/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007-2008 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include <linux/seq_file.h>
#include "efx.h"
#include "mdio_10g.h"
#include "falcon.h"
#include "phy.h"
#include "falcon_hwdefs.h"
#include "boards.h"
#include "workarounds.h"
#include "selftest.h"
/* We expect these MMDs to be in the package. SFT9001 also has a
* clause 22 extension MMD, but since it doesn't have all the generic
* MMD registers it is pointless to include it here.
*/
#define TENXPRESS_REQUIRED_DEVS (MDIO_MMDREG_DEVS_PMAPMD | \
MDIO_MMDREG_DEVS_PCS | \
MDIO_MMDREG_DEVS_PHYXS | \
MDIO_MMDREG_DEVS_AN)
#define SFX7101_LOOPBACKS ((1 << LOOPBACK_PHYXS) | \
(1 << LOOPBACK_PCS) | \
(1 << LOOPBACK_PMAPMD) | \
(1 << LOOPBACK_NETWORK))
#define SFT9001_LOOPBACKS ((1 << LOOPBACK_GPHY) | \
(1 << LOOPBACK_PHYXS) | \
(1 << LOOPBACK_PCS) | \
(1 << LOOPBACK_PMAPMD) | \
(1 << LOOPBACK_NETWORK))
/* We complain if we fail to see the link partner as 10G capable this many
* times in a row (must be > 1 as sampling the autoneg. registers is racy)
*/
#define MAX_BAD_LP_TRIES (5)
/* LASI Control */
#define PMA_PMD_LASI_CTRL 36866
#define PMA_PMD_LASI_STATUS 36869
#define PMA_PMD_LS_ALARM_LBN 0
#define PMA_PMD_LS_ALARM_WIDTH 1
#define PMA_PMD_TX_ALARM_LBN 1
#define PMA_PMD_TX_ALARM_WIDTH 1
#define PMA_PMD_RX_ALARM_LBN 2
#define PMA_PMD_RX_ALARM_WIDTH 1
#define PMA_PMD_AN_ALARM_LBN 3
#define PMA_PMD_AN_ALARM_WIDTH 1
/* Extended control register */
#define PMA_PMD_XCONTROL_REG 49152
#define PMA_PMD_EXT_GMII_EN_LBN 1
#define PMA_PMD_EXT_GMII_EN_WIDTH 1
#define PMA_PMD_EXT_CLK_OUT_LBN 2
#define PMA_PMD_EXT_CLK_OUT_WIDTH 1
#define PMA_PMD_LNPGA_POWERDOWN_LBN 8 /* SFX7101 only */
#define PMA_PMD_LNPGA_POWERDOWN_WIDTH 1
#define PMA_PMD_EXT_CLK312_LBN 8 /* SFT9001 only */
#define PMA_PMD_EXT_CLK312_WIDTH 1
#define PMA_PMD_EXT_LPOWER_LBN 12
#define PMA_PMD_EXT_LPOWER_WIDTH 1
#define PMA_PMD_EXT_ROBUST_LBN 14
#define PMA_PMD_EXT_ROBUST_WIDTH 1
#define PMA_PMD_EXT_SSR_LBN 15
#define PMA_PMD_EXT_SSR_WIDTH 1
/* extended status register */
#define PMA_PMD_XSTATUS_REG 49153
#define PMA_PMD_XSTAT_FLP_LBN (12)
/* LED control register */
#define PMA_PMD_LED_CTRL_REG 49159
#define PMA_PMA_LED_ACTIVITY_LBN (3)
/* LED function override register */
#define PMA_PMD_LED_OVERR_REG 49161
/* Bit positions for different LEDs (there are more but not wired on SFE4001)*/
#define PMA_PMD_LED_LINK_LBN (0)
#define PMA_PMD_LED_SPEED_LBN (2)
#define PMA_PMD_LED_TX_LBN (4)
#define PMA_PMD_LED_RX_LBN (6)
/* Override settings */
#define PMA_PMD_LED_AUTO (0) /* H/W control */
#define PMA_PMD_LED_ON (1)
#define PMA_PMD_LED_OFF (2)
#define PMA_PMD_LED_FLASH (3)
#define PMA_PMD_LED_MASK 3
/* All LEDs under hardware control */
#define PMA_PMD_LED_FULL_AUTO (0)
/* Green and Amber under hardware control, Red off */
#define PMA_PMD_LED_DEFAULT (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN)
#define PMA_PMD_SPEED_ENABLE_REG 49192
#define PMA_PMD_100TX_ADV_LBN 1
#define PMA_PMD_100TX_ADV_WIDTH 1
#define PMA_PMD_1000T_ADV_LBN 2
#define PMA_PMD_1000T_ADV_WIDTH 1
