/******************************************************************************
*
* Name: skge.c
* Project: GEnesis, PCI Gigabit Ethernet Adapter
* Version: $Revision: 1.45 $
* Date: $Date: 2004/02/12 14:41:02 $
* Purpose: The main driver source module
*
******************************************************************************/
/******************************************************************************
*
* (C)Copyright 1998-2002 SysKonnect GmbH.
* (C)Copyright 2002-2003 Marvell.
*
* Driver for Marvell Yukon chipset and SysKonnect Gigabit Ethernet
* Server Adapters.
*
* Created 10-Feb-1999, based on Linux' acenic.c, 3c59x.c and
* SysKonnects GEnesis Solaris driver
* Author: Christoph Goos (cgoos@syskonnect.de)
* Mirko Lindner (mlindner@syskonnect.de)
*
* Address all question to: linux@syskonnect.de
*
* The technical manual for the adapters is available from SysKonnect's
* web pages: www.syskonnect.com
* Goto "Support" and search Knowledge Base for "manual".
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* The information in this file is provided "AS IS" without warranty.
*
******************************************************************************/
/******************************************************************************
*
* Possible compiler options (#define xxx / -Dxxx):
*
* debugging can be enable by changing SK_DEBUG_CHKMOD and
* SK_DEBUG_CHKCAT in makefile (described there).
*
******************************************************************************/
/******************************************************************************
*
* Description:
*
* This is the main module of the Linux GE driver.
*
* All source files except skge.c, skdrv1st.h, skdrv2nd.h and sktypes.h
* are part of SysKonnect's COMMON MODULES for the SK-98xx adapters.
* Those are used for drivers on multiple OS', so some thing may seem
* unnecessary complicated on Linux. Please do not try to 'clean up'
* them without VERY good reasons, because this will make it more
* difficult to keep the Linux driver in synchronisation with the
* other versions.
*
* Include file hierarchy:
*
* <linux/module.h>
*
* "h/skdrv1st.h"
* <linux/types.h>
* <linux/kernel.h>
* <linux/string.h>
* <linux/errno.h>
* <linux/ioport.h>
* <linux/slab.h>
* <linux/interrupt.h>
* <linux/pci.h>
* <linux/bitops.h>
* <asm/byteorder.h>
* <asm/io.h>
* <linux/netdevice.h>
* <linux/etherdevice.h>
* <linux/skbuff.h>
* those three depending on kernel version used:
* <linux/bios32.h>
* <linux/init.h>
* <asm/uaccess.h>
* <net/checksum.h>
*
* "h/skerror.h"
* "h/skdebug.h"
* "h/sktypes.h"
* "h/lm80.h"
* "h/xmac_ii.h"
*
* "h/skdrv2nd.h"
* "h/skqueue.h"
* "h/skgehwt.h"
* "h/sktimer.h"
* "h/ski2c.h"
* "h/skgepnmi.h"
* "h/skvpd.h"
* "h/skgehw.h"
* "h/skgeinit.h"
* "h/skaddr.h"
* "h/skgesirq.h"
* "h/skcsum.h"
* "h/skrlmt.h"
*
******************************************************************************/
#include "h/skversion.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/proc_fs.h>
#include <linux/dma-mapping.h>
#include "h/skdrv1st.h"
#include "h/skdrv2nd.h"
/*******************************************************************************
*
* Defines
*
******************************************************************************/
/* for debuging on x86 only */
/* #define BREAKPOINT() asm(" int $3"); */
/* use the transmit hw checksum driver functionality */
#define USE_SK_TX_CHECKSUM
/* use the receive hw checksum driver functionality */
#define USE_SK_RX_CHECKSUM
/* use the scatter-gather functionality with sendfile() */
#define SK_ZEROCOPY
/* use of a transmit complete interrupt */
#define USE_TX_COMPLETE
/*
* threshold for copying small receive frames
* set to 0 to avoid copying, set to 9001 to copy all frames
*/
#define SK_COPY_THRESHOLD 50
/* number of adapters that can be configured via command line params */
#define SK_MAX_CARD_PARAM 16
/*
* use those defines for a compile-in version of the driver instead
* of command line parameters
*/
// #define LINK_SPEED_A {"Auto", }
// #define LINK_SPEED_B {"Auto", }
// #define AUTO_NEG_A {"Sense", }
// #define AUTO_NEG_B {"Sense", }
// #define DUP_CAP_A {"Both", }
// #define DUP_CAP_B {"Both", }
// #define FLOW_CTRL_A {"SymOrRem", }
// #define FLOW_CTRL_B {"SymOrRem", }
// #define ROLE_A {"Auto", }
// #define ROLE_B {"Auto", }
// #define PREF_PORT {"A", }
// #define CON_TYPE {"Auto", }
// #define RLMT_MODE {"CheckLinkState", }
#define DEV_KFREE_SKB(skb) dev_kfree_skb(skb)
#define DEV_KFREE_SKB_IRQ(skb) dev_kfree_skb_irq(skb)
#define DEV_KFREE_SKB_ANY(skb) dev_kfree_skb_any(skb)
/* Set blink mode*/
#define OEM_CONFIG_VALUE ( SK_ACT_LED_BLINK | \
SK_DUP_LED_NORMAL | \
SK_LED_LINK100_ON)
/* Isr return value */
#define SkIsrRetVar irqreturn_t
#define SkIsrRetNone IRQ_NONE
#define SkIsrRetHandled IRQ_HANDLED
/*******************************************************************************
*
* Local Function Prototypes
*
******************************************************************************/
static void FreeResources(struct SK_NET_DEVICE *dev);
static int SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC);
static SK_BOOL BoardAllocMem(SK_AC *pAC);
static void BoardFreeMem(SK_AC *pAC);
static void BoardInitMem(SK_AC *pAC);
static void SetupRing(SK_AC*, void*, uintptr_t, RXD**, RXD**, RXD**, int*, SK_BOOL);
static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs);
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs);
static int SkGeOpen(struct SK_NET_DEVICE *dev);
static int SkGeClose(struct SK_NET_DEVICE *dev);
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev);
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p);
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev);
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev);
static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd);
static void GetConfiguration(SK_AC*);
static void ProductStr(SK_AC*);
static int XmitFrame(SK_AC*, TX_PORT*, struct sk_buff*);
static void FreeTxDescriptors(SK_AC*pAC, TX_PORT*);
static void FillRxRing(SK_AC*, RX_PORT*);
static SK_BOOL FillRxDescriptor(SK_AC*, RX_PORT*);
static void ReceiveIrq(SK_AC*, RX_PORT*, SK_BOOL);
static void ClearAndStartRx(SK_AC*, int);
static void ClearTxIrq(SK_AC*, int, int);
static void ClearRxRing(SK_AC*, RX_PORT*);
static void ClearTxRing(SK_AC*, TX_PORT*);
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int new_mtu);
static void PortReInitBmu(SK_AC*, int);
static int SkGeIocMib(DEV_NET*, unsigned int, int);
static int SkGeInitPCI(SK_AC *pAC);
static void StartDrvCleanupTimer(SK_AC *pAC);
static void StopDrvCleanupTimer(SK_AC *pAC);
static int XmitFrameSG(SK_AC*, TX_PORT*, struct sk_buff*);
#ifdef SK_DIAG_SUPPORT
static SK_U32 ParseDeviceNbrFromSlotName(const char *SlotName);
static int SkDrvInitAdapter(SK_AC *pAC, int devNbr);
static int SkDrvDeInitAdapter(SK_AC *pAC, int devNbr);
#endif
/*******************************************************************************
*
* Extern Function Prototypes
*
******************************************************************************/
static const char SKRootName[] = "sk98lin";
static struct proc_dir_entry *pSkRootDir;
extern struct file_operations sk_proc_fops;
static inline void SkGeProcCreate(struct net_device *dev)
{
struct proc_dir_entry *pe;
if (pSkRootDir &&
(pe = create_proc_entry(dev->name, S_IRUGO, pSkRootDir))) {
pe->proc_fops = &sk_proc_fops;
pe->data = dev;
pe->owner = THIS_MODULE;
}
}
static inline void SkGeProcRemove(struct net_device *dev)
{
if (pSkRootDir)
remove_proc_entry(dev->name, pSkRootDir);
}
extern void SkDimEnableModerationIfNeeded(SK_AC *pAC);
extern void SkDimDisplayModerationSettings(SK_AC *pAC);
extern void SkDimStartModerationTimer(SK_AC *pAC);
extern void SkDimModerate(SK_AC *pAC);
extern void SkGeBlinkTimer(unsigned long data);
#ifdef DEBUG
static void DumpMsg(struct sk_buff*, char*);
static void DumpData(char*, int);
static void DumpLong(char*, int);
#endif
/* global variables *********************************************************/
static SK_BOOL DoPrintInterfaceChange = SK_TRUE;
extern struct ethtool_ops SkGeEthtoolOps;
/* local variables **********************************************************/
static uintptr_t TxQueueAddr[SK_MAX_MACS][2] = {{0x680, 0x600},{0x780, 0x700}};
static uintptr_t RxQueueAddr[SK_MAX_MACS] = {0x400, 0x480};
/*****************************************************************************
*
* SkGeInitPCI - Init the PCI resources
*
* Description:
* This function initialize the PCI resources and IO
*
* Returns: N/A
*
*/
int SkGeInitPCI(SK_AC *pAC)
{
struct SK_NET_DEVICE *dev = pAC->dev[0];
struct pci_dev *pdev = pAC->PciDev;
int retval;
if (pci_enable_device(pdev) != 0) {
return 1;
}
dev->mem_start = pci_resource_start (pdev, 0);
pci_set_master(pdev);
if (pci_request_regions(pdev, pAC->Name) != 0) {
retval = 2;
goto out_disable;
}
#ifdef SK_BIG_ENDIAN
/*
* On big endian machines, we use the adapter's aibility of
* reading the descriptors as big endian.
*/
{
SK_U32 our2;
SkPciReadCfgDWord(pAC, PCI_OUR_REG_2, &our2);
our2 |= PCI_REV_DESC;
SkPciWriteCfgDWord(pAC, PCI_OUR_REG_2, our2);
}
#endif
/*
* Remap the regs into kernel space.
*/
pAC->IoBase = ioremap_nocache(dev->mem_start, 0x4000);
if (!pAC->IoBase){
retval = 3;
goto out_release;
}
return 0;
out_release:
pci_release_regions(pdev);
out_disable:
pci_disable_device(pdev);
return retval;
}
/*****************************************************************************
*
* FreeResources - release resources allocated for adapter
*
* Description:
* This function releases the IRQ, unmaps the IO and
* frees the desriptor ring.
*
* Returns: N/A
*
*/
static void FreeResources(struct SK_NET_DEVICE *dev)
{
SK_U32 AllocFlag;
DEV_NET *pNet;
SK_AC *pAC;
pNet = netdev_priv(dev);
pAC = pNet->pAC;
AllocFlag = pAC->AllocFlag;
if (pAC->PciDev) {
pci_release_regions(pAC->PciDev);
}
if (AllocFlag & SK_ALLOC_IRQ) {
free_irq(dev->irq, dev);
}
if (pAC->IoBase) {
iounmap(pAC->IoBase);
}
if (pAC->pDescrMem) {
BoardFreeMem(pAC);
}
} /* FreeResources */
MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
MODULE_DESCRIPTION("SysKonnect SK-NET Gigabit Ethernet SK-98xx driver");
MODULE_LICENSE("GPL");
#ifdef LINK_SPEED_A
static char *Speed_A[SK_MAX_CARD_PARAM] = LINK_SPEED;
#else
static char *Speed_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef LINK_SPEED_B
static char *Speed_B[SK_MAX_CARD_PARAM] = LINK_SPEED;
#else
static char *Speed_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_A
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = AUTO_NEG_A;
#else
static char *AutoNeg_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_A
static char *DupCap_A[SK_MAX_CARD_PARAM] = DUP_CAP_A;
#else
static char *DupCap_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_A
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = FLOW_CTRL_A;
#else
static char *FlowCtrl_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_A
static char *Role_A[SK_MAX_CARD_PARAM] = ROLE_A;
#else
static char *Role_A[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef AUTO_NEG_B
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = AUTO_NEG_B;
#else
static char *AutoNeg_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef DUP_CAP_B
static char *DupCap_B[SK_MAX_CARD_PARAM] = DUP_CAP_B;
#else
static char *DupCap_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef FLOW_CTRL_B
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = FLOW_CTRL_B;
#else
static char *FlowCtrl_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef ROLE_B
static char *Role_B[SK_MAX_CARD_PARAM] = ROLE_B;
#else
static char *Role_B[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef CON_TYPE
static char *ConType[SK_MAX_CARD_PARAM] = CON_TYPE;
#else
static char *ConType[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef PREF_PORT
static char *PrefPort[SK_MAX_CARD_PARAM] = PREF_PORT;
#else
static char *PrefPort[SK_MAX_CARD_PARAM] = {"", };
#endif
#ifdef RLMT_MODE
static char *RlmtMode[SK_MAX_CARD_PARAM] = RLMT_MODE;
#else
static char *RlmtMode[SK_MAX_CARD_PARAM] = {"", };
#endif
static int IntsPerSec[SK_MAX_CARD_PARAM];
static char *Moderation[SK_MAX_CARD_PARAM];
static char *ModerationMask[SK_MAX_CARD_PARAM];
static char *AutoSizing[SK_MAX_CARD_PARAM];
static char *Stats[SK_MAX_CARD_PARAM];
module_param_array(Speed_A, charp, NULL, 0);
module_param_array(Speed_B, charp, NULL, 0);
module_param_array(AutoNeg_A, charp, NULL, 0);
module_param_array(AutoNeg_B, charp, NULL, 0);
module_param_array(DupCap_A, charp, NULL, 0);
module_param_array(DupCap_B, charp, NULL, 0);
module_param_array(FlowCtrl_A, charp, NULL, 0);
module_param_array(FlowCtrl_B, charp, NULL, 0);
module_param_array(Role_A, charp, NULL, 0);
module_param_array(Role_B, charp, NULL, 0);
module_param_array(ConType, charp, NULL, 0);
module_param_array(PrefPort, charp, NULL, 0);
module_param_array(RlmtMode, charp, NULL, 0);
/* used for interrupt moderation */
module_param_array(IntsPerSec, int, NULL, 0);
module_param_array(Moderation, charp, NULL, 0);
module_param_array(Stats, charp, NULL, 0);
module_param_array(ModerationMask, charp, NULL, 0);
module_param_array(AutoSizing, charp, NULL, 0);
/*****************************************************************************
*
* SkGeBoardInit - do level 0 and 1 initialization
*
* Description:
* This function prepares the board hardware for running. The desriptor
* ring is set up, the IRQ is allocated and the configuration settings
* are examined.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int __init SkGeBoardInit(struct SK_NET_DEVICE *dev, SK_AC *pAC)
{
short i;
unsigned long Flags;
char *DescrString = "sk98lin: Driver for Linux"; /* this is given to PNMI */
char *VerStr = VER_STRING;
int Ret; /* return code of request_irq */
SK_BOOL DualNet;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("IoBase: %08lX\n", (unsigned long)pAC->IoBase));
for (i=0; i<SK_MAX_MACS; i++) {
pAC->TxPort[i][0].HwAddr = pAC->IoBase + TxQueueAddr[i][0];
pAC->TxPort[i][0].PortIndex = i;
pAC->RxPort[i].HwAddr = pAC->IoBase + RxQueueAddr[i];
pAC->RxPort[i].PortIndex = i;
}
/* Initialize the mutexes */
for (i=0; i<SK_MAX_MACS; i++) {
spin_lock_init(&pAC->TxPort[i][0].TxDesRingLock);
spin_lock_init(&pAC->RxPort[i].RxDesRingLock);
}
spin_lock_init(&pAC->SlowPathLock);
/* setup phy_id blink timer */
pAC->BlinkTimer.function = SkGeBlinkTimer;
pAC->BlinkTimer.data = (unsigned long) dev;
init_timer(&pAC->BlinkTimer);
/* level 0 init common modules here */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* Does a RESET on board ...*/
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_DATA) != 0) {
printk("HWInit (0) failed.\n");
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkEventInit(pAC, pAC->IoBase, SK_INIT_DATA);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_DATA);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_DATA);
pAC->BoardLevel = SK_INIT_DATA;
pAC->RxBufSize = ETH_BUF_SIZE;
SK_PNMI_SET_DRIVER_DESCR(pAC, DescrString);
SK_PNMI_SET_DRIVER_VER(pAC, VerStr);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/* level 1 init common modules here (HW init) */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
printk("sk98lin: HWInit (1) failed.\n");
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return(-EAGAIN);
}
SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
/* Set chipset type support */
pAC->ChipsetType = 0;
if ((pAC->GIni.GIChipId == CHIP_ID_YUKON) ||
(pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE)) {
pAC->ChipsetType = 1;
}
GetConfiguration(pAC);
if (pAC->RlmtNets == 2) {
pAC->GIni.GIPortUsage = SK_MUL_LINK;
}
pAC->BoardLevel = SK_INIT_IO;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
if (pAC->GIni.GIMacsFound == 2) {
Ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
} else if (pAC->GIni.GIMacsFound == 1) {
Ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ,
pAC->Name, dev);
} else {
printk(KERN_WARNING "sk98lin: Illegal number of ports: %d\n",
pAC->GIni.GIMacsFound);
return -EAGAIN;
}
if (Ret) {
printk(KERN_WARNING "sk98lin: Requested IRQ %d is busy.\n",
dev->irq);
return -EAGAIN;
}
pAC->AllocFlag |= SK_ALLOC_IRQ;
/* Alloc memory for this board (Mem for RxD/TxD) : */
if(!BoardAllocMem(pAC)) {
printk("No memory for descriptor rings.\n");
return(-EAGAIN);
}
SkCsSetReceiveFlags(pAC,
SKCS_PROTO_IP | SKCS_PROTO_TCP | SKCS_PROTO_UDP,
&pAC->CsOfs1, &pAC->CsOfs2, 0);
pAC->CsOfs = (pAC->CsOfs2 << 16) | pAC->CsOfs1;
BoardInitMem(pAC);
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
BoardFreeMem(pAC);
printk("sk98lin: SkGeInitAssignRamToQueues failed.\n");
return(-EAGAIN);
}
return (0);
} /* SkGeBoardInit */
/*****************************************************************************
*
* BoardAllocMem - allocate the memory for the descriptor rings
*
* Description:
* This function allocates the memory for all descriptor rings.
* Each ring is aligned for the desriptor alignment and no ring
* has a 4 GByte boundary in it (because the upper 32 bit must
* be constant for all descriptiors in one rings).
