&sky2->phy_lock);
sky2->tx_pending = TX_DEF_PENDING;
sky2->rx_pending = RX_DEF_PENDING;
hw->dev[port] = dev;
sky2->port = port;
if (hw->chip_id != CHIP_ID_YUKON_EC_U)
dev->features |= NETIF_F_TSO;
if (highmem)
dev->features |= NETIF_F_HIGHDMA;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
#ifdef SKY2_VLAN_TAG_USED
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
dev->vlan_rx_register = sky2_vlan_rx_register;
dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
#endif
/* read the mac address */
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
/* device is off until link detection */
netif_carrier_off(dev);
netif_stop_queue(dev);
return dev;
}
static void __devinit sky2_show_addr(struct net_device *dev)
{
const struct sky2_port *sky2 = netdev_priv(dev);
if (netif_msg_probe(sky2))
printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
dev->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
}
/* Handle software interrupt used during MSI test */
static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
{
struct sky2_hw *hw = dev_id;
u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
if (status == 0)
return IRQ_NONE;
if (status & Y2_IS_IRQ_SW) {
hw->msi_detected = 1;
wake_up(&hw->msi_wait);
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_Y2_SP_ICR, 2);
return IRQ_HANDLED;
}
/* Test interrupt path by forcing a a software IRQ */
static int __devinit sky2_test_msi(struct sky2_hw *hw)
{
struct pci_dev *pdev = hw->pdev;
int err;
init_waitqueue_head (&hw->msi_wait);
sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
err = request_irq(pdev->irq, sky2_test_intr, IRQF_SHARED, DRV_NAME, hw);
if (err) {
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
pci_name(pdev), pdev->irq);
return err;
}
sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
sky2_read8(hw, B0_CTST);
wait_event_timeout(hw->msi_wait, hw->msi_detected, HZ/10);
if (!hw->msi_detected) {
/* MSI test failed, go back to INTx mode */
printk(KERN_INFO PFX "%s: No interrupt generated using MSI, "
"switching to INTx mode.\n",
pci_name(pdev));
err = -EOPNOTSUPP;
sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
}
sky2_write32(hw, B0_IMSK, 0);
sky2_read32(hw, B0_IMSK);
free_irq(pdev->irq, hw);
return err;
}
static int __devinit sky2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev, *dev1 = NULL;
struct sky2_hw *hw;
int err, pm_cap, using_dac = 0;
err = pci_enable_device(pdev);
if (err) {
printk(KERN_ERR PFX "%s cannot enable PCI device\n",
pci_name(pdev));
goto err_out;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
pci_name(pdev));
goto err_out;
}
pci_set_master(pdev);
/* Find power-management capability. */
pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (pm_cap == 0) {
printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
"aborting.\n");
err = -EIO;
goto err_out_free_regions;
}
if (sizeof(dma_addr_t) > sizeof(u32) &&
!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
using_dac = 1;
err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
if (err < 0) {
printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
"for consistent allocations\n", pci_name(pdev));
goto err_out_free_regions;
}
} else {
err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
if (err) {
printk(KERN_ERR PFX "%s no usable DMA configuration\n",
pci_name(pdev));
goto err_out_free_regions;
}
}
err = -ENOMEM;
hw = kzalloc(sizeof(*hw), GFP_KERNEL);
if (!hw) {
printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
pci_name(pdev));
goto err_out_free_regions;
}
hw->pdev = pdev;
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
if (!hw->regs) {
printk(KERN_ERR PFX "%s: cannot map device registers\n",
pci_name(pdev));
goto err_out_free_hw;
}
hw->pm_cap = pm_cap;
#ifdef __BIG_ENDIAN
/* The sk98lin vendor driver uses hardware byte swapping but
* this driver uses software swapping.