#define PMA_PMD_10000T_ADV_LBN 3
#define PMA_PMD_10000T_ADV_WIDTH 1
#define PMA_PMD_SPEED_LBN 4
#define PMA_PMD_SPEED_WIDTH 4
/* Cable diagnostics - SFT9001 only */
#define PMA_PMD_CDIAG_CTRL_REG 49213
#define CDIAG_CTRL_IMMED_LBN 15
#define CDIAG_CTRL_BRK_LINK_LBN 12
#define CDIAG_CTRL_IN_PROG_LBN 11
#define CDIAG_CTRL_LEN_UNIT_LBN 10
#define CDIAG_CTRL_LEN_METRES 1
#define PMA_PMD_CDIAG_RES_REG 49174
#define CDIAG_RES_A_LBN 12
#define CDIAG_RES_B_LBN 8
#define CDIAG_RES_C_LBN 4
#define CDIAG_RES_D_LBN 0
#define CDIAG_RES_WIDTH 4
#define CDIAG_RES_OPEN 2
#define CDIAG_RES_OK 1
#define CDIAG_RES_INVALID 0
/* Set of 4 registers for pairs A-D */
#define PMA_PMD_CDIAG_LEN_REG 49175
/* Serdes control registers - SFT9001 only */
#define PMA_PMD_CSERDES_CTRL_REG 64258
/* Set the 156.25 MHz output to 312.5 MHz to drive Falcon's XMAC */
#define PMA_PMD_CSERDES_DEFAULT 0x000f
/* Misc register defines - SFX7101 only */
#define PCS_CLOCK_CTRL_REG 55297
#define PLL312_RST_N_LBN 2
#define PCS_SOFT_RST2_REG 55302
#define SERDES_RST_N_LBN 13
#define XGXS_RST_N_LBN 12
#define PCS_TEST_SELECT_REG 55303 /* PRM 10.5.8 */
#define CLK312_EN_LBN 3
/* PHYXS registers */
#define PHYXS_XCONTROL_REG 49152
#define PHYXS_RESET_LBN 15
#define PHYXS_RESET_WIDTH 1
#define PHYXS_TEST1 (49162)
#define LOOPBACK_NEAR_LBN (8)
#define LOOPBACK_NEAR_WIDTH (1)
#define PCS_10GBASET_STAT1 32
#define PCS_10GBASET_BLKLK_LBN 0
#define PCS_10GBASET_BLKLK_WIDTH 1
/* Boot status register */
#define PCS_BOOT_STATUS_REG 53248
#define PCS_BOOT_FATAL_ERR_LBN (0)
#define PCS_BOOT_PROGRESS_LBN (1)
#define PCS_BOOT_PROGRESS_WIDTH (2)
#define PCS_BOOT_COMPLETE_LBN (3)
#define PCS_BOOT_MAX_DELAY (100)
#define PCS_BOOT_POLL_DELAY (10)
/* 100M/1G PHY registers */
#define GPHY_XCONTROL_REG 49152
#define GPHY_ISOLATE_LBN 10
#define GPHY_ISOLATE_WIDTH 1
#define GPHY_DUPLEX_LBN 8
#define GPHY_DUPLEX_WIDTH 1
#define GPHY_LOOPBACK_NEAR_LBN 14
#define GPHY_LOOPBACK_NEAR_WIDTH 1
#define C22EXT_STATUS_REG 49153
#define C22EXT_STATUS_LINK_LBN 2
#define C22EXT_STATUS_LINK_WIDTH 1
#define C22EXT_MSTSLV_REG 49162
#define C22EXT_MSTSLV_1000_HD_LBN 10
#define C22EXT_MSTSLV_1000_HD_WIDTH 1
#define C22EXT_MSTSLV_1000_FD_LBN 11
#define C22EXT_MSTSLV_1000_FD_WIDTH 1
/* Time to wait between powering down the LNPGA and turning off the power
* rails */
#define LNPGA_PDOWN_WAIT (HZ / 5)
struct tenxpress_phy_data {
enum efx_loopback_mode loopback_mode;
enum efx_phy_mode phy_mode;
int bad_lp_tries;
};
static ssize_t show_phy_short_reach(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
int reg;
reg = mdio_clause45_read(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
MDIO_PMAPMD_10GBT_TXPWR);
return sprintf(buf, "%d\n",
!!(reg & (1 << MDIO_PMAPMD_10GBT_TXPWR_SHORT_LBN)));
}
static ssize_t set_phy_short_reach(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
rtnl_lock();
mdio_clause45_set_flag(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
MDIO_PMAPMD_10GBT_TXPWR,
MDIO_PMAPMD_10GBT_TXPWR_SHORT_LBN,
count != 0 && *buf != '0');
efx_reconfigure_port(efx);
rtnl_unlock();
return count;
}
static DEVICE_ATTR(phy_short_reach, 0644, show_phy_short_reach,