*
* Returns:
* SK_TRUE, if all memory could be allocated
* SK_FALSE, if not
*/
static SK_BOOL BoardAllocMem(
SK_AC *pAC)
{
caddr_t pDescrMem; /* pointer to descriptor memory area */
size_t AllocLength; /* length of complete descriptor area */
int i; /* loop counter */
unsigned long BusAddr;
/* rings plus one for alignment (do not cross 4 GB boundary) */
/* RX_RING_SIZE is assumed bigger than TX_RING_SIZE */
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pDescrMem = pci_alloc_consistent(pAC->PciDev, AllocLength,
&pAC->pDescrMemDMA);
if (pDescrMem == NULL) {
return (SK_FALSE);
}
pAC->pDescrMem = pDescrMem;
BusAddr = (unsigned long) pAC->pDescrMemDMA;
/* Descriptors need 8 byte alignment, and this is ensured
* by pci_alloc_consistent.
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("TX%d/A: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
BusAddr));
pAC->TxPort[i][0].pTxDescrRing = pDescrMem;
pAC->TxPort[i][0].VTxDescrRing = BusAddr;
pDescrMem += TX_RING_SIZE;
BusAddr += TX_RING_SIZE;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("RX%d: pDescrMem: %lX, PhysDescrMem: %lX\n",
i, (unsigned long) pDescrMem,
(unsigned long)BusAddr));
pAC->RxPort[i].pRxDescrRing = pDescrMem;
pAC->RxPort[i].VRxDescrRing = BusAddr;
pDescrMem += RX_RING_SIZE;
BusAddr += RX_RING_SIZE;
} /* for */
return (SK_TRUE);
} /* BoardAllocMem */
/****************************************************************************
*
* BoardFreeMem - reverse of BoardAllocMem
*
* Description:
* Free all memory allocated in BoardAllocMem: adapter context,
* descriptor rings, locks.
*
* Returns: N/A
*/
static void BoardFreeMem(
SK_AC *pAC)
{
size_t AllocLength; /* length of complete descriptor area */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardFreeMem\n"));
#if (BITS_PER_LONG == 32)
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound + 8;
#else
AllocLength = (RX_RING_SIZE + TX_RING_SIZE) * pAC->GIni.GIMacsFound
+ RX_RING_SIZE + 8;
#endif
pci_free_consistent(pAC->PciDev, AllocLength,
pAC->pDescrMem, pAC->pDescrMemDMA);
pAC->pDescrMem = NULL;
} /* BoardFreeMem */
/*****************************************************************************
*
* BoardInitMem - initiate the descriptor rings
*
* Description:
* This function sets the descriptor rings up in memory.
* The adapter is initialized with the descriptor start addresses.
*
* Returns: N/A
*/
static void BoardInitMem(
SK_AC *pAC) /* pointer to adapter context */
{
int i; /* loop counter */
int RxDescrSize; /* the size of a rx descriptor rounded up to alignment*/
int TxDescrSize; /* the size of a tx descriptor rounded up to alignment*/
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("BoardInitMem\n"));
RxDescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->RxDescrPerRing = RX_RING_SIZE / RxDescrSize;
TxDescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) * DESCR_ALIGN;
pAC->TxDescrPerRing = TX_RING_SIZE / RxDescrSize;
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
SetupRing(
pAC,
pAC->TxPort[i][0].pTxDescrRing,
pAC->TxPort[i][0].VTxDescrRing,
(RXD**)&pAC->TxPort[i][0].pTxdRingHead,
(RXD**)&pAC->TxPort[i][0].pTxdRingTail,
(RXD**)&pAC->TxPort[i][0].pTxdRingPrev,
&pAC->TxPort[i][0].TxdRingFree,
SK_TRUE);
SetupRing(
pAC,
pAC->RxPort[i].pRxDescrRing,
pAC->RxPort[i].VRxDescrRing,
&pAC->RxPort[i].pRxdRingHead,
&pAC->RxPort[i].pRxdRingTail,
&pAC->RxPort[i].pRxdRingPrev,
&pAC->RxPort[i].RxdRingFree,
SK_FALSE);
}
} /* BoardInitMem */
/*****************************************************************************
*
* SetupRing - create one descriptor ring
*
* Description:
* This function creates one descriptor ring in the given memory area.
* The head, tail and number of free descriptors in the ring are set.
*
* Returns:
* none
*/
static void SetupRing(
SK_AC *pAC,
void *pMemArea, /* a pointer to the memory area for the ring */
uintptr_t VMemArea, /* the virtual bus address of the memory area */
RXD **ppRingHead, /* address where the head should be written */
RXD **ppRingTail, /* address where the tail should be written */
RXD **ppRingPrev, /* address where the tail should be written */
int *pRingFree, /* address where the # of free descr. goes */
SK_BOOL IsTx) /* flag: is this a tx ring */
{
int i; /* loop counter */
int DescrSize; /* the size of a descriptor rounded up to alignment*/
int DescrNum; /* number of descriptors per ring */
RXD *pDescr; /* pointer to a descriptor (receive or transmit) */
RXD *pNextDescr; /* pointer to the next descriptor */
RXD *pPrevDescr; /* pointer to the previous descriptor */
uintptr_t VNextDescr; /* the virtual bus address of the next descriptor */
if (IsTx == SK_TRUE) {
DescrSize = (((sizeof(TXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = TX_RING_SIZE / DescrSize;
} else {
DescrSize = (((sizeof(RXD) - 1) / DESCR_ALIGN) + 1) *
DESCR_ALIGN;
DescrNum = RX_RING_SIZE / DescrSize;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS,
("Descriptor size: %d Descriptor Number: %d\n",
DescrSize,DescrNum));
pDescr = (RXD*) pMemArea;
pPrevDescr = NULL;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr = VMemArea + DescrSize;
for(i=0; i<DescrNum; i++) {
/* set the pointers right */
pDescr->VNextRxd = VNextDescr & 0xffffffffULL;
pDescr->pNextRxd = pNextDescr;
pDescr->TcpSumStarts = pAC->CsOfs;
/* advance one step */
pPrevDescr = pDescr;
pDescr = pNextDescr;
pNextDescr = (RXD*) (((char*)pDescr) + DescrSize);
VNextDescr += DescrSize;
}
pPrevDescr->pNextRxd = (RXD*) pMemArea;
pPrevDescr->VNextRxd = VMemArea;
pDescr = (RXD*) pMemArea;
*ppRingHead = (RXD*) pMemArea;
*ppRingTail = *ppRingHead;
*ppRingPrev = pPrevDescr;
*pRingFree = DescrNum;
} /* SetupRing */
/*****************************************************************************
*
* PortReInitBmu - re-initiate the descriptor rings for one port
*
* Description:
* This function reinitializes the descriptor rings of one port
* in memory. The port must be stopped before.
* The HW is initialized with the descriptor start addresses.
*
* Returns:
* none
*/
static void PortReInitBmu(
SK_AC *pAC, /* pointer to adapter context */
int PortIndex) /* index of the port for which to re-init */
{
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PortReInitBmu "));
/* set address of first descriptor of ring in BMU */
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_L,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) &
0xFFFFFFFF));
SK_OUT32(pAC->IoBase, TxQueueAddr[PortIndex][TX_PRIO_LOW]+ Q_DA_H,
(uint32_t)(((caddr_t)
(pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxdRingHead) -
pAC->TxPort[PortIndex][TX_PRIO_LOW].pTxDescrRing +
pAC->TxPort[PortIndex][TX_PRIO_LOW].VTxDescrRing) >> 32));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_L,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) & 0xFFFFFFFF));
SK_OUT32(pAC->IoBase, RxQueueAddr[PortIndex]+Q_DA_H,
(uint32_t)(((caddr_t)(pAC->RxPort[PortIndex].pRxdRingHead) -
pAC->RxPort[PortIndex].pRxDescrRing +
pAC->RxPort[PortIndex].VRxDescrRing) >> 32));
} /* PortReInitBmu */
/****************************************************************************
*
* SkGeIsr - handle adapter interrupts
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
*
* Returns: N/A
*
*/
static SkIsrRetVar SkGeIsr(int irq, void *dev_id, struct pt_regs *ptregs)
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = netdev_priv(dev);
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if (IntSrc == 0) {
return SkIsrRetNone;
}
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IS_IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IS_R1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
if (IntSrc & IS_R2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX2 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 1);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
if (IntSrc & IS_XA2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX2 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[1][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[1][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IS_XS1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
}
if (IntSrc & IS_XS2_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX2 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 1);
spin_lock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 1, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[1][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 1, TX_PRIO_HIGH);
}
#endif
#endif
/* do all IO at once */
if (IntSrc & IS_R1_F)
ClearAndStartRx(pAC, 0);
if (IntSrc & IS_R2_F)
ClearAndStartRx(pAC, 1);
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F)
ClearTxIrq(pAC, 0, TX_PRIO_LOW);
if (IntSrc & IS_XA2_F)
ClearTxIrq(pAC, 1, TX_PRIO_LOW);
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
IntSrc &= pAC->GIni.GIValIrqMask;
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ DP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/*
* do it all again is case we cleared an interrupt that
* came in after handling the ring (OUTs may be delayed
* in hardware buffers, but are through after IN)
*
* rroesler: has been commented out and shifted to
* SkGeDrvEvent(), because it is timer
* guarded now
*
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
ReceiveIrq(pAC, &pAC->RxPort[1], SK_TRUE);
*/
if (pAC->CheckQueue) {
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
return SkIsrRetHandled;
} /* SkGeIsr */
/****************************************************************************
*
* SkGeIsrOnePort - handle adapter interrupts for single port adapter
*
* Description:
* The interrupt routine is called when the network adapter
* generates an interrupt. It may also be called if another device
* shares this interrupt vector with the driver.
* This is the same as above, but handles only one port.
*
* Returns: N/A
*
*/
static SkIsrRetVar SkGeIsrOnePort(int irq, void *dev_id, struct pt_regs *ptregs)
{
struct SK_NET_DEVICE *dev = (struct SK_NET_DEVICE *)dev_id;
DEV_NET *pNet;
SK_AC *pAC;
SK_U32 IntSrc; /* interrupts source register contents */
pNet = netdev_priv(dev);
pAC = pNet->pAC;
/*
* Check and process if its our interrupt
*/
SK_IN32(pAC->IoBase, B0_SP_ISRC, &IntSrc);
if (IntSrc == 0) {
return SkIsrRetNone;
}
while (((IntSrc & IRQ_MASK) & ~SPECIAL_IRQS) != 0) {
#if 0 /* software irq currently not used */
if (IntSrc & IS_IRQ_SW) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("Software IRQ\n"));
}
#endif
if (IntSrc & IS_R1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF RX1 IRQ\n"));
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
SK_PNMI_CNT_RX_INTR(pAC, 0);
}
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF AS TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
FreeTxDescriptors(pAC, &pAC->TxPort[0][TX_PRIO_LOW]);
spin_unlock(&pAC->TxPort[0][TX_PRIO_LOW].TxDesRingLock);
}
#if 0 /* only if sync. queues used */
if (IntSrc & IS_XS1_F) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_INT_SRC,
("EOF SY TX1 IRQ\n"));
SK_PNMI_CNT_TX_INTR(pAC, 0);
spin_lock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
FreeTxDescriptors(pAC, 0, TX_PRIO_HIGH);
spin_unlock(&pAC->TxPort[0][TX_PRIO_HIGH].TxDesRingLock);
ClearTxIrq(pAC, 0, TX_PRIO_HIGH);
}
#endif
#endif
/* do all IO at once */
if (IntSrc & IS_R1_F)
ClearAndStartRx(pAC, 0);
#ifdef USE_TX_COMPLETE /* only if tx complete interrupt used */
if (IntSrc & IS_XA1_F)
ClearTxIrq(pAC, 0, TX_PRIO_LOW);
#endif
SK_IN32(pAC->IoBase, B0_ISRC, &IntSrc);
} /* while (IntSrc & IRQ_MASK != 0) */
IntSrc &= pAC->GIni.GIValIrqMask;
if ((IntSrc & SPECIAL_IRQS) || pAC->CheckQueue) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_INT_SRC,
("SPECIAL IRQ SP-Cards => %x\n", IntSrc));
pAC->CheckQueue = SK_FALSE;
spin_lock(&pAC->SlowPathLock);
if (IntSrc & SPECIAL_IRQS)
SkGeSirqIsr(pAC, pAC->IoBase, IntSrc);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock(&pAC->SlowPathLock);
}
/*
* do it all again is case we cleared an interrupt that
* came in after handling the ring (OUTs may be delayed
* in hardware buffers, but are through after IN)
*
* rroesler: has been commented out and shifted to
* SkGeDrvEvent(), because it is timer
* guarded now
*
ReceiveIrq(pAC, &pAC->RxPort[0], SK_TRUE);
*/
/* IRQ is processed - Enable IRQs again*/
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
return SkIsrRetHandled;
} /* SkGeIsrOnePort */
#ifdef CONFIG_NET_POLL_CONTROLLER
/****************************************************************************
*
* SkGePollController - polling receive, for netconsole
*
* Description:
* Polling receive - used by netconsole and other diagnostic tools
* to allow network i/o with interrupts disabled.
*
* Returns: N/A
*/
static void SkGePollController(struct net_device *dev)
{
disable_irq(dev->irq);
SkGeIsr(dev->irq, dev, NULL);
enable_irq(dev->irq);
}
#endif
/****************************************************************************
*
* SkGeOpen - handle start of initialized adapter
*
* Description:
* This function starts the initialized adapter.
* The board level variable is set and the adapter is
* brought to full functionality.
* The device flags are set for operation.
* Do all necessary level 2 initialization, enable interrupts and
* give start command to RLMT.
*
* Returns:
* 0 on success
* != 0 on error
*/
static int SkGeOpen(
struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
unsigned long Flags; /* for spin lock */
int i;
SK_EVPARA EvPara; /* an event parameter union */
pNet = netdev_priv(dev);
pAC = pNet->pAC;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen: pAC=0x%lX:\n", (unsigned long)pAC));
#ifdef SK_DIAG_SUPPORT
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->Pnmi.DiagAttached == SK_DIAG_RUNNING) {
return (-1); /* still in use by diag; deny actions */
}
}
#endif
/* Set blink mode */
if ((pAC->PciDev->vendor == 0x1186) || (pAC->PciDev->vendor == 0x11ab ))
pAC->GIni.GILedBlinkCtrl = OEM_CONFIG_VALUE;
if (pAC->BoardLevel == SK_INIT_DATA) {
/* level 1 init common modules here */
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_IO) != 0) {
printk("%s: HWInit (1) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, SK_INIT_IO);
SkEventInit (pAC, pAC->IoBase, SK_INIT_IO);
SkPnmiInit (pAC, pAC->IoBase, SK_INIT_IO);
SkAddrInit (pAC, pAC->IoBase, SK_INIT_IO);
SkRlmtInit (pAC, pAC->IoBase, SK_INIT_IO);
SkTimerInit (pAC, pAC->IoBase, SK_INIT_IO);
pAC->BoardLevel = SK_INIT_IO;
}
if (pAC->BoardLevel != SK_INIT_RUN) {
/* tschilling: Level 2 init modules here, check return value. */
if (SkGeInit(pAC, pAC->IoBase, SK_INIT_RUN) != 0) {
printk("%s: HWInit (2) failed.\n", pAC->dev[pNet->PortNr]->name);
return (-1);
}
SkI2cInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkEventInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkPnmiInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkAddrInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkRlmtInit (pAC, pAC->IoBase, SK_INIT_RUN);
SkTimerInit (pAC, pAC->IoBase, SK_INIT_RUN);
pAC->BoardLevel = SK_INIT_RUN;
}
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
/* Enable transmit descriptor polling. */
SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[i]);
}
SkGeYellowLED(pAC, pAC->IoBase, 1);
StartDrvCleanupTimer(pAC);
SkDimEnableModerationIfNeeded(pAC);
SkDimDisplayModerationSettings(pAC);
pAC->GIni.GIValIrqMask &= IRQ_MASK;
/* enable Interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if ((pAC->RlmtMode != 0) && (pAC->MaxPorts == 0)) {
EvPara.Para32[0] = pAC->RlmtNets;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS,
EvPara);
EvPara.Para32[0] = pAC->RlmtMode;
EvPara.Para32[1] = 0;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_MODE_CHANGE,
EvPara);
}
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->MaxPorts++;
pNet->Up = 1;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeOpen suceeded\n"));
return (0);
} /* SkGeOpen */
/****************************************************************************
*
* SkGeClose - Stop initialized adapter
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkGeClose(
struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
DEV_NET *newPtrNet;
SK_AC *pAC;
unsigned long Flags; /* for spin lock */
int i;
int PortIdx;
SK_EVPARA EvPara;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: pAC=0x%lX ", (unsigned long)pAC));
pNet = netdev_priv(dev);
pAC = pNet->pAC;
#ifdef SK_DIAG_SUPPORT
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->DiagFlowCtrl == SK_FALSE) {
/*
** notify that the interface which has been closed
** by operator interaction must not be started up
** again when the DIAG has finished.
*/
newPtrNet = netdev_priv(pAC->dev[0]);
if (newPtrNet == pNet) {
pAC->WasIfUp[0] = SK_FALSE;
} else {
pAC->WasIfUp[1] = SK_FALSE;
}
return 0; /* return to system everything is fine... */
} else {
pAC->DiagFlowCtrl = SK_FALSE;
}
}
#endif
netif_stop_queue(dev);
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
StopDrvCleanupTimer(pAC);
/*
* Clear multicast table, promiscuous mode ....
*/
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
if (pAC->MaxPorts == 1) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
/* stop the hardware */
SkGeDeInit(pAC, pAC->IoBase);
pAC->BoardLevel = SK_INIT_DATA;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
EvPara.Para32[0] = pNet->NetNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkPnmiEvent(pAC, pAC->IoBase, SK_PNMI_EVT_XMAC_RESET, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/* Stop port */
spin_lock_irqsave(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
SkGeStopPort(pAC, pAC->IoBase, pNet->PortNr,
SK_STOP_ALL, SK_HARD_RST);
spin_unlock_irqrestore(&pAC->TxPort[pNet->PortNr]
[TX_PRIO_LOW].TxDesRingLock, Flags);
}
if (pAC->RlmtNets == 1) {
/* clear all descriptor rings */
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[i]);
ClearTxRing(pAC, &pAC->TxPort[i][TX_PRIO_LOW]);
}
} else {
/* clear port descriptor rings */
ReceiveIrq(pAC, &pAC->RxPort[pNet->PortNr], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[pNet->PortNr]);
ClearTxRing(pAC, &pAC->TxPort[pNet->PortNr][TX_PRIO_LOW]);
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeClose: done "));
SK_MEMSET(&(pAC->PnmiBackup), 0, sizeof(SK_PNMI_STRUCT_DATA));
SK_MEMCPY(&(pAC->PnmiBackup), &(pAC->PnmiStruct),
sizeof(SK_PNMI_STRUCT_DATA));
pAC->MaxPorts--;
pNet->Up = 0;
return (0);
} /* SkGeClose */
/*****************************************************************************
*
* SkGeXmit - Linux frame transmit function
*
* Description:
* The system calls this function to send frames onto the wire.