*/
{
u32 reg;
reg = sky2_pci_read32(hw, PCI_DEV_REG2);
reg &= ~PCI_REV_DESC;
sky2_pci_write32(hw, PCI_DEV_REG2, reg);
}
#endif
/* ring for status responses */
hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
&hw->st_dma);
if (!hw->st_le)
goto err_out_iounmap;
err = sky2_reset(hw);
if (err)
goto err_out_iounmap;
printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
hw->chip_id, hw->chip_rev);
dev = sky2_init_netdev(hw, 0, using_dac);
if (!dev)
goto err_out_free_pci;
if (!disable_msi && pci_enable_msi(pdev) == 0) {
err = sky2_test_msi(hw);
if (err == -EOPNOTSUPP)
pci_disable_msi(pdev);
else if (err)
goto err_out_free_netdev;
}
err = register_netdev(dev);
if (err) {
printk(KERN_ERR PFX "%s: cannot register net device\n",
pci_name(pdev));
goto err_out_free_netdev;
}
err = request_irq(pdev->irq, sky2_intr, IRQF_SHARED, dev->name, hw);
if (err) {
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
pci_name(pdev), pdev->irq);
goto err_out_unregister;
}
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
sky2_show_addr(dev);
if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
if (register_netdev(dev1) == 0)
sky2_show_addr(dev1);
else {
/* Failure to register second port need not be fatal */
printk(KERN_WARNING PFX
"register of second port failed\n");
hw->dev[1] = NULL;
free_netdev(dev1);
}
}
setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
sky2_idle_start(hw);
pci_set_drvdata(pdev, hw);
return 0;
err_out_unregister:
pci_disable_msi(pdev);
unregister_netdev(dev);
err_out_free_netdev:
free_netdev(dev);
err_out_free_pci:
sky2_write8(hw, B0_CTST, CS_RST_SET);
pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
err_out_iounmap:
iounmap(hw->regs);
err_out_free_hw:
kfree(hw);
err_out_free_regions:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_out:
return err;
}
static void __devexit sky2_remove(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
struct net_device *dev0, *dev1;
if (!hw)
return;
del_timer_sync(&hw->idle_timer);
sky2_write32(hw, B0_IMSK, 0);
synchronize_irq(hw->pdev->irq);
dev0 = hw->dev[0];
dev1 = hw->dev[1];
if (dev1)
unregister_netdev(dev1);
unregister_netdev(dev0);
sky2_set_power_state(hw, PCI_D3hot);
sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
sky2_write8(hw, B0_CTST, CS_RST_SET);
sky2_read8(hw, B0_CTST);
free_irq(pdev->irq, hw);
pci_disable_msi(pdev);
pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
pci_release_regions(pdev);
pci_disable_device(pdev);
if (dev1)
free_netdev(dev1);
free_netdev(dev0);
iounmap(hw->regs);
kfree(hw);
pci_set_drvdata(pdev, NULL);
}
#ifdef CONFIG_PM
static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i;
pci_power_t pstate = pci_choose_state(pdev, state);
if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
return -EINVAL;
del_timer_sync(&hw->idle_timer);
netif_poll_disable(hw->dev[0]);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
sky2_down(dev);
netif_device_detach(dev);
}
}
sky2_write32(hw, B0_IMSK, 0);
pci_save_state(pdev);
sky2_set_power_state(hw, pstate);
return 0;
}
static int sky2_resume(struct pci_dev *pdev)
{
struct sky2_hw *hw = pci_get_drvdata(pdev);
int i, err;
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D0, 0);
sky2_set_power_state(hw, PCI_D0);
err = sky2_reset(hw);
if (err)
goto out;
sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
for (i = 0; i < hw->ports; i++) {
struct net_device *dev = hw->dev[i];
if (netif_running(dev)) {
netif_device_attach(dev);
err = sky2_up(dev);
if (err) {
printk(KERN_ERR PFX "%s: could not up: %d\n",
dev->name, err);
dev_close(dev);
goto out;
}
}
}
netif_poll_enable(hw->dev[0]);
sky2_idle_start(hw);
out:
return err;
}
#endif
static struct pci_driver sky2_driver = {
.name = DRV_NAME,
.id_table = sky2_id_table,
.probe = sky2_probe,
.remove = __devexit_p(sky2_remove),
#ifdef CONFIG_PM
.suspend = sky2_suspend,
.resume = sky2_resume,
#endif
};
static int __init sky2_init_module(void)
{
return pci_register_driver(&sky2_driver);
}
static void __exit sky2_cleanup_module(void)
{
pci_unregister_driver(&sky2_driver);
}
module_init(sky2_init_module);
module_exit(sky2_cleanup_module);
MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);