set_phy_short_reach);
/* Check that the C166 has booted successfully */
static int tenxpress_phy_check(struct efx_nic *efx)
{
int phy_id = efx->mii.phy_id;
int count = PCS_BOOT_MAX_DELAY / PCS_BOOT_POLL_DELAY;
int boot_stat;
/* Wait for the boot to complete (or not) */
while (count) {
boot_stat = mdio_clause45_read(efx, phy_id,
MDIO_MMD_PCS,
PCS_BOOT_STATUS_REG);
if (boot_stat & (1 << PCS_BOOT_COMPLETE_LBN))
break;
count--;
udelay(PCS_BOOT_POLL_DELAY);
}
if (!count) {
EFX_ERR(efx, "%s: PHY boot timed out. Last status "
"%x\n", __func__,
(boot_stat >> PCS_BOOT_PROGRESS_LBN) &
((1 << PCS_BOOT_PROGRESS_WIDTH) - 1));
return -ETIMEDOUT;
}
return 0;
}
static int tenxpress_init(struct efx_nic *efx)
{
int phy_id = efx->mii.phy_id;
int reg;
int rc;
if (efx->phy_type == PHY_TYPE_SFX7101) {
/* Enable 312.5 MHz clock */
mdio_clause45_write(efx, phy_id,
MDIO_MMD_PCS, PCS_TEST_SELECT_REG,
1 << CLK312_EN_LBN);
} else {
/* Enable 312.5 MHz clock and GMII */
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG);
reg |= ((1 << PMA_PMD_EXT_GMII_EN_LBN) |
(1 << PMA_PMD_EXT_CLK_OUT_LBN) |
(1 << PMA_PMD_EXT_CLK312_LBN) |
(1 << PMA_PMD_EXT_ROBUST_LBN));
mdio_clause45_write(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, reg);
mdio_clause45_set_flag(efx, phy_id, MDIO_MMD_C22EXT,
GPHY_XCONTROL_REG, GPHY_ISOLATE_LBN,
false);
}
rc = tenxpress_phy_check(efx);
if (rc < 0)
return rc;
/* Set the LEDs up as: Green = Link, Amber = Link/Act, Red = Off */
if (efx->phy_type == PHY_TYPE_SFX7101) {
mdio_clause45_set_flag(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_CTRL_REG,
PMA_PMA_LED_ACTIVITY_LBN,
true);
mdio_clause45_write(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, PMA_PMD_LED_DEFAULT);
}
return rc;
}
static int tenxpress_phy_init(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data;
int rc = 0;
phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL);
if (!phy_data)
return -ENOMEM;
efx->phy_data = phy_data;
phy_data->phy_mode = efx->phy_mode;
if (!(efx->phy_mode & PHY_MODE_SPECIAL)) {
if (efx->phy_type == PHY_TYPE_SFT9001A) {
int reg;
reg = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG);
reg |= (1 << PMA_PMD_EXT_SSR_LBN);
mdio_clause45_write(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, reg);
mdelay(200);
}
rc = mdio_clause45_wait_reset_mmds(efx,
TENXPRESS_REQUIRED_DEVS);
if (rc < 0)
goto fail;
rc = mdio_clause45_check_mmds(efx, TENXPRESS_REQUIRED_DEVS, 0);
if (rc < 0)
goto fail;
}
rc = tenxpress_init(efx);
if (rc < 0)
goto fail;
if (efx->phy_type == PHY_TYPE_SFT9001B) {
rc = device_create_file(&efx->pci_dev->dev,
&dev_attr_phy_short_reach);
if (rc)
goto fail;
}
schedule_timeout_uninterruptible(HZ / 5); /* 200ms */
/* Let XGXS and SerDes out of reset */
falcon_reset_xaui(efx);
return 0;
fail:
kfree(efx->phy_data);
efx->phy_data = NULL;
return rc;
}
/* Perform a "special software reset" on the PHY. The caller is
* responsible for saving and restoring the PHY hardware registers
* properly, and masking/unmasking LASI */
static int tenxpress_special_reset(struct efx_nic *efx)
{
int rc, reg;