* It puts the frame in the tx descriptor ring. If the ring is
* full then, the 'tbusy' flag is set.
*
* Returns:
* 0, if everything is ok
* !=0, on error
* WARNING: returning 1 in 'tbusy' case caused system crashes (double
* allocated skb's) !!!
*/
static int SkGeXmit(struct sk_buff *skb, struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
int Rc; /* return code of XmitFrame */
pNet = netdev_priv(dev);
pAC = pNet->pAC;
if ((!skb_shinfo(skb)->nr_frags) ||
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) {
/* Don't activate scatter-gather and hardware checksum */
if (pAC->RlmtNets == 2)
Rc = XmitFrame(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrame(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
} else {
/* scatter-gather and hardware TCP checksumming anabled*/
if (pAC->RlmtNets == 2)
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pNet->PortNr][TX_PRIO_LOW],
skb);
else
Rc = XmitFrameSG(
pAC,
&pAC->TxPort[pAC->ActivePort][TX_PRIO_LOW],
skb);
}
/* Transmitter out of resources? */
if (Rc <= 0) {
netif_stop_queue(dev);
}
/* If not taken, give buffer ownership back to the
* queueing layer.
*/
if (Rc < 0)
return (1);
dev->trans_start = jiffies;
return (0);
} /* SkGeXmit */
/*****************************************************************************
*
* XmitFrame - fill one socket buffer into the transmit ring
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
* Linux skb's consist of only one continuous buffer.
* The first step locks the ring. It is held locked
* all time to avoid problems with SWITCH_../PORT_RESET.
* Then the descriptoris allocated.
* The second part is linking the buffer to the descriptor.
* At the very last, the Control field of the descriptor
* is made valid for the BMU and a start TX command is given
* if necessary.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
static int XmitFrame(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
TXD *pTxd; /* the rxd to fill */
TXD *pOldTxd;
unsigned long Flags;
SK_U64 PhysAddr;
int Protocol;
int IpHeaderLength;
int BytesSend = pMessage->len;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_TX_PROGRESS, ("X"));
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
FreeTxDescriptors(pAC, pTxPort);
#endif
if (pTxPort->TxdRingFree == 0) {
/*
** no enough free descriptors in ring at the moment.
** Maybe free'ing some old one help?
*/
FreeTxDescriptors(pAC, pTxPort);
if (pTxPort->TxdRingFree == 0) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrame failed\n"));
/*
** the desired message can not be sent
** Because tbusy seems to be set, the message
** should not be freed here. It will be used
** by the scheduler of the ethernet handler
*/
return (-1);
}
}
/*
** If the passed socket buffer is of smaller MTU-size than 60,
** copy everything into new buffer and fill all bytes between
** the original packet end and the new packet end of 60 with 0x00.
** This is to resolve faulty padding by the HW with 0xaa bytes.
*/
if (BytesSend < C_LEN_ETHERNET_MINSIZE) {
if ((pMessage = skb_padto(pMessage, C_LEN_ETHERNET_MINSIZE)) == NULL) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
return 0;
}
pMessage->len = C_LEN_ETHERNET_MINSIZE;
}
/*
** advance head counter behind descriptor needed for this frame,
** so that needed descriptor is reserved from that on. The next
** action will be to add the passed buffer to the TX-descriptor
*/
pTxd = pTxPort->pTxdRingHead;
pTxPort->pTxdRingHead = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
#ifdef SK_DUMP_TX
DumpMsg(pMessage, "XmitFrame");
#endif
/*
** First step is to map the data to be sent via the adapter onto
** the DMA memory. Kernel 2.2 uses virt_to_bus(), but kernels 2.4
** and 2.6 need to use pci_map_page() for that mapping.
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data & ~PAGE_MASK),
pMessage->len,
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
if (pMessage->ip_summed == CHECKSUM_HW) {
Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl = BMU_TCP_CHECK;
} else {
pTxd->TBControl = BMU_UDP_CHECK;
}
IpHeaderLength = (SK_U8)pMessage->data[C_OFFSET_IPHEADER];
IpHeaderLength = (IpHeaderLength & 0xf) * 4;
pTxd->TcpSumOfs = 0; /* PH-Checksum already calculated */
pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
(Protocol == C_PROTO_ID_UDP ?
C_OFFSET_UDPHEADER_UDPCS :
C_OFFSET_TCPHEADER_TCPCS);
pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
pTxd->TBControl |= BMU_OWN | BMU_STF |
BMU_SW | BMU_EOF |
#ifdef USE_TX_COMPLETE
BMU_IRQ_EOF |
#endif
pMessage->len;
} else {
pTxd->TBControl = BMU_OWN | BMU_STF | BMU_CHECK |
BMU_SW | BMU_EOF |
#ifdef USE_TX_COMPLETE
BMU_IRQ_EOF |
#endif
pMessage->len;
}
/*
** If previous descriptor already done, give TX start cmd
*/
pOldTxd = xchg(&pTxPort->pTxdRingPrev, pTxd);
if ((pOldTxd->TBControl & BMU_OWN) == 0) {
SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
}
/*
** after releasing the lock, the skb may immediately be free'd
*/
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
if (pTxPort->TxdRingFree != 0) {
return (BytesSend);
} else {
return (0);
}
} /* XmitFrame */
/*****************************************************************************
*
* XmitFrameSG - fill one socket buffer into the transmit ring
* (use SG and TCP/UDP hardware checksumming)
*
* Description:
* This function puts a message into the transmit descriptor ring
* if there is a descriptors left.
*
* Returns:
* > 0 - on succes: the number of bytes in the message
* = 0 - on resource shortage: this frame sent or dropped, now
* the ring is full ( -> set tbusy)
* < 0 - on failure: other problems ( -> return failure to upper layers)
*/
static int XmitFrameSG(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort, /* pointer to struct of port to send to */
struct sk_buff *pMessage) /* pointer to send-message */
{
TXD *pTxd;
TXD *pTxdFst;
TXD *pTxdLst;
int CurrFrag;
int BytesSend;
int IpHeaderLength;
int Protocol;
skb_frag_t *sk_frag;
SK_U64 PhysAddr;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
#ifndef USE_TX_COMPLETE
FreeTxDescriptors(pAC, pTxPort);
#endif
if ((skb_shinfo(pMessage)->nr_frags +1) > pTxPort->TxdRingFree) {
FreeTxDescriptors(pAC, pTxPort);
if ((skb_shinfo(pMessage)->nr_frags + 1) > pTxPort->TxdRingFree) {
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
SK_PNMI_CNT_NO_TX_BUF(pAC, pTxPort->PortIndex);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_TX_PROGRESS,
("XmitFrameSG failed - Ring full\n"));
/* this message can not be sent now */
return(-1);
}
}
pTxd = pTxPort->pTxdRingHead;
pTxdFst = pTxd;
pTxdLst = pTxd;
BytesSend = 0;
Protocol = 0;
/*
** Map the first fragment (header) into the DMA-space
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMessage->data),
((unsigned long) pMessage->data & ~PAGE_MASK),
skb_headlen(pMessage),
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
/*
** Does the HW need to evaluate checksum for TCP or UDP packets?
*/
if (pMessage->ip_summed == CHECKSUM_HW) {
pTxd->TBControl = BMU_STF | BMU_STFWD | skb_headlen(pMessage);
/*
** We have to use the opcode for tcp here, because the
** opcode for udp is not working in the hardware yet
** (Revision 2.0)
*/
Protocol = ((SK_U8)pMessage->data[C_OFFSET_IPPROTO] & 0xff);
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl |= BMU_TCP_CHECK;
} else {
pTxd->TBControl |= BMU_UDP_CHECK;
}
IpHeaderLength = ((SK_U8)pMessage->data[C_OFFSET_IPHEADER] & 0xf)*4;
pTxd->TcpSumOfs = 0; /* PH-Checksum already claculated */
pTxd->TcpSumSt = C_LEN_ETHERMAC_HEADER + IpHeaderLength +
(Protocol == C_PROTO_ID_UDP ?
C_OFFSET_UDPHEADER_UDPCS :
C_OFFSET_TCPHEADER_TCPCS);
pTxd->TcpSumWr = C_LEN_ETHERMAC_HEADER + IpHeaderLength;
} else {
pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_STF |
skb_headlen(pMessage);
}
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += skb_headlen(pMessage);
/*
** Browse over all SG fragments and map each of them into the DMA space
*/
for (CurrFrag = 0; CurrFrag < skb_shinfo(pMessage)->nr_frags; CurrFrag++) {
sk_frag = &skb_shinfo(pMessage)->frags[CurrFrag];
/*
** we already have the proper value in entry
*/
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
sk_frag->page,
sk_frag->page_offset,
sk_frag->size,
PCI_DMA_TODEVICE);
pTxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pTxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pTxd->pMBuf = pMessage;
/*
** Does the HW need to evaluate checksum for TCP or UDP packets?
*/
if (pMessage->ip_summed == CHECKSUM_HW) {
pTxd->TBControl = BMU_OWN | BMU_SW | BMU_STFWD;
/*
** We have to use the opcode for tcp here because the
** opcode for udp is not working in the hardware yet
** (revision 2.0)
*/
if ((Protocol == C_PROTO_ID_UDP) &&
(pAC->GIni.GIChipRev == 0) &&
(pAC->GIni.GIChipId == CHIP_ID_YUKON)) {
pTxd->TBControl |= BMU_TCP_CHECK;
} else {
pTxd->TBControl |= BMU_UDP_CHECK;
}
} else {
pTxd->TBControl = BMU_CHECK | BMU_SW | BMU_OWN;
}
/*
** Do we have the last fragment?
*/
if( (CurrFrag+1) == skb_shinfo(pMessage)->nr_frags ) {
#ifdef USE_TX_COMPLETE
pTxd->TBControl |= BMU_EOF | BMU_IRQ_EOF | sk_frag->size;
#else
pTxd->TBControl |= BMU_EOF | sk_frag->size;
#endif
pTxdFst->TBControl |= BMU_OWN | BMU_SW;
} else {
pTxd->TBControl |= sk_frag->size;
}
pTxdLst = pTxd;
pTxd = pTxd->pNextTxd;
pTxPort->TxdRingFree--;
BytesSend += sk_frag->size;
}
/*
** If previous descriptor already done, give TX start cmd
*/
if ((pTxPort->pTxdRingPrev->TBControl & BMU_OWN) == 0) {
SK_OUT8(pTxPort->HwAddr, Q_CSR, CSR_START);
}
pTxPort->pTxdRingPrev = pTxdLst;
pTxPort->pTxdRingHead = pTxd;
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
if (pTxPort->TxdRingFree > 0) {
return (BytesSend);
} else {
return (0);
}
}
/*****************************************************************************
*
* FreeTxDescriptors - release descriptors from the descriptor ring
*
* Description:
* This function releases descriptors from a transmit ring if they
* have been sent by the BMU.
* If a descriptors is sent, it can be freed and the message can
* be freed, too.
* The SOFTWARE controllable bit is used to prevent running around a
* completely free ring for ever. If this bit is no set in the
* frame (by XmitFrame), this frame has never been sent or is
* already freed.
* The Tx descriptor ring lock must be held while calling this function !!!
*
* Returns:
* none
*/
static void FreeTxDescriptors(
SK_AC *pAC, /* pointer to the adapter context */
TX_PORT *pTxPort) /* pointer to destination port structure */
{
TXD *pTxd; /* pointer to the checked descriptor */
TXD *pNewTail; /* pointer to 'end' of the ring */
SK_U32 Control; /* TBControl field of descriptor */
SK_U64 PhysAddr; /* address of DMA mapping */
pNewTail = pTxPort->pTxdRingTail;
pTxd = pNewTail;
/*
** loop forever; exits if BMU_SW bit not set in start frame
** or BMU_OWN bit set in any frame
*/
while (1) {
Control = pTxd->TBControl;
if ((Control & BMU_SW) == 0) {
/*
** software controllable bit is set in first
** fragment when given to BMU. Not set means that
** this fragment was never sent or is already
** freed ( -> ring completely free now).
*/
pTxPort->pTxdRingTail = pTxd;
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
return;
}
if (Control & BMU_OWN) {
pTxPort->pTxdRingTail = pTxd;
if (pTxPort->TxdRingFree > 0) {
netif_wake_queue(pAC->dev[pTxPort->PortIndex]);
}
return;
}
/*
** release the DMA mapping, because until not unmapped
** this buffer is considered being under control of the
** adapter card!
*/
PhysAddr = ((SK_U64) pTxd->VDataHigh) << (SK_U64) 32;
PhysAddr |= (SK_U64) pTxd->VDataLow;
pci_unmap_page(pAC->PciDev, PhysAddr,
pTxd->pMBuf->len,
PCI_DMA_TODEVICE);
if (Control & BMU_EOF)
DEV_KFREE_SKB_ANY(pTxd->pMBuf); /* free message */
pTxPort->TxdRingFree++;
pTxd->TBControl &= ~BMU_SW;
pTxd = pTxd->pNextTxd; /* point behind fragment with EOF */
} /* while(forever) */
} /* FreeTxDescriptors */
/*****************************************************************************
*
* FillRxRing - fill the receive ring with valid descriptors
*
* Description:
* This function fills the receive ring descriptors with data
* segments and makes them valid for the BMU.
* The active ring is filled completely, if possible.
* The non-active ring is filled only partial to save memory.
*
* Description of rx ring structure:
* head - points to the descriptor which will be used next by the BMU
* tail - points to the next descriptor to give to the BMU
*
* Returns: N/A
*/
static void FillRxRing(
SK_AC *pAC, /* pointer to the adapter context */
RX_PORT *pRxPort) /* ptr to port struct for which the ring
should be filled */
{
unsigned long Flags;
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
while (pRxPort->RxdRingFree > pRxPort->RxFillLimit) {
if(!FillRxDescriptor(pAC, pRxPort))
break;
}
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* FillRxRing */
/*****************************************************************************
*
* FillRxDescriptor - fill one buffer into the receive ring
*
* Description:
* The function allocates a new receive buffer and
* puts it into the next descriptor.
*
* Returns:
* SK_TRUE - a buffer was added to the ring
* SK_FALSE - a buffer could not be added
*/
static SK_BOOL FillRxDescriptor(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort) /* ptr to port struct of ring to fill */
{
struct sk_buff *pMsgBlock; /* pointer to a new message block */
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
SK_U64 PhysAddr; /* physical address of a rx buffer */
pMsgBlock = alloc_skb(pAC->RxBufSize, GFP_ATOMIC);
if (pMsgBlock == NULL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_ENTRY,
("%s: Allocation of rx buffer failed !\n",
pAC->dev[pRxPort->PortIndex]->name));
SK_PNMI_CNT_NO_RX_BUF(pAC, pRxPort->PortIndex);
return(SK_FALSE);
}
skb_reserve(pMsgBlock, 2); /* to align IP frames */
/* skb allocated ok, so add buffer */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pAC->RxBufSize;
PhysAddr = (SK_U64) pci_map_page(pAC->PciDev,
virt_to_page(pMsgBlock->data),
((unsigned long) pMsgBlock->data &
~PAGE_MASK),
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
pRxd->VDataLow = (SK_U32) (PhysAddr & 0xffffffff);
pRxd->VDataHigh = (SK_U32) (PhysAddr >> 32);
pRxd->pMBuf = pMsgBlock;
pRxd->RBControl = BMU_OWN |
BMU_STF |
BMU_IRQ_EOF |
BMU_TCP_CHECK |
Length;
return (SK_TRUE);
} /* FillRxDescriptor */
/*****************************************************************************
*
* ReQueueRxBuffer - fill one buffer back into the receive ring
*
* Description:
* Fill a given buffer back into the rx ring. The buffer
* has been previously allocated and aligned, and its phys.
* address calculated, so this is no more necessary.
*
* Returns: N/A
*/
static void ReQueueRxBuffer(
SK_AC *pAC, /* pointer to the adapter context struct */
RX_PORT *pRxPort, /* ptr to port struct of ring to fill */
struct sk_buff *pMsg, /* pointer to the buffer */
SK_U32 PhysHigh, /* phys address high dword */
SK_U32 PhysLow) /* phys address low dword */
{
RXD *pRxd; /* the rxd to fill */
SK_U16 Length; /* data fragment length */
pRxd = pRxPort->pRxdRingTail;
pRxPort->pRxdRingTail = pRxd->pNextRxd;
pRxPort->RxdRingFree--;
Length = pAC->RxBufSize;
pRxd->VDataLow = PhysLow;
pRxd->VDataHigh = PhysHigh;
pRxd->pMBuf = pMsg;
pRxd->RBControl = BMU_OWN |
BMU_STF |
BMU_IRQ_EOF |
BMU_TCP_CHECK |
Length;
return;
} /* ReQueueRxBuffer */
/*****************************************************************************
*
* ReceiveIrq - handle a receive IRQ
*
* Description:
* This function is called when a receive IRQ is set.
* It walks the receive descriptor ring and sends up all
* frames that are complete.
*
* Returns: N/A
*/
static void ReceiveIrq(
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort, /* pointer to receive port struct */
SK_BOOL SlowPathLock) /* indicates if SlowPathLock is needed */
{
RXD *pRxd; /* pointer to receive descriptors */
SK_U32 Control; /* control field of descriptor */
struct sk_buff *pMsg; /* pointer to message holding frame */
struct sk_buff *pNewMsg; /* pointer to a new message for copying frame */
int FrameLength; /* total length of received frame */
int IpFrameLength;
SK_MBUF *pRlmtMbuf; /* ptr to a buffer for giving a frame to rlmt */
SK_EVPARA EvPara; /* an event parameter union */
unsigned long Flags; /* for spin lock */
int PortIndex = pRxPort->PortIndex;
unsigned int Offset;
unsigned int NumBytes;
unsigned int ForRlmt;
SK_BOOL IsBc;
SK_BOOL IsMc;
SK_BOOL IsBadFrame; /* Bad frame */
SK_U32 FrameStat;
unsigned short Csum1;
unsigned short Csum2;
unsigned short Type;
int Result;
SK_U64 PhysAddr;
rx_start:
/* do forever; exit if BMU_OWN found */
for ( pRxd = pRxPort->pRxdRingHead ;
pRxPort->RxdRingFree < pAC->RxDescrPerRing ;
pRxd = pRxd->pNextRxd,
pRxPort->pRxdRingHead = pRxd,
pRxPort->RxdRingFree ++) {
/*
* For a better understanding of this loop
* Go through every descriptor beginning at the head
* Please note: the ring might be completely received so the OWN bit
* set is not a good crirteria to leave that loop.
* Therefore the RingFree counter is used.
* On entry of this loop pRxd is a pointer to the Rxd that needs
* to be checked next.
*/
Control = pRxd->RBControl;
/* check if this descriptor is ready */
if ((Control & BMU_OWN) != 0) {
/* this descriptor is not yet ready */
/* This is the usual end of the loop */
/* We don't need to start the ring again */
FillRxRing(pAC, pRxPort);
return;
}
pAC->DynIrqModInfo.NbrProcessedDescr++;
/* get length of frame and check it */
FrameLength = Control & BMU_BBC;
if (FrameLength > pAC->RxBufSize) {
goto rx_failed;
}
/* check for STF and EOF */
if ((Control & (BMU_STF | BMU_EOF)) != (BMU_STF | BMU_EOF)) {
goto rx_failed;
}
/* here we have a complete frame in the ring */
pMsg = pRxd->pMBuf;
FrameStat = pRxd->FrameStat;
/* check for frame length mismatch */
#define XMR_FS_LEN_SHIFT 18
#define GMR_FS_LEN_SHIFT 16
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
if (FrameLength != (SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
}
else {
if (FrameLength != (SK_U32) (FrameStat >> GMR_FS_LEN_SHIFT)) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Frame length mismatch (%u/%u).\n",
FrameLength,
(SK_U32) (FrameStat >> XMR_FS_LEN_SHIFT)));
goto rx_failed;
}
}
/* Set Rx Status */
if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) {
IsBc = (FrameStat & XMR_FS_BC) != 0;
IsMc = (FrameStat & XMR_FS_MC) != 0;
IsBadFrame = (FrameStat &
(XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0;
} else {
IsBc = (FrameStat & GMR_FS_BC) != 0;
IsMc = (FrameStat & GMR_FS_MC) != 0;
IsBadFrame = (((FrameStat & GMR_FS_ANY_ERR) != 0) ||
((FrameStat & GMR_FS_RX_OK) == 0));
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Received frame of length %d on port %d\n",
FrameLength, PortIndex));
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 0,
("Number of free rx descriptors: %d\n",
pRxPort->RxdRingFree));
/* DumpMsg(pMsg, "Rx"); */
if ((Control & BMU_STAT_VAL) != BMU_STAT_VAL || (IsBadFrame)) {
#if 0
(FrameStat & (XMR_FS_ANY_ERR | XMR_FS_2L_VLAN)) != 0) {
#endif
/* there is a receive error in this frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: Error in received frame, dropped!\n"
"Control: %x\nRxStat: %x\n",
Control, FrameStat));
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
continue;
}
/*
* if short frame then copy data to reduce memory waste
*/
if ((FrameLength < SK_COPY_THRESHOLD) &&
((pNewMsg = alloc_skb(FrameLength+2, GFP_ATOMIC)) != NULL)) {
/*
* Short frame detected and allocation successfull
*/
/* use new skb and copy data */
skb_reserve(pNewMsg, 2);
skb_put(pNewMsg, FrameLength);
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_dma_sync_single_for_cpu(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
eth_copy_and_sum(pNewMsg, pMsg->data,
FrameLength, 0);
pci_dma_sync_single_for_device(pAC->PciDev,
(dma_addr_t) PhysAddr,
FrameLength,
PCI_DMA_FROMDEVICE);
ReQueueRxBuffer(pAC, pRxPort, pMsg,
pRxd->VDataHigh, pRxd->VDataLow);
pMsg = pNewMsg;
}
else {
/*
* if large frame, or SKB allocation failed, pass
* the SKB directly to the networking
*/
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
/* release the DMA mapping */
pci_unmap_single(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
/* set length in message */
skb_put(pMsg, FrameLength);
/* hardware checksum */
Type = ntohs(*((short*)&pMsg->data[12]));
#ifdef USE_SK_RX_CHECKSUM
if (Type == 0x800) {
Csum1=le16_to_cpu(pRxd->TcpSums & 0xffff);
Csum2=le16_to_cpu((pRxd->TcpSums >> 16) & 0xffff);
IpFrameLength = (int) ntohs((unsigned short)
((unsigned short *) pMsg->data)[8]);
/*
* Test: If frame is padded, a check is not possible!
* Frame not padded? Length difference must be 14 (0xe)!
*/
if ((FrameLength - IpFrameLength) != 0xe) {
/* Frame padded => TCP offload not possible! */
pMsg->ip_summed = CHECKSUM_NONE;
} else {
/* Frame not padded => TCP offload! */
if ((((Csum1 & 0xfffe) && (Csum2 & 0xfffe)) &&
(pAC->GIni.GIChipId == CHIP_ID_GENESIS)) ||
(pAC->ChipsetType)) {
Result = SkCsGetReceiveInfo(pAC,
&pMsg->data[14],
Csum1, Csum2, pRxPort->PortIndex);
if (Result ==
SKCS_STATUS_IP_FRAGMENT ||
Result ==
SKCS_STATUS_IP_CSUM_OK ||
Result ==
SKCS_STATUS_TCP_CSUM_OK ||
Result ==
SKCS_STATUS_UDP_CSUM_OK) {
pMsg->ip_summed =
CHECKSUM_UNNECESSARY;
}
else if (Result ==
SKCS_STATUS_TCP_CSUM_ERROR ||
Result ==
SKCS_STATUS_UDP_CSUM_ERROR ||
Result ==
SKCS_STATUS_IP_CSUM_ERROR_UDP ||
Result ==
SKCS_STATUS_IP_CSUM_ERROR_TCP ||
Result ==
SKCS_STATUS_IP_CSUM_ERROR ) {
/* HW Checksum error */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("skge: CRC error. Frame dropped!\n"));
goto rx_failed;
} else {
pMsg->ip_summed =
CHECKSUM_NONE;
}
}/* checksumControl calculation valid */
} /* Frame length check */
} /* IP frame */
#else
pMsg->ip_summed = CHECKSUM_NONE;
#endif
} /* frame > SK_COPY_TRESHOLD */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("V"));
ForRlmt = SK_RLMT_RX_PROTOCOL;
#if 0
IsBc = (FrameStat & XMR_FS_BC)==XMR_FS_BC;
#endif
SK_RLMT_PRE_LOOKAHEAD(pAC, PortIndex, FrameLength,
IsBc, &Offset, &NumBytes);
if (NumBytes != 0) {
#if 0
IsMc = (FrameStat & XMR_FS_MC)==XMR_FS_MC;
#endif
SK_RLMT_LOOKAHEAD(pAC, PortIndex,
&pMsg->data[Offset],
IsBc, IsMc, &ForRlmt);
}
if (ForRlmt == SK_RLMT_RX_PROTOCOL) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("W"));
/* send up only frames from active port */
if ((PortIndex == pAC->ActivePort) ||
(pAC->RlmtNets == 2)) {
/* frame for upper layer */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, 1,("U"));
#ifdef xDEBUG
DumpMsg(pMsg, "Rx");
#endif
SK_PNMI_CNT_RX_OCTETS_DELIVERED(pAC,
FrameLength, pRxPort->PortIndex);
pMsg->dev = pAC->dev[pRxPort->PortIndex];
pMsg->protocol = eth_type_trans(pMsg,
pAC->dev[pRxPort->PortIndex]);
netif_rx(pMsg);
pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
}
else {
/* drop frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("D"));
DEV_KFREE_SKB(pMsg);
}
} /* if not for rlmt */
else {
/* packet for rlmt */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS, ("R"));
pRlmtMbuf = SkDrvAllocRlmtMbuf(pAC,
pAC->IoBase, FrameLength);
if (pRlmtMbuf != NULL) {
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->Length = FrameLength;
pRlmtMbuf->PortIdx = PortIndex;
EvPara.pParaPtr = pRlmtMbuf;
memcpy((char*)(pRlmtMbuf->pData),
(char*)(pMsg->data),
FrameLength);
/* SlowPathLock needed? */
if (SlowPathLock == SK_TRUE) {
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
} else {
SkEventQueue(pAC, SKGE_RLMT,
SK_RLMT_PACKET_RECEIVED,
EvPara);
pAC->CheckQueue = SK_TRUE;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV,
SK_DBGCAT_DRV_RX_PROGRESS,
("Q"));
}
if ((pAC->dev[pRxPort->PortIndex]->flags &
(IFF_PROMISC | IFF_ALLMULTI)) != 0 ||
(ForRlmt & SK_RLMT_RX_PROTOCOL) ==
SK_RLMT_RX_PROTOCOL) {
pMsg->dev = pAC->dev[pRxPort->PortIndex];
pMsg->protocol = eth_type_trans(pMsg,
pAC->dev[pRxPort->PortIndex]);
netif_rx(pMsg);
pAC->dev[pRxPort->PortIndex]->last_rx = jiffies;
}
else {
DEV_KFREE_SKB(pMsg);
}
} /* if packet for rlmt */
} /* for ... scanning the RXD ring */
/* RXD ring is empty -> fill and restart */
FillRxRing(pAC, pRxPort);
/* do not start if called from Close */
if (pAC->BoardLevel > SK_INIT_DATA) {
ClearAndStartRx(pAC, PortIndex);
}
return;
rx_failed:
/* remove error frame */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Schrottdescriptor, length: 0x%x\n", FrameLength));
/* release the DMA mapping */
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB_IRQ(pRxd->pMBuf);
pRxd->pMBuf = NULL;
pRxPort->RxdRingFree++;
pRxPort->pRxdRingHead = pRxd->pNextRxd;
goto rx_start;
} /* ReceiveIrq */
/*****************************************************************************
*
* ClearAndStartRx - give a start receive command to BMU, clear IRQ
*
* Description:
* This function sends a start command and a clear interrupt
* command for one receive queue to the BMU.
*
* Returns: N/A
* none
*/
static void ClearAndStartRx(
SK_AC *pAC, /* pointer to the adapter context */
int PortIndex) /* index of the receive port (XMAC) */
{
SK_OUT8(pAC->IoBase,
RxQueueAddr[PortIndex]+Q_CSR,
CSR_START | CSR_IRQ_CL_F);
} /* ClearAndStartRx */
/*****************************************************************************
*
* ClearTxIrq - give a clear transmit IRQ command to BMU
*
* Description:
* This function sends a clear tx IRQ command for one
* transmit queue to the BMU.
*
* Returns: N/A
*/
static void ClearTxIrq(
SK_AC *pAC, /* pointer to the adapter context */
int PortIndex, /* index of the transmit port (XMAC) */
int Prio) /* priority or normal queue */
{
SK_OUT8(pAC->IoBase,
TxQueueAddr[PortIndex][Prio]+Q_CSR,
CSR_IRQ_CL_F);
} /* ClearTxIrq */
/*****************************************************************************
*
* ClearRxRing - remove all buffers from the receive ring
*
* Description:
* This function removes all receive buffers from the ring.
* The receive BMU must be stopped before calling this function.
*
* Returns: N/A
*/
static void ClearRxRing(
SK_AC *pAC, /* pointer to adapter context */
RX_PORT *pRxPort) /* pointer to rx port struct */
{
RXD *pRxd; /* pointer to the current descriptor */
unsigned long Flags;
SK_U64 PhysAddr;
if (pRxPort->RxdRingFree == pAC->RxDescrPerRing) {
return;
}
spin_lock_irqsave(&pRxPort->RxDesRingLock, Flags);
pRxd = pRxPort->pRxdRingHead;
do {
if (pRxd->pMBuf != NULL) {
PhysAddr = ((SK_U64) pRxd->VDataHigh) << (SK_U64)32;
PhysAddr |= (SK_U64) pRxd->VDataLow;
pci_unmap_page(pAC->PciDev,
PhysAddr,
pAC->RxBufSize - 2,
PCI_DMA_FROMDEVICE);
DEV_KFREE_SKB(pRxd->pMBuf);
pRxd->pMBuf = NULL;
}
pRxd->RBControl &= BMU_OWN;
pRxd = pRxd->pNextRxd;
pRxPort->RxdRingFree++;
} while (pRxd != pRxPort->pRxdRingTail);
pRxPort->pRxdRingTail = pRxPort->pRxdRingHead;
spin_unlock_irqrestore(&pRxPort->RxDesRingLock, Flags);
} /* ClearRxRing */
/*****************************************************************************
*
* ClearTxRing - remove all buffers from the transmit ring
*
* Description:
* This function removes all transmit buffers from the ring.
* The transmit BMU must be stopped before calling this function
* and transmitting at the upper level must be disabled.
* The BMU own bit of all descriptors is cleared, the rest is
* done by calling FreeTxDescriptors.
*
* Returns: N/A
*/
static void ClearTxRing(
SK_AC *pAC, /* pointer to adapter context */
TX_PORT *pTxPort) /* pointer to tx prt struct */
{
TXD *pTxd; /* pointer to the current descriptor */
int i;
unsigned long Flags;
spin_lock_irqsave(&pTxPort->TxDesRingLock, Flags);
pTxd = pTxPort->pTxdRingHead;
for (i=0; i<pAC->TxDescrPerRing; i++) {
pTxd->TBControl &= ~BMU_OWN;
pTxd = pTxd->pNextTxd;
}
FreeTxDescriptors(pAC, pTxPort);
spin_unlock_irqrestore(&pTxPort->TxDesRingLock, Flags);
} /* ClearTxRing */
/*****************************************************************************
*
* SkGeSetMacAddr - Set the hardware MAC address
*
* Description:
* This function sets the MAC address used by the adapter.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeSetMacAddr(struct SK_NET_DEVICE *dev, void *p)
{
DEV_NET *pNet = netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
struct sockaddr *addr = p;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetMacAddr starts now...\n"));
if(netif_running(dev))
return -EBUSY;
memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (pAC->RlmtNets == 2)
SkAddrOverride(pAC, pAC->IoBase, pNet->NetNr,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
else
SkAddrOverride(pAC, pAC->IoBase, pAC->ActivePort,
(SK_MAC_ADDR*)dev->dev_addr, SK_ADDR_VIRTUAL_ADDRESS);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return 0;
} /* SkGeSetMacAddr */
/*****************************************************************************
*
* SkGeSetRxMode - set receive mode
*
* Description:
* This function sets the receive mode of an adapter. The adapter
* supports promiscuous mode, allmulticast mode and a number of
* multicast addresses. If more multicast addresses the available
* are selected, a hash function in the hardware is used.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static void SkGeSetRxMode(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet;
SK_AC *pAC;
struct dev_mc_list *pMcList;
int i;
int PortIdx;
unsigned long Flags;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeSetRxMode starts now... "));
pNet = netdev_priv(dev);
pAC = pNet->pAC;
if (pAC->RlmtNets == 1)
PortIdx = pAC->ActivePort;
else
PortIdx = pNet->NetNr;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
if (dev->flags & IFF_PROMISC) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("PROMISCUOUS mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_LLC);
} else if (dev->flags & IFF_ALLMULTI) {
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("ALLMULTI mode\n"));
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_ALL_MC);
} else {
SkAddrPromiscuousChange(pAC, pAC->IoBase, PortIdx,
SK_PROM_MODE_NONE);
SkAddrMcClear(pAC, pAC->IoBase, PortIdx, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("Number of MC entries: %d ", dev->mc_count));
pMcList = dev->mc_list;
for (i=0; i<dev->mc_count; i++, pMcList = pMcList->next) {
SkAddrMcAdd(pAC, pAC->IoBase, PortIdx,
(SK_MAC_ADDR*)pMcList->dmi_addr, 0);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_MCA,
("%02x:%02x:%02x:%02x:%02x:%02x\n",
pMcList->dmi_addr[0],
pMcList->dmi_addr[1],
pMcList->dmi_addr[2],
pMcList->dmi_addr[3],
pMcList->dmi_addr[4],
pMcList->dmi_addr[5]));
}
SkAddrMcUpdate(pAC, pAC->IoBase, PortIdx);
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
return;
} /* SkGeSetRxMode */
/*****************************************************************************
*
* SkGeChangeMtu - set the MTU to another value
*
* Description:
* This function sets is called whenever the MTU size is changed
* (ifconfig mtu xxx dev ethX). If the MTU is bigger than standard
* ethernet MTU size, long frame support is activated.
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeChangeMtu(struct SK_NET_DEVICE *dev, int NewMtu)
{
DEV_NET *pNet;
DEV_NET *pOtherNet;
SK_AC *pAC;
unsigned long Flags;
int i;
SK_EVPARA EvPara;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeChangeMtu starts now...\n"));
pNet = netdev_priv(dev);
pAC = pNet->pAC;
if ((NewMtu < 68) || (NewMtu > SK_JUMBO_MTU)) {
return -EINVAL;
}
if(pAC->BoardLevel != SK_INIT_RUN) {
return -EINVAL;
}
#ifdef SK_DIAG_SUPPORT
if (pAC->DiagModeActive == DIAG_ACTIVE) {
if (pAC->DiagFlowCtrl == SK_FALSE) {
return -1; /* still in use, deny any actions of MTU */
} else {
pAC->DiagFlowCtrl = SK_FALSE;
}
}
#endif
pNet->Mtu = NewMtu;
pOtherNet = netdev_priv(pAC->dev[1 - pNet->NetNr]);
if ((pOtherNet->Mtu>1500) && (NewMtu<=1500) && (pOtherNet->Up==1)) {
return(0);
}
pAC->RxBufSize = NewMtu + 32;
dev->mtu = NewMtu;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("New MTU: %d\n", NewMtu));
/*
** Prevent any reconfiguration while changing the MTU
** by disabling any interrupts
*/
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
/*
** Notify RLMT that any ports are to be stopped
*/
EvPara.Para32[0] = 0;
EvPara.Para32[1] = -1;
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
EvPara.Para32[0] = 1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
} else {
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
}
/*
** After calling the SkEventDispatcher(), RLMT is aware about
** the stopped ports -> configuration can take place!
*/
SkEventDispatcher(pAC, pAC->IoBase);
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
spin_lock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
netif_stop_queue(pAC->dev[i]);
}
/*
** Depending on the desired MTU size change, a different number of
** RX buffers need to be allocated
*/
if (NewMtu > 1500) {
/*
** Use less rx buffers
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
(pAC->RxDescrPerRing / 4);
} else {
if (i == pAC->ActivePort) {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
(pAC->RxDescrPerRing / 4);
} else {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
(pAC->RxDescrPerRing / 10);
}
}
}
} else {
/*
** Use the normal amount of rx buffers
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
pAC->RxPort[i].RxFillLimit = 1;
} else {
if (i == pAC->ActivePort) {
pAC->RxPort[i].RxFillLimit = 1;
} else {
pAC->RxPort[i].RxFillLimit = pAC->RxDescrPerRing -
(pAC->RxDescrPerRing / 4);
}
}
}
}
SkGeDeInit(pAC, pAC->IoBase);
/*
** enable/disable hardware support for long frames
*/
if (NewMtu > 1500) {
// pAC->JumboActivated = SK_TRUE; /* is never set back !!! */
pAC->GIni.GIPortUsage = SK_JUMBO_LINK;
} else {
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
pAC->GIni.GIPortUsage = SK_MUL_LINK;
} else {
pAC->GIni.GIPortUsage = SK_RED_LINK;
}
}
SkGeInit( pAC, pAC->IoBase, SK_INIT_IO);
SkI2cInit( pAC, pAC->IoBase, SK_INIT_IO);
SkEventInit(pAC, pAC->IoBase, SK_INIT_IO);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_IO);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_IO);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_IO);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_IO);
/*
** tschilling:
** Speed and others are set back to default in level 1 init!
*/
GetConfiguration(pAC);
SkGeInit( pAC, pAC->IoBase, SK_INIT_RUN);
SkI2cInit( pAC, pAC->IoBase, SK_INIT_RUN);
SkEventInit(pAC, pAC->IoBase, SK_INIT_RUN);
SkPnmiInit( pAC, pAC->IoBase, SK_INIT_RUN);
SkAddrInit( pAC, pAC->IoBase, SK_INIT_RUN);
SkRlmtInit( pAC, pAC->IoBase, SK_INIT_RUN);
SkTimerInit(pAC, pAC->IoBase, SK_INIT_RUN);
/*
** clear and reinit the rx rings here
*/
for (i=0; i<pAC->GIni.GIMacsFound; i++) {
ReceiveIrq(pAC, &pAC->RxPort[i], SK_TRUE);
ClearRxRing(pAC, &pAC->RxPort[i]);
FillRxRing(pAC, &pAC->RxPort[i]);
/*
** Enable transmit descriptor polling
*/
SkGePollTxD(pAC, pAC->IoBase, i, SK_TRUE);
FillRxRing(pAC, &pAC->RxPort[i]);
};
SkGeYellowLED(pAC, pAC->IoBase, 1);
SkDimEnableModerationIfNeeded(pAC);
SkDimDisplayModerationSettings(pAC);
netif_start_queue(pAC->dev[pNet->PortNr]);
for (i=pAC->GIni.GIMacsFound-1; i>=0; i--) {
spin_unlock(&pAC->TxPort[i][TX_PRIO_LOW].TxDesRingLock);
}
/*
** Enable Interrupts again
*/
SK_OUT32(pAC->IoBase, B0_IMSK, pAC->GIni.GIValIrqMask);
SK_OUT32(pAC->IoBase, B0_HWE_IMSK, IRQ_HWE_MASK);
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
/*
** Notify RLMT about the changing and restarting one (or more) ports
*/
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
EvPara.Para32[0] = pAC->RlmtNets;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_SET_NETS, EvPara);
EvPara.Para32[0] = pNet->PortNr;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
if (pOtherNet->Up) {
EvPara.Para32[0] = pOtherNet->PortNr;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
}
} else {
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_START, EvPara);
}
SkEventDispatcher(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
/*
** While testing this driver with latest kernel 2.5 (2.5.70), it
** seems as if upper layers have a problem to handle a successful
** return value of '0'. If such a zero is returned, the complete
** system hangs for several minutes (!), which is in acceptable.
**
** Currently it is not clear, what the exact reason for this problem
** is. The implemented workaround for 2.5 is to return the desired
** new MTU size if all needed changes for the new MTU size where
** performed. In kernels 2.2 and 2.4, a zero value is returned,
** which indicates the successful change of the mtu-size.
*/
return NewMtu;
} /* SkGeChangeMtu */
/*****************************************************************************
*
* SkGeStats - return ethernet device statistics
*
* Description:
* This function return statistic data about the ethernet device
* to the operating system.
*
* Returns:
* pointer to the statistic structure.
*/
static struct net_device_stats *SkGeStats(struct SK_NET_DEVICE *dev)
{
DEV_NET *pNet = netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
SK_PNMI_STRUCT_DATA *pPnmiStruct; /* structure for all Pnmi-Data */
SK_PNMI_STAT *pPnmiStat; /* pointer to virtual XMAC stat. data */
SK_PNMI_CONF *pPnmiConf; /* pointer to virtual link config. */
unsigned int Size; /* size of pnmi struct */
unsigned long Flags; /* for spin lock */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeStats starts now...\n"));
pPnmiStruct = &pAC->PnmiStruct;
#ifdef SK_DIAG_SUPPORT
if ((pAC->DiagModeActive == DIAG_NOTACTIVE) &&
(pAC->BoardLevel == SK_INIT_RUN)) {
#endif
SK_MEMSET(pPnmiStruct, 0, sizeof(SK_PNMI_STRUCT_DATA));
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
Size = SK_PNMI_STRUCT_SIZE;
SkPnmiGetStruct(pAC, pAC->IoBase, pPnmiStruct, &Size, pNet->NetNr);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
#ifdef SK_DIAG_SUPPORT
}
#endif
pPnmiStat = &pPnmiStruct->Stat[0];
pPnmiConf = &pPnmiStruct->Conf[0];
pAC->stats.rx_packets = (SK_U32) pPnmiStruct->RxDeliveredCts & 0xFFFFFFFF;
pAC->stats.tx_packets = (SK_U32) pPnmiStat->StatTxOkCts & 0xFFFFFFFF;
pAC->stats.rx_bytes = (SK_U32) pPnmiStruct->RxOctetsDeliveredCts;
pAC->stats.tx_bytes = (SK_U32) pPnmiStat->StatTxOctetsOkCts;
if (pNet->Mtu <= 1500) {
pAC->stats.rx_errors = (SK_U32) pPnmiStruct->InErrorsCts & 0xFFFFFFFF;
} else {
pAC->stats.rx_errors = (SK_U32) ((pPnmiStruct->InErrorsCts -
pPnmiStat->StatRxTooLongCts) & 0xFFFFFFFF);
}
if (pAC->GIni.GP[0].PhyType == SK_PHY_XMAC && pAC->HWRevision < 12)
pAC->stats.rx_errors = pAC->stats.rx_errors - pPnmiStat->StatRxShortsCts;
pAC->stats.tx_errors = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
pAC->stats.rx_dropped = (SK_U32) pPnmiStruct->RxNoBufCts & 0xFFFFFFFF;
pAC->stats.tx_dropped = (SK_U32) pPnmiStruct->TxNoBufCts & 0xFFFFFFFF;
pAC->stats.multicast = (SK_U32) pPnmiStat->StatRxMulticastOkCts & 0xFFFFFFFF;
pAC->stats.collisions = (SK_U32) pPnmiStat->StatTxSingleCollisionCts & 0xFFFFFFFF;
/* detailed rx_errors: */
pAC->stats.rx_length_errors = (SK_U32) pPnmiStat->StatRxRuntCts & 0xFFFFFFFF;
pAC->stats.rx_over_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
pAC->stats.rx_crc_errors = (SK_U32) pPnmiStat->StatRxFcsCts & 0xFFFFFFFF;
pAC->stats.rx_frame_errors = (SK_U32) pPnmiStat->StatRxFramingCts & 0xFFFFFFFF;
pAC->stats.rx_fifo_errors = (SK_U32) pPnmiStat->StatRxFifoOverflowCts & 0xFFFFFFFF;
pAC->stats.rx_missed_errors = (SK_U32) pPnmiStat->StatRxMissedCts & 0xFFFFFFFF;
/* detailed tx_errors */
pAC->stats.tx_aborted_errors = (SK_U32) 0;
pAC->stats.tx_carrier_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
pAC->stats.tx_fifo_errors = (SK_U32) pPnmiStat->StatTxFifoUnderrunCts & 0xFFFFFFFF;
pAC->stats.tx_heartbeat_errors = (SK_U32) pPnmiStat->StatTxCarrierCts & 0xFFFFFFFF;
pAC->stats.tx_window_errors = (SK_U32) 0;
return(&pAC->stats);
} /* SkGeStats */
/*****************************************************************************
*
* SkGeIoctl - IO-control function
*
* Description:
* This function is called if an ioctl is issued on the device.
* There are three subfunction for reading, writing and test-writing
* the private MIB data structure (usefull for SysKonnect-internal tools).
*
* Returns:
* 0, if everything is ok
* !=0, on error
*/
static int SkGeIoctl(struct SK_NET_DEVICE *dev, struct ifreq *rq, int cmd)
{
DEV_NET *pNet;
SK_AC *pAC;
void *pMemBuf;
struct pci_dev *pdev = NULL;
SK_GE_IOCTL Ioctl;
unsigned int Err = 0;
int Size = 0;
int Ret = 0;
unsigned int Length = 0;
int HeaderLength = sizeof(SK_U32) + sizeof(SK_U32);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIoctl starts now...\n"));
pNet = netdev_priv(dev);
pAC = pNet->pAC;
if(copy_from_user(&Ioctl, rq->ifr_data, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
switch(cmd) {
case SK_IOCTL_SETMIB:
case SK_IOCTL_PRESETMIB:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
case SK_IOCTL_GETMIB:
if(copy_from_user(&pAC->PnmiStruct, Ioctl.pData,
Ioctl.Len<sizeof(pAC->PnmiStruct)?
Ioctl.Len : sizeof(pAC->PnmiStruct))) {
return -EFAULT;
}
Size = SkGeIocMib(pNet, Ioctl.Len, cmd);
if(copy_to_user(Ioctl.pData, &pAC->PnmiStruct,
Ioctl.Len<Size? Ioctl.Len : Size)) {
return -EFAULT;
}
Ioctl.Len = Size;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
return -EFAULT;
}
break;
case SK_IOCTL_GEN:
if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
Length = Ioctl.Len;
} else {
Length = sizeof(pAC->PnmiStruct) + HeaderLength;
}
if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
return -ENOMEM;
}
if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
Err = -EFAULT;
goto fault_gen;
}
if ((Ret = SkPnmiGenIoctl(pAC, pAC->IoBase, pMemBuf, &Length, 0)) < 0) {
Err = -EFAULT;
goto fault_gen;
}
if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
Err = -EFAULT;
goto fault_gen;
}
Ioctl.Len = Length;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
Err = -EFAULT;
goto fault_gen;
}
fault_gen:
kfree(pMemBuf); /* cleanup everything */
break;
#ifdef SK_DIAG_SUPPORT
case SK_IOCTL_DIAG:
if (!capable(CAP_NET_ADMIN)) return -EPERM;
if (Ioctl.Len < (sizeof(pAC->PnmiStruct) + HeaderLength)) {
Length = Ioctl.Len;
} else {
Length = sizeof(pAC->PnmiStruct) + HeaderLength;
}
if (NULL == (pMemBuf = kmalloc(Length, GFP_KERNEL))) {
return -ENOMEM;
}
if(copy_from_user(pMemBuf, Ioctl.pData, Length)) {
Err = -EFAULT;
goto fault_diag;
}
pdev = pAC->PciDev;
Length = 3 * sizeof(SK_U32); /* Error, Bus and Device */
/*
** While coding this new IOCTL interface, only a few lines of code
** are to to be added. Therefore no dedicated function has been
** added. If more functionality is added, a separate function
** should be used...
*/
* ((SK_U32 *)pMemBuf) = 0;
* ((SK_U32 *)pMemBuf + 1) = pdev->bus->number;
* ((SK_U32 *)pMemBuf + 2) = ParseDeviceNbrFromSlotName(pci_name(pdev));
if(copy_to_user(Ioctl.pData, pMemBuf, Length) ) {
Err = -EFAULT;
goto fault_diag;
}
Ioctl.Len = Length;
if(copy_to_user(rq->ifr_data, &Ioctl, sizeof(SK_GE_IOCTL))) {
Err = -EFAULT;
goto fault_diag;
}
fault_diag:
kfree(pMemBuf); /* cleanup everything */
break;
#endif
default:
Err = -EOPNOTSUPP;
}
return(Err);
} /* SkGeIoctl */
/*****************************************************************************
*
* SkGeIocMib - handle a GetMib, SetMib- or PresetMib-ioctl message
*
* Description:
* This function reads/writes the MIB data using PNMI (Private Network
* Management Interface).
* The destination for the data must be provided with the
* ioctl call and is given to the driver in the form of
* a user space address.
* Copying from the user-provided data area into kernel messages
* and back is done by copy_from_user and copy_to_user calls in
* SkGeIoctl.
*
* Returns:
* returned size from PNMI call
*/
static int SkGeIocMib(
DEV_NET *pNet, /* pointer to the adapter context */
unsigned int Size, /* length of ioctl data */
int mode) /* flag for set/preset */
{
unsigned long Flags; /* for spin lock */
SK_AC *pAC;
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("SkGeIocMib starts now...\n"));
pAC = pNet->pAC;
/* access MIB */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
switch(mode) {
case SK_IOCTL_GETMIB:
SkPnmiGetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_PRESETMIB:
SkPnmiPreSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
case SK_IOCTL_SETMIB:
SkPnmiSetStruct(pAC, pAC->IoBase, &pAC->PnmiStruct, &Size,
pNet->NetNr);
break;
default:
break;
}
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ENTRY,
("MIB data access succeeded\n"));
return (Size);
} /* SkGeIocMib */
/*****************************************************************************
*
* GetConfiguration - read configuration information
*
* Description:
* This function reads per-adapter configuration information from
* the options provided on the command line.
*
* Returns:
* none
*/
static void GetConfiguration(
SK_AC *pAC) /* pointer to the adapter context structure */
{
SK_I32 Port; /* preferred port */
SK_BOOL AutoSet;
SK_BOOL DupSet;
int LinkSpeed = SK_LSPEED_AUTO; /* Link speed */
int AutoNeg = 1; /* autoneg off (0) or on (1) */
int DuplexCap = 0; /* 0=both,1=full,2=half */
int FlowCtrl = SK_FLOW_MODE_SYM_OR_REM; /* FlowControl */
int MSMode = SK_MS_MODE_AUTO; /* master/slave mode */
SK_BOOL IsConTypeDefined = SK_TRUE;
SK_BOOL IsLinkSpeedDefined = SK_TRUE;
SK_BOOL IsFlowCtrlDefined = SK_TRUE;
SK_BOOL IsRoleDefined = SK_TRUE;
SK_BOOL IsModeDefined = SK_TRUE;
/*
* The two parameters AutoNeg. and DuplexCap. map to one configuration
* parameter. The mapping is described by this table:
* DuplexCap -> | both | full | half |
* AutoNeg | | | |
* -----------------------------------------------------------------
* Off | illegal | Full | Half |
* -----------------------------------------------------------------
* On | AutoBoth | AutoFull | AutoHalf |
* -----------------------------------------------------------------
* Sense | AutoSense | AutoSense | AutoSense |
*/
int Capabilities[3][3] =
{ { -1, SK_LMODE_FULL , SK_LMODE_HALF },
{SK_LMODE_AUTOBOTH , SK_LMODE_AUTOFULL , SK_LMODE_AUTOHALF },
{SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE, SK_LMODE_AUTOSENSE} };
#define DC_BOTH 0
#define DC_FULL 1
#define DC_HALF 2
#define AN_OFF 0
#define AN_ON 1
#define AN_SENS 2
#define M_CurrPort pAC->GIni.GP[Port]
/*
** Set the default values first for both ports!
*/
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
}
/*
** Check merged parameter ConType. If it has not been used,
** verify any other parameter (e.g. AutoNeg) and use default values.
**
** Stating both ConType and other lowlevel link parameters is also
** possible. If this is the case, the passed ConType-parameter is
** overwritten by the lowlevel link parameter.
**
** The following settings are used for a merged ConType-parameter:
**
** ConType DupCap AutoNeg FlowCtrl Role Speed
** ------- ------ ------- -------- ---------- -----
** Auto Both On SymOrRem Auto Auto
** 100FD Full Off None <ignored> 100
** 100HD Half Off None <ignored> 100
** 10FD Full Off None <ignored> 10
** 10HD Half Off None <ignored> 10
**
** This ConType parameter is used for all ports of the adapter!
*/
if ( (ConType != NULL) &&
(pAC->Index < SK_MAX_CARD_PARAM) &&
(ConType[pAC->Index] != NULL) ) {
/* Check chipset family */
if ((!pAC->ChipsetType) &&
(strcmp(ConType[pAC->Index],"Auto")!=0) &&
(strcmp(ConType[pAC->Index],"")!=0)) {
/* Set the speed parameter back */
printk("sk98lin: Illegal value \"%s\" "
"for ConType."
" Using Auto.\n",
ConType[pAC->Index]);
sprintf(ConType[pAC->Index], "Auto");
}
if (strcmp(ConType[pAC->Index],"")==0) {
IsConTypeDefined = SK_FALSE; /* No ConType defined */
} else if (strcmp(ConType[pAC->Index],"Auto")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_ON][DC_BOTH];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_SYM_OR_REM;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_AUTO;
}
} else if (strcmp(ConType[pAC->Index],"100FD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
}
} else if (strcmp(ConType[pAC->Index],"100HD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_100MBPS;
}
} else if (strcmp(ConType[pAC->Index],"10FD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_FULL];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
}
} else if (strcmp(ConType[pAC->Index],"10HD")==0) {
for (Port = 0; Port < SK_MAX_MACS; Port++) {
M_CurrPort.PLinkModeConf = Capabilities[AN_OFF][DC_HALF];
M_CurrPort.PFlowCtrlMode = SK_FLOW_MODE_NONE;
M_CurrPort.PMSMode = SK_MS_MODE_AUTO;
M_CurrPort.PLinkSpeed = SK_LSPEED_10MBPS;
}
} else {
printk("sk98lin: Illegal value \"%s\" for ConType\n",
ConType[pAC->Index]);
IsConTypeDefined = SK_FALSE; /* Wrong ConType defined */
}
} else {
IsConTypeDefined = SK_FALSE; /* No ConType defined */
}
/*
** Parse any parameter settings for port A:
** a) any LinkSpeed stated?
*/
if (Speed_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_A[pAC->Index] != NULL) {
if (strcmp(Speed_A[pAC->Index],"")==0) {
IsLinkSpeedDefined = SK_FALSE;
} else if (strcmp(Speed_A[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
} else if (strcmp(Speed_A[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
} else if (strcmp(Speed_A[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
} else if (strcmp(Speed_A[pAC->Index],"1000")==0) {
LinkSpeed = SK_LSPEED_1000MBPS;
} else {
printk("sk98lin: Illegal value \"%s\" for Speed_A\n",
Speed_A[pAC->Index]);
IsLinkSpeedDefined = SK_FALSE;
}
} else {
IsLinkSpeedDefined = SK_FALSE;
}
/*
** Check speed parameter:
** Only copper type adapter and GE V2 cards
*/
if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("sk98lin: Illegal value for Speed_A. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n");
LinkSpeed = SK_LSPEED_1000MBPS;
}
/*
** Decide whether to set new config value if somethig valid has
** been received.
*/
if (IsLinkSpeedDefined) {
pAC->GIni.GP[0].PLinkSpeed = LinkSpeed;
}
/*
** b) Any Autonegotiation and DuplexCapabilities set?
** Please note that both belong together...
*/
AutoNeg = AN_ON; /* tschilling: Default: Autonegotiation on! */
AutoSet = SK_FALSE;
if (AutoNeg_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_A[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_A[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
} else if (strcmp(AutoNeg_A[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
} else if (strcmp(AutoNeg_A[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
} else if (strcmp(AutoNeg_A[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
} else {
printk("sk98lin: Illegal value \"%s\" for AutoNeg_A\n",
AutoNeg_A[pAC->Index]);
}
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_A[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_A[pAC->Index],"")==0) {
DupSet = SK_FALSE;
} else if (strcmp(DupCap_A[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
} else if (strcmp(DupCap_A[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
} else if (strcmp(DupCap_A[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
} else {
printk("sk98lin: Illegal value \"%s\" for DupCap_A\n",
DupCap_A[pAC->Index]);
}
}
/*
** Check for illegal combinations
*/
if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
(DuplexCap == SK_LMODE_STAT_HALF)) &&
(pAC->ChipsetType)) {
printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
" Using Full Duplex.\n");
DuplexCap = DC_FULL;
}
if ( AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("sk98lin, Port A: DuplexCapabilities"
" ignored using Sense mode\n");
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("sk98lin: Port A: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
printk("sk98lin: Port A: Duplex setting not"
" possible in\n default AutoNegotiation mode"
" (Sense).\n Using AutoNegotiation On\n");
AutoNeg = AN_ON;
}
/*
** set the desired mode
*/
if (AutoSet || DupSet) {
pAC->GIni.GP[0].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
}
/*
** c) Any Flowcontrol-parameter set?
*/
if (FlowCtrl_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_A[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_A[pAC->Index],"") == 0) {
IsFlowCtrlDefined = SK_FALSE;
} else if (strcmp(FlowCtrl_A[pAC->Index],"SymOrRem") == 0) {
FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
} else if (strcmp(FlowCtrl_A[pAC->Index],"Sym")==0) {
FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
} else if (strcmp(FlowCtrl_A[pAC->Index],"LocSend")==0) {
FlowCtrl = SK_FLOW_MODE_LOC_SEND;
} else if (strcmp(FlowCtrl_A[pAC->Index],"None")==0) {
FlowCtrl = SK_FLOW_MODE_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for FlowCtrl_A\n",
FlowCtrl_A[pAC->Index]);
IsFlowCtrlDefined = SK_FALSE;
}
} else {
IsFlowCtrlDefined = SK_FALSE;
}
if (IsFlowCtrlDefined) {
if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
printk("sk98lin: Port A: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n");
FlowCtrl = SK_FLOW_MODE_NONE;
}
pAC->GIni.GP[0].PFlowCtrlMode = FlowCtrl;
}
/*
** d) What is with the RoleParameter?
*/
if (Role_A != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_A[pAC->Index] != NULL) {
if (strcmp(Role_A[pAC->Index],"")==0) {
IsRoleDefined = SK_FALSE;
} else if (strcmp(Role_A[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
} else if (strcmp(Role_A[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
} else if (strcmp(Role_A[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
} else {
printk("sk98lin: Illegal value \"%s\" for Role_A\n",
Role_A[pAC->Index]);
IsRoleDefined = SK_FALSE;
}
} else {
IsRoleDefined = SK_FALSE;
}
if (IsRoleDefined == SK_TRUE) {
pAC->GIni.GP[0].PMSMode = MSMode;
}
/*
** Parse any parameter settings for port B:
** a) any LinkSpeed stated?
*/
IsConTypeDefined = SK_TRUE;
IsLinkSpeedDefined = SK_TRUE;
IsFlowCtrlDefined = SK_TRUE;
IsModeDefined = SK_TRUE;
if (Speed_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Speed_B[pAC->Index] != NULL) {
if (strcmp(Speed_B[pAC->Index],"")==0) {
IsLinkSpeedDefined = SK_FALSE;
} else if (strcmp(Speed_B[pAC->Index],"Auto")==0) {
LinkSpeed = SK_LSPEED_AUTO;
} else if (strcmp(Speed_B[pAC->Index],"10")==0) {
LinkSpeed = SK_LSPEED_10MBPS;
} else if (strcmp(Speed_B[pAC->Index],"100")==0) {
LinkSpeed = SK_LSPEED_100MBPS;
} else if (strcmp(Speed_B[pAC->Index],"1000")==0) {
LinkSpeed = SK_LSPEED_1000MBPS;
} else {
printk("sk98lin: Illegal value \"%s\" for Speed_B\n",
Speed_B[pAC->Index]);
IsLinkSpeedDefined = SK_FALSE;
}
} else {
IsLinkSpeedDefined = SK_FALSE;
}
/*
** Check speed parameter:
** Only copper type adapter and GE V2 cards
*/
if (((!pAC->ChipsetType) || (pAC->GIni.GICopperType != SK_TRUE)) &&
((LinkSpeed != SK_LSPEED_AUTO) &&
(LinkSpeed != SK_LSPEED_1000MBPS))) {
printk("sk98lin: Illegal value for Speed_B. "
"Not a copper card or GE V2 card\n Using "
"speed 1000\n");
LinkSpeed = SK_LSPEED_1000MBPS;
}
/*
** Decide whether to set new config value if somethig valid has
** been received.
*/
if (IsLinkSpeedDefined) {
pAC->GIni.GP[1].PLinkSpeed = LinkSpeed;
}
/*
** b) Any Autonegotiation and DuplexCapabilities set?
** Please note that both belong together...
*/
AutoNeg = AN_SENS; /* default: do auto Sense */
AutoSet = SK_FALSE;
if (AutoNeg_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
AutoNeg_B[pAC->Index] != NULL) {
AutoSet = SK_TRUE;
if (strcmp(AutoNeg_B[pAC->Index],"")==0) {
AutoSet = SK_FALSE;
} else if (strcmp(AutoNeg_B[pAC->Index],"On")==0) {
AutoNeg = AN_ON;
} else if (strcmp(AutoNeg_B[pAC->Index],"Off")==0) {
AutoNeg = AN_OFF;
} else if (strcmp(AutoNeg_B[pAC->Index],"Sense")==0) {
AutoNeg = AN_SENS;
} else {
printk("sk98lin: Illegal value \"%s\" for AutoNeg_B\n",
AutoNeg_B[pAC->Index]);
}
}
DuplexCap = DC_BOTH;
DupSet = SK_FALSE;
if (DupCap_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
DupCap_B[pAC->Index] != NULL) {
DupSet = SK_TRUE;
if (strcmp(DupCap_B[pAC->Index],"")==0) {
DupSet = SK_FALSE;
} else if (strcmp(DupCap_B[pAC->Index],"Both")==0) {
DuplexCap = DC_BOTH;
} else if (strcmp(DupCap_B[pAC->Index],"Full")==0) {
DuplexCap = DC_FULL;
} else if (strcmp(DupCap_B[pAC->Index],"Half")==0) {
DuplexCap = DC_HALF;
} else {
printk("sk98lin: Illegal value \"%s\" for DupCap_B\n",
DupCap_B[pAC->Index]);
}
}
/*
** Check for illegal combinations
*/
if ((LinkSpeed == SK_LSPEED_1000MBPS) &&
((DuplexCap == SK_LMODE_STAT_AUTOHALF) ||
(DuplexCap == SK_LMODE_STAT_HALF)) &&
(pAC->ChipsetType)) {
printk("sk98lin: Half Duplex not possible with Gigabit speed!\n"
" Using Full Duplex.\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_SENS && DupSet) {
printk("sk98lin, Port B: DuplexCapabilities"
" ignored using Sense mode\n");
}
if (AutoSet && AutoNeg==AN_OFF && DupSet && DuplexCap==DC_BOTH){
printk("sk98lin: Port B: Illegal combination"
" of values AutoNeg. and DuplexCap.\n Using "
"Full Duplex\n");
DuplexCap = DC_FULL;
}
if (AutoSet && AutoNeg==AN_OFF && !DupSet) {
DuplexCap = DC_FULL;
}
if (!AutoSet && DupSet) {
printk("sk98lin: Port B: Duplex setting not"
" possible in\n default AutoNegotiation mode"
" (Sense).\n Using AutoNegotiation On\n");
AutoNeg = AN_ON;
}
/*
** set the desired mode
*/
if (AutoSet || DupSet) {
pAC->GIni.GP[1].PLinkModeConf = Capabilities[AutoNeg][DuplexCap];
}
/*
** c) Any FlowCtrl parameter set?
*/
if (FlowCtrl_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
FlowCtrl_B[pAC->Index] != NULL) {
if (strcmp(FlowCtrl_B[pAC->Index],"") == 0) {
IsFlowCtrlDefined = SK_FALSE;
} else if (strcmp(FlowCtrl_B[pAC->Index],"SymOrRem") == 0) {
FlowCtrl = SK_FLOW_MODE_SYM_OR_REM;
} else if (strcmp(FlowCtrl_B[pAC->Index],"Sym")==0) {
FlowCtrl = SK_FLOW_MODE_SYMMETRIC;
} else if (strcmp(FlowCtrl_B[pAC->Index],"LocSend")==0) {
FlowCtrl = SK_FLOW_MODE_LOC_SEND;
} else if (strcmp(FlowCtrl_B[pAC->Index],"None")==0) {
FlowCtrl = SK_FLOW_MODE_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for FlowCtrl_B\n",
FlowCtrl_B[pAC->Index]);
IsFlowCtrlDefined = SK_FALSE;
}
} else {
IsFlowCtrlDefined = SK_FALSE;
}
if (IsFlowCtrlDefined) {
if ((AutoNeg == AN_OFF) && (FlowCtrl != SK_FLOW_MODE_NONE)) {
printk("sk98lin: Port B: FlowControl"
" impossible without AutoNegotiation,"
" disabled\n");
FlowCtrl = SK_FLOW_MODE_NONE;
}
pAC->GIni.GP[1].PFlowCtrlMode = FlowCtrl;
}
/*
** d) What is the RoleParameter?
*/
if (Role_B != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
Role_B[pAC->Index] != NULL) {
if (strcmp(Role_B[pAC->Index],"")==0) {
IsRoleDefined = SK_FALSE;
} else if (strcmp(Role_B[pAC->Index],"Auto")==0) {
MSMode = SK_MS_MODE_AUTO;
} else if (strcmp(Role_B[pAC->Index],"Master")==0) {
MSMode = SK_MS_MODE_MASTER;
} else if (strcmp(Role_B[pAC->Index],"Slave")==0) {
MSMode = SK_MS_MODE_SLAVE;
} else {
printk("sk98lin: Illegal value \"%s\" for Role_B\n",
Role_B[pAC->Index]);
IsRoleDefined = SK_FALSE;
}
} else {
IsRoleDefined = SK_FALSE;
}
if (IsRoleDefined) {
pAC->GIni.GP[1].PMSMode = MSMode;
}
/*
** Evaluate settings for both ports
*/
pAC->ActivePort = 0;
if (PrefPort != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
PrefPort[pAC->Index] != NULL) {
if (strcmp(PrefPort[pAC->Index],"") == 0) { /* Auto */
pAC->ActivePort = 0;
pAC->Rlmt.Net[0].Preference = -1; /* auto */
pAC->Rlmt.Net[0].PrefPort = 0;
} else if (strcmp(PrefPort[pAC->Index],"A") == 0) {
/*
** do not set ActivePort here, thus a port
** switch is issued after net up.
*/
Port = 0;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
} else if (strcmp(PrefPort[pAC->Index],"B") == 0) {
/*
** do not set ActivePort here, thus a port
** switch is issued after net up.
*/
if (pAC->GIni.GIMacsFound == 1) {
printk("sk98lin: Illegal value \"B\" for PrefPort.\n"
" Port B not available on single port adapters.\n");
pAC->ActivePort = 0;
pAC->Rlmt.Net[0].Preference = -1; /* auto */
pAC->Rlmt.Net[0].PrefPort = 0;
} else {
Port = 1;
pAC->Rlmt.Net[0].Preference = Port;
pAC->Rlmt.Net[0].PrefPort = Port;
}
} else {
printk("sk98lin: Illegal value \"%s\" for PrefPort\n",
PrefPort[pAC->Index]);
}
}
pAC->RlmtNets = 1;
if (RlmtMode != NULL && pAC->Index<SK_MAX_CARD_PARAM &&
RlmtMode[pAC->Index] != NULL) {
if (strcmp(RlmtMode[pAC->Index], "") == 0) {
pAC->RlmtMode = 0;
} else if (strcmp(RlmtMode[pAC->Index], "CheckLinkState") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
} else if (strcmp(RlmtMode[pAC->Index], "CheckLocalPort") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK;
} else if (strcmp(RlmtMode[pAC->Index], "CheckSeg") == 0) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK |
SK_RLMT_CHECK_LOC_LINK |
SK_RLMT_CHECK_SEG;
} else if ((strcmp(RlmtMode[pAC->Index], "DualNet") == 0) &&
(pAC->GIni.GIMacsFound == 2)) {
pAC->RlmtMode = SK_RLMT_CHECK_LINK;
pAC->RlmtNets = 2;
} else {
printk("sk98lin: Illegal value \"%s\" for"
" RlmtMode, using default\n",
RlmtMode[pAC->Index]);
pAC->RlmtMode = 0;
}
} else {
pAC->RlmtMode = 0;
}
/*
** Check the interrupt moderation parameters
*/
if (Moderation[pAC->Index] != NULL) {
if (strcmp(Moderation[pAC->Index], "") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
} else if (strcmp(Moderation[pAC->Index], "Static") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_STATIC;
} else if (strcmp(Moderation[pAC->Index], "Dynamic") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_DYNAMIC;
} else if (strcmp(Moderation[pAC->Index], "None") == 0) {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
} else {
printk("sk98lin: Illegal value \"%s\" for Moderation.\n"
" Disable interrupt moderation.\n",
Moderation[pAC->Index]);
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
}
} else {
pAC->DynIrqModInfo.IntModTypeSelect = C_INT_MOD_NONE;
}
if (Stats[pAC->Index] != NULL) {
if (strcmp(Stats[pAC->Index], "Yes") == 0) {
pAC->DynIrqModInfo.DisplayStats = SK_TRUE;
} else {
pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
}
} else {
pAC->DynIrqModInfo.DisplayStats = SK_FALSE;
}
if (ModerationMask[pAC->Index] != NULL) {
if (strcmp(ModerationMask[pAC->Index], "Rx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
} else if (strcmp(ModerationMask[pAC->Index], "Tx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_ONLY;
} else if (strcmp(ModerationMask[pAC->Index], "Sp") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_ONLY;
} else if (strcmp(ModerationMask[pAC->Index], "RxSp") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
} else if (strcmp(ModerationMask[pAC->Index], "SpRx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_RX;
} else if (strcmp(ModerationMask[pAC->Index], "RxTx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
} else if (strcmp(ModerationMask[pAC->Index], "TxRx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
} else if (strcmp(ModerationMask[pAC->Index], "TxSp") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
} else if (strcmp(ModerationMask[pAC->Index], "SpTx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_SP_TX;
} else if (strcmp(ModerationMask[pAC->Index], "RxTxSp") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else if (strcmp(ModerationMask[pAC->Index], "RxSpTx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else if (strcmp(ModerationMask[pAC->Index], "TxRxSp") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else if (strcmp(ModerationMask[pAC->Index], "TxSpRx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else if (strcmp(ModerationMask[pAC->Index], "SpTxRx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else if (strcmp(ModerationMask[pAC->Index], "SpRxTx") == 0) {
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_TX_SP;
} else { /* some rubbish */
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_RX_ONLY;
}
} else { /* operator has stated nothing */
pAC->DynIrqModInfo.MaskIrqModeration = IRQ_MASK_TX_RX;
}
if (AutoSizing[pAC->Index] != NULL) {
if (strcmp(AutoSizing[pAC->Index], "On") == 0) {
pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
} else {
pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
}
} else { /* operator has stated nothing */
pAC->DynIrqModInfo.AutoSizing = SK_FALSE;
}
if (IntsPerSec[pAC->Index] != 0) {
if ((IntsPerSec[pAC->Index]< C_INT_MOD_IPS_LOWER_RANGE) ||
(IntsPerSec[pAC->Index] > C_INT_MOD_IPS_UPPER_RANGE)) {
printk("sk98lin: Illegal value \"%d\" for IntsPerSec. (Range: %d - %d)\n"
" Using default value of %i.\n",
IntsPerSec[pAC->Index],
C_INT_MOD_IPS_LOWER_RANGE,
C_INT_MOD_IPS_UPPER_RANGE,
C_INTS_PER_SEC_DEFAULT);
pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
} else {
pAC->DynIrqModInfo.MaxModIntsPerSec = IntsPerSec[pAC->Index];
}
} else {
pAC->DynIrqModInfo.MaxModIntsPerSec = C_INTS_PER_SEC_DEFAULT;
}
/*
** Evaluate upper and lower moderation threshold
*/
pAC->DynIrqModInfo.MaxModIntsPerSecUpperLimit =
pAC->DynIrqModInfo.MaxModIntsPerSec +
(pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
pAC->DynIrqModInfo.MaxModIntsPerSecLowerLimit =
pAC->DynIrqModInfo.MaxModIntsPerSec -
(pAC->DynIrqModInfo.MaxModIntsPerSec / 2);
pAC->DynIrqModInfo.PrevTimeVal = jiffies; /* initial value */
} /* GetConfiguration */
/*****************************************************************************
*
* ProductStr - return a adapter identification string from vpd
*
* Description:
* This function reads the product name string from the vpd area
* and puts it the field pAC->DeviceString.
*
* Returns: N/A
*/
static void ProductStr(
SK_AC *pAC /* pointer to adapter context */
)
{
int StrLen = 80; /* length of the string, defined in SK_AC */
char Keyword[] = VPD_NAME; /* vpd productname identifier */
int ReturnCode; /* return code from vpd_read */
unsigned long Flags;
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
ReturnCode = VpdRead(pAC, pAC->IoBase, Keyword, pAC->DeviceStr,
&StrLen);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
if (ReturnCode != 0) {
/* there was an error reading the vpd data */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_ERROR,
("Error reading VPD data: %d\n", ReturnCode));
pAC->DeviceStr[0] = '\0';
}
} /* ProductStr */
/*****************************************************************************
*
* StartDrvCleanupTimer - Start timer to check for descriptors which
* might be placed in descriptor ring, but
* havent been handled up to now
*
* Description:
* This function requests a HW-timer fo the Yukon card. The actions to
* perform when this timer expires, are located in the SkDrvEvent().
*
* Returns: N/A
*/
static void
StartDrvCleanupTimer(SK_AC *pAC) {
SK_EVPARA EventParam; /* Event struct for timer event */
SK_MEMSET((char *) &EventParam, 0, sizeof(EventParam));
EventParam.Para32[0] = SK_DRV_RX_CLEANUP_TIMER;
SkTimerStart(pAC, pAC->IoBase, &pAC->DrvCleanupTimer,
SK_DRV_RX_CLEANUP_TIMER_LENGTH,
SKGE_DRV, SK_DRV_TIMER, EventParam);
}
/*****************************************************************************
*
* StopDrvCleanupTimer - Stop timer to check for descriptors
*
* Description:
* This function requests a HW-timer fo the Yukon card. The actions to
* perform when this timer expires, are located in the SkDrvEvent().
*
* Returns: N/A
*/
static void
StopDrvCleanupTimer(SK_AC *pAC) {
SkTimerStop(pAC, pAC->IoBase, &pAC->DrvCleanupTimer);
SK_MEMSET((char *) &pAC->DrvCleanupTimer, 0, sizeof(SK_TIMER));
}
/****************************************************************************/
/* functions for common modules *********************************************/
/****************************************************************************/
/*****************************************************************************
*
* SkDrvAllocRlmtMbuf - allocate an RLMT mbuf
*
* Description:
* This routine returns an RLMT mbuf or NULL. The RLMT Mbuf structure
* is embedded into a socket buff data area.
*
* Context:
* runtime
*
* Returns:
* NULL or pointer to Mbuf.
*/
SK_MBUF *SkDrvAllocRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
unsigned BufferSize) /* size of the requested buffer */
{
SK_MBUF *pRlmtMbuf; /* pointer to a new rlmt-mbuf structure */
struct sk_buff *pMsgBlock; /* pointer to a new message block */
pMsgBlock = alloc_skb(BufferSize + sizeof(SK_MBUF), GFP_ATOMIC);
if (pMsgBlock == NULL) {
return (NULL);
}
pRlmtMbuf = (SK_MBUF*) pMsgBlock->data;
skb_reserve(pMsgBlock, sizeof(SK_MBUF));
pRlmtMbuf->pNext = NULL;
pRlmtMbuf->pOs = pMsgBlock;
pRlmtMbuf->pData = pMsgBlock->data; /* Data buffer. */
pRlmtMbuf->Size = BufferSize; /* Data buffer size. */
pRlmtMbuf->Length = 0; /* Length of packet (<= Size). */
return (pRlmtMbuf);
} /* SkDrvAllocRlmtMbuf */
/*****************************************************************************
*
* SkDrvFreeRlmtMbuf - free an RLMT mbuf
*
* Description:
* This routine frees one or more RLMT mbuf(s).
*
* Context:
* runtime
*
* Returns:
* Nothing
*/
void SkDrvFreeRlmtMbuf(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* the IO-context */
SK_MBUF *pMbuf) /* size of the requested buffer */
{
SK_MBUF *pFreeMbuf;
SK_MBUF *pNextMbuf;
pFreeMbuf = pMbuf;
do {
pNextMbuf = pFreeMbuf->pNext;
DEV_KFREE_SKB_ANY(pFreeMbuf->pOs);
pFreeMbuf = pNextMbuf;
} while ( pFreeMbuf != NULL );
} /* SkDrvFreeRlmtMbuf */
/*****************************************************************************
*
* SkOsGetTime - provide a time value
*
* Description:
* This routine provides a time value. The unit is 1/HZ (defined by Linux).
* It is not used for absolute time, but only for time differences.
*
*
* Returns:
* Time value
*/
SK_U64 SkOsGetTime(SK_AC *pAC)
{
SK_U64 PrivateJiffies;
SkOsGetTimeCurrent(pAC, &PrivateJiffies);
return PrivateJiffies;
} /* SkOsGetTime */
/*****************************************************************************
*
* SkPciReadCfgDWord - read a 32 bit value from pci config space
*
* Description:
* This routine reads a 32 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 *pVal) /* pointer to store the read value */
{
pci_read_config_dword(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgDWord */
/*****************************************************************************
*
* SkPciReadCfgWord - read a 16 bit value from pci config space
*
* Description:
* This routine reads a 16 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 *pVal) /* pointer to store the read value */
{
pci_read_config_word(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgWord */
/*****************************************************************************
*
* SkPciReadCfgByte - read a 8 bit value from pci config space
*
* Description:
* This routine reads a 8 bit value from the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciReadCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 *pVal) /* pointer to store the read value */
{
pci_read_config_byte(pAC->PciDev, PciAddr, pVal);
return(0);
} /* SkPciReadCfgByte */
/*****************************************************************************
*
* SkPciWriteCfgDWord - write a 32 bit value to pci config space
*
* Description:
* This routine writes a 32 bit value to the pci configuration
* space.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgDWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U32 Val) /* pointer to store the read value */
{
pci_write_config_dword(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgDWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 16 bit value to pci config space
*
* Description:
* This routine writes a 16 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgWord(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U16 Val) /* pointer to store the read value */
{
pci_write_config_word(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgWord */
/*****************************************************************************
*
* SkPciWriteCfgWord - write a 8 bit value to pci config space
*
* Description:
* This routine writes a 8 bit value to the pci configuration
* space. The flag PciConfigUp indicates whether the config space
* is accesible or must be set up first.
*
* Returns:
* 0 - indicate everything worked ok.
* != 0 - error indication
*/
int SkPciWriteCfgByte(
SK_AC *pAC, /* Adapter Control structure pointer */
int PciAddr, /* PCI register address */
SK_U8 Val) /* pointer to store the read value */
{
pci_write_config_byte(pAC->PciDev, PciAddr, Val);
return(0);
} /* SkPciWriteCfgByte */
/*****************************************************************************
*
* SkDrvEvent - handle driver events
*
* Description:
* This function handles events from all modules directed to the driver
*
* Context:
* Is called under protection of slow path lock.
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
int SkDrvEvent(
SK_AC *pAC, /* pointer to adapter context */
SK_IOC IoC, /* io-context */
SK_U32 Event, /* event-id */
SK_EVPARA Param) /* event-parameter */
{
SK_MBUF *pRlmtMbuf; /* pointer to a rlmt-mbuf structure */
struct sk_buff *pMsg; /* pointer to a message block */
int FromPort; /* the port from which we switch away */
int ToPort; /* the port we switch to */
SK_EVPARA NewPara; /* parameter for further events */
int Stat;
unsigned long Flags;
SK_BOOL DualNet;
switch (Event) {
case SK_DRV_ADAP_FAIL:
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("ADAPTER FAIL EVENT\n"));
printk("%s: Adapter failed.\n", pAC->dev[0]->name);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
/* cgoos */
break;
case SK_DRV_PORT_FAIL:
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT FAIL EVENT, Port: %d\n", FromPort));
if (FromPort == 0) {
printk("%s: Port A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: Port B failed.\n", pAC->dev[1]->name);
}
/* cgoos */
break;
case SK_DRV_PORT_RESET: /* SK_U32 PortIdx */
/* action list 4 */
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT RESET EVENT, Port: %d ", FromPort));
NewPara.Para64 = FromPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_HARD_RST);
netif_carrier_off(pAC->dev[Param.Para32[0]]);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
/* clear rx ring from received frames */
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE);
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
/* tschilling: Handling of return value inserted. */
if (SkGeInitPort(pAC, IoC, FromPort)) {
if (FromPort == 0) {
printk("%s: SkGeInitPort A failed.\n", pAC->dev[0]->name);
} else {
printk("%s: SkGeInitPort B failed.\n", pAC->dev[1]->name);
}
}
SkAddrMcUpdate(pAC,IoC, FromPort);
PortReInitBmu(pAC, FromPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
ClearAndStartRx(pAC, FromPort);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_NET_UP: /* SK_U32 PortIdx */
/* action list 5 */
FromPort = Param.Para32[0];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET UP EVENT, Port: %d ", Param.Para32[0]));
/* Mac update */
SkAddrMcUpdate(pAC,IoC, FromPort);
if (DoPrintInterfaceChange) {
printk("%s: network connection up using"
" port %c\n", pAC->dev[Param.Para32[0]]->name, 'A'+Param.Para32[0]);
/* tschilling: Values changed according to LinkSpeedUsed. */
Stat = pAC->GIni.GP[FromPort].PLinkSpeedUsed;
if (Stat == SK_LSPEED_STAT_10MBPS) {
printk(" speed: 10\n");
} else if (Stat == SK_LSPEED_STAT_100MBPS) {
printk(" speed: 100\n");
} else if (Stat == SK_LSPEED_STAT_1000MBPS) {
printk(" speed: 1000\n");
} else {
printk(" speed: unknown\n");
}
Stat = pAC->GIni.GP[FromPort].PLinkModeStatus;
if (Stat == SK_LMODE_STAT_AUTOHALF ||
Stat == SK_LMODE_STAT_AUTOFULL) {
printk(" autonegotiation: yes\n");
}
else {
printk(" autonegotiation: no\n");
}
if (Stat == SK_LMODE_STAT_AUTOHALF ||
Stat == SK_LMODE_STAT_HALF) {
printk(" duplex mode: half\n");
}
else {
printk(" duplex mode: full\n");
}
Stat = pAC->GIni.GP[FromPort].PFlowCtrlStatus;
if (Stat == SK_FLOW_STAT_REM_SEND ) {
printk(" flowctrl: remote send\n");
}
else if (Stat == SK_FLOW_STAT_LOC_SEND ){
printk(" flowctrl: local send\n");
}
else if (Stat == SK_FLOW_STAT_SYMMETRIC ){
printk(" flowctrl: symmetric\n");
}
else {
printk(" flowctrl: none\n");
}
/* tschilling: Check against CopperType now. */
if ((pAC->GIni.GICopperType == SK_TRUE) &&
(pAC->GIni.GP[FromPort].PLinkSpeedUsed ==
SK_LSPEED_STAT_1000MBPS)) {
Stat = pAC->GIni.GP[FromPort].PMSStatus;
if (Stat == SK_MS_STAT_MASTER ) {
printk(" role: master\n");
}
else if (Stat == SK_MS_STAT_SLAVE ) {
printk(" role: slave\n");
}
else {
printk(" role: ???\n");
}
}
/*
Display dim (dynamic interrupt moderation)
informations
*/
if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_STATIC)
printk(" irq moderation: static (%d ints/sec)\n",
pAC->DynIrqModInfo.MaxModIntsPerSec);
else if (pAC->DynIrqModInfo.IntModTypeSelect == C_INT_MOD_DYNAMIC)
printk(" irq moderation: dynamic (%d ints/sec)\n",
pAC->DynIrqModInfo.MaxModIntsPerSec);
else
printk(" irq moderation: disabled\n");
#ifdef SK_ZEROCOPY
if (pAC->ChipsetType)
#ifdef USE_SK_TX_CHECKSUM
printk(" scatter-gather: enabled\n");
#else
printk(" tx-checksum: disabled\n");
#endif
else
printk(" scatter-gather: disabled\n");
#else
printk(" scatter-gather: disabled\n");
#endif
#ifndef USE_SK_RX_CHECKSUM
printk(" rx-checksum: disabled\n");
#endif
} else {
DoPrintInterfaceChange = SK_TRUE;
}
if ((Param.Para32[0] != pAC->ActivePort) &&
(pAC->RlmtNets == 1)) {
NewPara.Para32[0] = pAC->ActivePort;
NewPara.Para32[1] = Param.Para32[0];
SkEventQueue(pAC, SKGE_DRV, SK_DRV_SWITCH_INTERN,
NewPara);
}
/* Inform the world that link protocol is up. */
netif_carrier_on(pAC->dev[Param.Para32[0]]);
break;
case SK_DRV_NET_DOWN: /* SK_U32 Reason */
/* action list 7 */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("NET DOWN EVENT "));
if (DoPrintInterfaceChange) {
printk("%s: network connection down\n",
pAC->dev[Param.Para32[1]]->name);
} else {
DoPrintInterfaceChange = SK_TRUE;
}
netif_carrier_off(pAC->dev[Param.Para32[1]]);
break;
case SK_DRV_SWITCH_HARD: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT SWITCH HARD "));
case SK_DRV_SWITCH_SOFT: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
/* action list 6 */
printk("%s: switching to port %c\n", pAC->dev[0]->name,
'A'+Param.Para32[1]);
case SK_DRV_SWITCH_INTERN: /* SK_U32 FromPortIdx SK_U32 ToPortIdx */
FromPort = Param.Para32[0];
ToPort = Param.Para32[1];
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("PORT SWITCH EVENT, From: %d To: %d (Pref %d) ",
FromPort, ToPort, pAC->Rlmt.Net[0].PrefPort));
NewPara.Para64 = FromPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
NewPara.Para64 = ToPort;
SkPnmiEvent(pAC, IoC, SK_PNMI_EVT_XMAC_RESET, NewPara);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
SkGeStopPort(pAC, IoC, FromPort, SK_STOP_ALL, SK_SOFT_RST);
SkGeStopPort(pAC, IoC, ToPort, SK_STOP_ALL, SK_SOFT_RST);
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
ReceiveIrq(pAC, &pAC->RxPort[FromPort], SK_FALSE); /* clears rx ring */
ReceiveIrq(pAC, &pAC->RxPort[ToPort], SK_FALSE); /* clears rx ring */
ClearTxRing(pAC, &pAC->TxPort[FromPort][TX_PRIO_LOW]);
ClearTxRing(pAC, &pAC->TxPort[ToPort][TX_PRIO_LOW]);
spin_lock_irqsave(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
spin_lock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
pAC->ActivePort = ToPort;
#if 0
SetQueueSizes(pAC);
#else
/* tschilling: New common function with minimum size check. */
DualNet = SK_FALSE;
if (pAC->RlmtNets == 2) {
DualNet = SK_TRUE;
}
if (SkGeInitAssignRamToQueues(
pAC,
pAC->ActivePort,
DualNet)) {
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
printk("SkGeInitAssignRamToQueues failed.\n");
break;
}
#endif
/* tschilling: Handling of return values inserted. */
if (SkGeInitPort(pAC, IoC, FromPort) ||
SkGeInitPort(pAC, IoC, ToPort)) {
printk("%s: SkGeInitPort failed.\n", pAC->dev[0]->name);
}
if (Event == SK_DRV_SWITCH_SOFT) {
SkMacRxTxEnable(pAC, IoC, FromPort);
}
SkMacRxTxEnable(pAC, IoC, ToPort);
SkAddrSwap(pAC, IoC, FromPort, ToPort);
SkAddrMcUpdate(pAC, IoC, FromPort);
SkAddrMcUpdate(pAC, IoC, ToPort);
PortReInitBmu(pAC, FromPort);
PortReInitBmu(pAC, ToPort);
SkGePollTxD(pAC, IoC, FromPort, SK_TRUE);
SkGePollTxD(pAC, IoC, ToPort, SK_TRUE);
ClearAndStartRx(pAC, FromPort);
ClearAndStartRx(pAC, ToPort);
spin_unlock(&pAC->TxPort[ToPort][TX_PRIO_LOW].TxDesRingLock);
spin_unlock_irqrestore(
&pAC->TxPort[FromPort][TX_PRIO_LOW].TxDesRingLock,
Flags);
break;
case SK_DRV_RLMT_SEND: /* SK_MBUF *pMb */
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("RLS "));
pRlmtMbuf = (SK_MBUF*) Param.pParaPtr;
pMsg = (struct sk_buff*) pRlmtMbuf->pOs;
skb_put(pMsg, pRlmtMbuf->Length);
if (XmitFrame(pAC, &pAC->TxPort[pRlmtMbuf->PortIdx][TX_PRIO_LOW],
pMsg) < 0)
DEV_KFREE_SKB_ANY(pMsg);
break;
case SK_DRV_TIMER:
if (Param.Para32[0] == SK_DRV_MODERATION_TIMER) {
/*
** expiration of the moderation timer implies that
** dynamic moderation is to be applied
*/
SkDimStartModerationTimer(pAC);
SkDimModerate(pAC);
if (pAC->DynIrqModInfo.DisplayStats) {
SkDimDisplayModerationSettings(pAC);
}
} else if (Param.Para32[0] == SK_DRV_RX_CLEANUP_TIMER) {
/*
** check if we need to check for descriptors which
** haven't been handled the last millisecs
*/
StartDrvCleanupTimer(pAC);
if (pAC->GIni.GIMacsFound == 2) {
ReceiveIrq(pAC, &pAC->RxPort[1], SK_FALSE);
}
ReceiveIrq(pAC, &pAC->RxPort[0], SK_FALSE);
} else {
printk("Expiration of unknown timer\n");
}
break;
default:
break;
}
SK_DBG_MSG(NULL, SK_DBGMOD_DRV, SK_DBGCAT_DRV_EVENT,
("END EVENT "));
return (0);
} /* SkDrvEvent */
/*****************************************************************************
*
* SkErrorLog - log errors
*
* Description:
* This function logs errors to the system buffer and to the console
*
* Returns:
* 0 if everything ok
* < 0 on error
*
*/
void SkErrorLog(
SK_AC *pAC,
int ErrClass,
int ErrNum,
char *pErrorMsg)
{
char ClassStr[80];
switch (ErrClass) {
case SK_ERRCL_OTHER:
strcpy(ClassStr, "Other error");
break;
case SK_ERRCL_CONFIG:
strcpy(ClassStr, "Configuration error");
break;
case SK_ERRCL_INIT:
strcpy(ClassStr, "Initialization error");
break;
case SK_ERRCL_NORES:
strcpy(ClassStr, "Out of resources error");
break;
case SK_ERRCL_SW:
strcpy(ClassStr, "internal Software error");
break;
case SK_ERRCL_HW:
strcpy(ClassStr, "Hardware failure");
break;
case SK_ERRCL_COMM:
strcpy(ClassStr, "Communication error");
break;
}
printk(KERN_INFO "%s: -- ERROR --\n Class: %s\n"
" Nr: 0x%x\n Msg: %s\n", pAC->dev[0]->name,
ClassStr, ErrNum, pErrorMsg);
} /* SkErrorLog */
#ifdef SK_DIAG_SUPPORT
/*****************************************************************************
*
* SkDrvEnterDiagMode - handles DIAG attach request
*
* Description:
* Notify the kernel to NOT access the card any longer due to DIAG
* Deinitialize the Card
*
* Returns:
* int
*/
int SkDrvEnterDiagMode(
SK_AC *pAc) /* pointer to adapter context */
{
DEV_NET *pNet = netdev_priv(pAc->dev[0]);
SK_AC *pAC = pNet->pAC;
SK_MEMCPY(&(pAc->PnmiBackup), &(pAc->PnmiStruct),
sizeof(SK_PNMI_STRUCT_DATA));
pAC->DiagModeActive = DIAG_ACTIVE;
if (pAC->BoardLevel > SK_INIT_DATA) {
if (pNet->Up) {
pAC->WasIfUp[0] = SK_TRUE;
pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
} else {
pAC->WasIfUp[0] = SK_FALSE;
}
if (pNet != netdev_priv(pAC->dev[1])) {
pNet = netdev_priv(pAC->dev[1]);
if (pNet->Up) {
pAC->WasIfUp[1] = SK_TRUE;
pAC->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 1); /* do SkGeClose */
} else {
pAC->WasIfUp[1] = SK_FALSE;
}
}
pAC->BoardLevel = SK_INIT_DATA;
}
return(0);
}
/*****************************************************************************
*
* SkDrvLeaveDiagMode - handles DIAG detach request
*
* Description:
* Notify the kernel to may access the card again after use by DIAG
* Initialize the Card
*
* Returns:
* int
*/
int SkDrvLeaveDiagMode(
SK_AC *pAc) /* pointer to adapter control context */
{
SK_MEMCPY(&(pAc->PnmiStruct), &(pAc->PnmiBackup),
sizeof(SK_PNMI_STRUCT_DATA));
pAc->DiagModeActive = DIAG_NOTACTIVE;
pAc->Pnmi.DiagAttached = SK_DIAG_IDLE;
if (pAc->WasIfUp[0] == SK_TRUE) {
pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAc, 0); /* first device */
}
if (pAc->WasIfUp[1] == SK_TRUE) {
pAc->DiagFlowCtrl = SK_TRUE; /* for SkGeClose */
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAc, 1); /* second device */
}
return(0);
}
/*****************************************************************************
*
* ParseDeviceNbrFromSlotName - Evaluate PCI device number
*
* Description:
* This function parses the PCI slot name information string and will
* retrieve the devcie number out of it. The slot_name maintianed by
* linux is in the form of '02:0a.0', whereas the first two characters
* represent the bus number in hex (in the sample above this is
* pci bus 0x02) and the next two characters the device number (0x0a).
*
* Returns:
* SK_U32: The device number from the PCI slot name
*/
static SK_U32 ParseDeviceNbrFromSlotName(
const char *SlotName) /* pointer to pci slot name eg. '02:0a.0' */
{
char *CurrCharPos = (char *) SlotName;
int FirstNibble = -1;
int SecondNibble = -1;
SK_U32 Result = 0;
while (*CurrCharPos != '\0') {
if (*CurrCharPos == ':') {
while (*CurrCharPos != '.') {
CurrCharPos++;
if ( (*CurrCharPos >= '0') &&
(*CurrCharPos <= '9')) {
if (FirstNibble == -1) {
/* dec. value for '0' */
FirstNibble = *CurrCharPos - 48;
} else {
SecondNibble = *CurrCharPos - 48;
}
} else if ( (*CurrCharPos >= 'a') &&
(*CurrCharPos <= 'f') ) {
if (FirstNibble == -1) {
FirstNibble = *CurrCharPos - 87;
} else {
SecondNibble = *CurrCharPos - 87;
}
} else {
Result = 0;
}
}
Result = FirstNibble;
Result = Result << 4; /* first nibble is higher one */
Result = Result | SecondNibble;
}
CurrCharPos++; /* next character */
}
return (Result);
}
/****************************************************************************
*
* SkDrvDeInitAdapter - deinitialize adapter (this function is only
* called if Diag attaches to that card)
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkDrvDeInitAdapter(
SK_AC *pAC, /* pointer to adapter context */
int devNbr) /* what device is to be handled */
{
struct SK_NET_DEVICE *dev;
dev = pAC->dev[devNbr];
/* On Linux 2.6 the network driver does NOT mess with reference
** counts. The driver MUST be able to be unloaded at any time
** due to the possibility of hotplug.
*/
if (SkGeClose(dev) != 0) {
return (-1);
}
return (0);
} /* SkDrvDeInitAdapter() */
/****************************************************************************
*
* SkDrvInitAdapter - Initialize adapter (this function is only
* called if Diag deattaches from that card)
*
* Description:
* Close initialized adapter.
*
* Returns:
* 0 - on success
* error code - on error
*/
static int SkDrvInitAdapter(
SK_AC *pAC, /* pointer to adapter context */
int devNbr) /* what device is to be handled */
{
struct SK_NET_DEVICE *dev;
dev = pAC->dev[devNbr];
if (SkGeOpen(dev) != 0) {
return (-1);
}
/*
** Use correct MTU size and indicate to kernel TX queue can be started
*/
if (SkGeChangeMtu(dev, dev->mtu) != 0) {
return (-1);
}
return (0);
} /* SkDrvInitAdapter */
#endif
#ifdef DEBUG
/****************************************************************************/
/* "debug only" section *****************************************************/
/****************************************************************************/
/*****************************************************************************
*
* DumpMsg - print a frame
*
* Description:
* This function prints frames to the system logfile/to the console.
*
* Returns: N/A
*
*/
static void DumpMsg(struct sk_buff *skb, char *str)
{
int msglen;
if (skb == NULL) {
printk("DumpMsg(): NULL-Message\n");
return;
}
if (skb->data == NULL) {
printk("DumpMsg(): Message empty\n");
return;
}
msglen = skb->len;
if (msglen > 64)
msglen = 64;
printk("--- Begin of message from %s , len %d (from %d) ----\n", str, msglen, skb->len);
DumpData((char *)skb->data, msglen);
printk("------- End of message ---------\n");
} /* DumpMsg */
/*****************************************************************************
*
* DumpData - print a data area
*
* Description:
* This function prints a area of data to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpData(char *p, int size)
{
register int i;
int haddr, addr;
char hex_buffer[180];
char asc_buffer[180];
char HEXCHAR[] = "0123456789ABCDEF";
addr = 0;
haddr = 0;
hex_buffer[0] = 0;
asc_buffer[0] = 0;
for (i=0; i < size; ) {
if (*p >= '0' && *p <='z')
asc_buffer[addr] = *p;
else
asc_buffer[addr] = '.';
addr++;
asc_buffer[addr] = 0;
hex_buffer[haddr] = HEXCHAR[(*p & 0xf0) >> 4];
haddr++;
hex_buffer[haddr] = HEXCHAR[*p & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%16 == 0) {
printk("%s %s\n", hex_buffer, asc_buffer);
addr = 0;
haddr = 0;
}
}
} /* DumpData */
/*****************************************************************************
*
* DumpLong - print a data area as long values
*
* Description:
* This function prints a area of data to the system logfile/to the
* console.
*
* Returns: N/A
*
*/
static void DumpLong(char *pc, int size)
{
register int i;
int haddr, addr;
char hex_buffer[180];
char asc_buffer[180];
char HEXCHAR[] = "0123456789ABCDEF";
long *p;
int l;
addr = 0;
haddr = 0;
hex_buffer[0] = 0;
asc_buffer[0] = 0;
p = (long*) pc;
for (i=0; i < size; ) {
l = (long) *p;
hex_buffer[haddr] = HEXCHAR[(l >> 28) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 24) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 20) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 16) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 12) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 8) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[(l >> 4) & 0xf];
haddr++;
hex_buffer[haddr] = HEXCHAR[l & 0x0f];
haddr++;
hex_buffer[haddr] = ' ';
haddr++;
hex_buffer[haddr] = 0;
p++;
i++;
if (i%8 == 0) {
printk("%4x %s\n", (i-8)*4, hex_buffer);
haddr = 0;
}
}
printk("------------------------\n");
} /* DumpLong */
#endif
static int __devinit skge_probe_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
SK_AC *pAC;
DEV_NET *pNet = NULL;
struct net_device *dev = NULL;
static int boards_found = 0;
int error = -ENODEV;
if (pci_enable_device(pdev))
goto out;
/* Configure DMA attributes. */
if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
pci_set_dma_mask(pdev, DMA_32BIT_MASK))
goto out_disable_device;
if ((dev = alloc_etherdev(sizeof(DEV_NET))) == NULL) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
goto out_disable_device;
}
pNet = netdev_priv(dev);
pNet->pAC = kmalloc(sizeof(SK_AC), GFP_KERNEL);
if (!pNet->pAC) {
printk(KERN_ERR "Unable to allocate adapter "
"structure!\n");
goto out_free_netdev;
}
memset(pNet->pAC, 0, sizeof(SK_AC));
pAC = pNet->pAC;
pAC->PciDev = pdev;
pAC->PciDevId = pdev->device;
pAC->dev[0] = dev;
pAC->dev[1] = dev;
sprintf(pAC->Name, "SysKonnect SK-98xx");
pAC->CheckQueue = SK_FALSE;
pNet->Mtu = 1500;
pNet->Up = 0;
dev->irq = pdev->irq;
error = SkGeInitPCI(pAC);
if (error) {
printk("SKGE: PCI setup failed: %i\n", error);
goto out_free_netdev;
}
SET_MODULE_OWNER(dev);
dev->open = &SkGeOpen;
dev->stop = &SkGeClose;
dev->hard_start_xmit = &SkGeXmit;
dev->get_stats = &SkGeStats;
dev->set_multicast_list = &SkGeSetRxMode;
dev->set_mac_address = &SkGeSetMacAddr;
dev->do_ioctl = &SkGeIoctl;
dev->change_mtu = &SkGeChangeMtu;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = &SkGePollController;
#endif
SET_NETDEV_DEV(dev, &pdev->dev);
SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
#ifdef SK_ZEROCOPY
#ifdef USE_SK_TX_CHECKSUM
if (pAC->ChipsetType) {
/* Use only if yukon hardware */
/* SK and ZEROCOPY - fly baby... */
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
#endif
#endif
pAC->Index = boards_found++;
if (SkGeBoardInit(dev, pAC))
goto out_free_netdev;
/* Register net device */
if (register_netdev(dev)) {
printk(KERN_ERR "SKGE: Could not register device.\n");
goto out_free_resources;
}
/* Print adapter specific string from vpd */
ProductStr(pAC);
printk("%s: %s\n", dev->name, pAC->DeviceStr);
/* Print configuration settings */
printk(" PrefPort:%c RlmtMode:%s\n",
'A' + pAC->Rlmt.Net[0].Port[pAC->Rlmt.Net[0].PrefPort]->PortNumber,
(pAC->RlmtMode==0) ? "Check Link State" :
((pAC->RlmtMode==1) ? "Check Link State" :
((pAC->RlmtMode==3) ? "Check Local Port" :
((pAC->RlmtMode==7) ? "Check Segmentation" :
((pAC->RlmtMode==17) ? "Dual Check Link State" :"Error")))));
SkGeYellowLED(pAC, pAC->IoBase, 1);
memcpy(&dev->dev_addr, &pAC->Addr.Net[0].CurrentMacAddress, 6);
SkGeProcCreate(dev);
pNet->PortNr = 0;
pNet->NetNr = 0;
boards_found++;
/* More then one port found */
if ((pAC->GIni.GIMacsFound == 2 ) && (pAC->RlmtNets == 2)) {
if ((dev = alloc_etherdev(sizeof(DEV_NET))) == 0) {
printk(KERN_ERR "Unable to allocate etherdev "
"structure!\n");
goto out;
}
pAC->dev[1] = dev;
pNet = netdev_priv(dev);
pNet->PortNr = 1;
pNet->NetNr = 1;
pNet->pAC = pAC;
pNet->Mtu = 1500;
pNet->Up = 0;
dev->open = &SkGeOpen;
dev->stop = &SkGeClose;
dev->hard_start_xmit = &SkGeXmit;
dev->get_stats = &SkGeStats;
dev->set_multicast_list = &SkGeSetRxMode;
dev->set_mac_address = &SkGeSetMacAddr;
dev->do_ioctl = &SkGeIoctl;
dev->change_mtu = &SkGeChangeMtu;
SET_NETDEV_DEV(dev, &pdev->dev);
SET_ETHTOOL_OPS(dev, &SkGeEthtoolOps);
#ifdef SK_ZEROCOPY
#ifdef USE_SK_TX_CHECKSUM
if (pAC->ChipsetType) {
/* SG and ZEROCOPY - fly baby... */
dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
}
#endif
#endif
if (register_netdev(dev)) {
printk(KERN_ERR "SKGE: Could not register device.\n");
free_netdev(dev);
pAC->dev[1] = pAC->dev[0];
} else {
SkGeProcCreate(dev);
memcpy(&dev->dev_addr,
&pAC->Addr.Net[1].CurrentMacAddress, 6);
printk("%s: %s\n", dev->name, pAC->DeviceStr);
printk(" PrefPort:B RlmtMode:Dual Check Link State\n");
}
}
/* Save the hardware revision */
pAC->HWRevision = (((pAC->GIni.GIPciHwRev >> 4) & 0x0F)*10) +
(pAC->GIni.GIPciHwRev & 0x0F);
/* Set driver globals */
pAC->Pnmi.pDriverFileName = DRIVER_FILE_NAME;
pAC->Pnmi.pDriverReleaseDate = DRIVER_REL_DATE;
memset(&pAC->PnmiBackup, 0, sizeof(SK_PNMI_STRUCT_DATA));
memcpy(&pAC->PnmiBackup, &pAC->PnmiStruct, sizeof(SK_PNMI_STRUCT_DATA));
pci_set_drvdata(pdev, dev);
return 0;
out_free_resources:
FreeResources(dev);
out_free_netdev:
free_netdev(dev);
out_disable_device:
pci_disable_device(pdev);
out:
return error;
}
static void __devexit skge_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
DEV_NET *pNet = netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
struct net_device *otherdev = pAC->dev[1];
SkGeProcRemove(dev);
unregister_netdev(dev);
if (otherdev != dev)
SkGeProcRemove(otherdev);
SkGeYellowLED(pAC, pAC->IoBase, 0);
if (pAC->BoardLevel == SK_INIT_RUN) {
SK_EVPARA EvPara;
unsigned long Flags;
/* board is still alive */
spin_lock_irqsave(&pAC->SlowPathLock, Flags);
EvPara.Para32[0] = 0;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
EvPara.Para32[0] = 1;
EvPara.Para32[1] = -1;
SkEventQueue(pAC, SKGE_RLMT, SK_RLMT_STOP, EvPara);
SkEventDispatcher(pAC, pAC->IoBase);
/* disable interrupts */
SK_OUT32(pAC->IoBase, B0_IMSK, 0);
SkGeDeInit(pAC, pAC->IoBase);
spin_unlock_irqrestore(&pAC->SlowPathLock, Flags);
pAC->BoardLevel = SK_INIT_DATA;
/* We do NOT check here, if IRQ was pending, of course*/
}
if (pAC->BoardLevel == SK_INIT_IO) {
/* board is still alive */
SkGeDeInit(pAC, pAC->IoBase);
pAC->BoardLevel = SK_INIT_DATA;
}
FreeResources(dev);
free_netdev(dev);
if (otherdev != dev)
free_netdev(otherdev);
kfree(pAC);
}
#ifdef CONFIG_PM
static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
DEV_NET *pNet = netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
struct net_device *otherdev = pAC->dev[1];
if (netif_running(dev)) {
netif_carrier_off(dev);
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 0); /* performs SkGeClose */
netif_device_detach(dev);
}
if (otherdev != dev) {
if (netif_running(otherdev)) {
netif_carrier_off(otherdev);
DoPrintInterfaceChange = SK_FALSE;
SkDrvDeInitAdapter(pAC, 1); /* performs SkGeClose */
netif_device_detach(otherdev);
}
}
pci_save_state(pdev);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
if (pAC->AllocFlag & SK_ALLOC_IRQ) {
free_irq(dev->irq, dev);
}
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int skge_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
DEV_NET *pNet = netdev_priv(dev);
SK_AC *pAC = pNet->pAC;
struct net_device *otherdev = pAC->dev[1];
int ret;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_device(pdev);
pci_set_master(pdev);
if (pAC->GIni.GIMacsFound == 2)
ret = request_irq(dev->irq, SkGeIsr, SA_SHIRQ, pAC->Name, dev);
else
ret = request_irq(dev->irq, SkGeIsrOnePort, SA_SHIRQ, pAC->Name, dev);
if (ret) {
printk(KERN_WARNING "sk98lin: unable to acquire IRQ %d\n", dev->irq);
pAC->AllocFlag &= ~SK_ALLOC_IRQ;
dev->irq = 0;
pci_disable_device(pdev);
return -EBUSY;
}
netif_device_attach(dev);
if (netif_running(dev)) {
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAC, 0); /* first device */
}
if (otherdev != dev) {
netif_device_attach(otherdev);
if (netif_running(otherdev)) {
DoPrintInterfaceChange = SK_FALSE;
SkDrvInitAdapter(pAC, 1); /* second device */
}
}
return 0;
}
#else
#define skge_suspend NULL
#define skge_resume NULL
#endif
static struct pci_device_id skge_pci_tbl[] = {
{ PCI_VENDOR_ID_3COM, 0x1700, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_3COM, 0x80eb, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_SYSKONNECT, 0x4300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_SYSKONNECT, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
/* DLink card does not have valid VPD so this driver gags
* { PCI_VENDOR_ID_DLINK, 0x4c00, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
*/
{ PCI_VENDOR_ID_MARVELL, 0x4320, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_MARVELL, 0x5005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_CNET, 0x434e, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
{ PCI_VENDOR_ID_LINKSYS, 0x1064, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, skge_pci_tbl);
static struct pci_driver skge_driver = {
.name = "sk98lin",
.id_table = skge_pci_tbl,
.probe = skge_probe_one,
.remove = __devexit_p(skge_remove_one),
.suspend = skge_suspend,
.resume = skge_resume,
};
static int __init skge_init(void)
{
int error;
pSkRootDir = proc_mkdir(SKRootName, proc_net);
if (pSkRootDir)
pSkRootDir->owner = THIS_MODULE;
error = pci_register_driver(&skge_driver);
if (error)
proc_net_remove(SKRootName);
return error;
}
static void __exit skge_exit(void)
{
pci_unregister_driver(&skge_driver);
proc_net_remove(SKRootName);
}
module_init(skge_init);
module_exit(skge_exit);