/* The XGMAC clock is driven from the SFC7101/SFT9001 312MHz clock, so
* a special software reset can glitch the XGMAC sufficiently for stats
* requests to fail. Since we don't often special_reset, just lock. */
spin_lock(&efx->stats_lock);
/* Initiate reset */
reg = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG);
reg |= (1 << PMA_PMD_EXT_SSR_LBN);
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, reg);
mdelay(200);
/* Wait for the blocks to come out of reset */
rc = mdio_clause45_wait_reset_mmds(efx,
TENXPRESS_REQUIRED_DEVS);
if (rc < 0)
goto unlock;
/* Try and reconfigure the device */
rc = tenxpress_init(efx);
if (rc < 0)
goto unlock;
/* Wait for the XGXS state machine to churn */
mdelay(10);
unlock:
spin_unlock(&efx->stats_lock);
return rc;
}
static void sfx7101_check_bad_lp(struct efx_nic *efx, bool link_ok)
{
struct tenxpress_phy_data *pd = efx->phy_data;
int phy_id = efx->mii.phy_id;
bool bad_lp;
int reg;
if (link_ok) {
bad_lp = false;
} else {
/* Check that AN has started but not completed. */
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_AN,
MDIO_AN_STATUS);
if (!(reg & (1 << MDIO_AN_STATUS_LP_AN_CAP_LBN)))
return; /* LP status is unknown */
bad_lp = !(reg & (1 << MDIO_AN_STATUS_AN_DONE_LBN));
if (bad_lp)
pd->bad_lp_tries++;
}
/* Nothing to do if all is well and was previously so. */
if (!pd->bad_lp_tries)
return;
/* Use the RX (red) LED as an error indicator once we've seen AN
* failure several times in a row, and also log a message. */
if (!bad_lp || pd->bad_lp_tries == MAX_BAD_LP_TRIES) {
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG);
reg &= ~(PMA_PMD_LED_MASK << PMA_PMD_LED_RX_LBN);
if (!bad_lp) {
reg |= PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN;
} else {
reg |= PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN;
EFX_ERR(efx, "appears to be plugged into a port"
" that is not 10GBASE-T capable. The PHY"
" supports 10GBASE-T ONLY, so no link can"
" be established\n");
}
mdio_clause45_write(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, reg);
pd->bad_lp_tries = bad_lp;
}
}
static bool sfx7101_link_ok(struct efx_nic *efx)
{
return mdio_clause45_links_ok(efx,
MDIO_MMDREG_DEVS_PMAPMD |
MDIO_MMDREG_DEVS_PCS |
MDIO_MMDREG_DEVS_PHYXS);
}
static bool sft9001_link_ok(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int phy_id = efx->mii.phy_id;
u32 reg;
if (efx_phy_mode_disabled(efx->phy_mode))
return false;
else if (efx->loopback_mode == LOOPBACK_GPHY)
return true;
else if (efx->loopback_mode)
return mdio_clause45_links_ok(efx,
MDIO_MMDREG_DEVS_PMAPMD |
MDIO_MMDREG_DEVS_PHYXS);
/* We must use the same definition of link state as LASI,
* otherwise we can miss a link state transition
*/
if (ecmd->speed == 10000) {
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_PCS,
PCS_10GBASET_STAT1);
return reg & (1 << PCS_10GBASET_BLKLK_LBN);
} else {
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_C22EXT,
C22EXT_STATUS_REG);
return reg & (1 << C22EXT_STATUS_LINK_LBN);
}
}
static void tenxpress_ext_loopback(struct efx_nic *efx)
{
int phy_id = efx->mii.phy_id;
mdio_clause45_set_flag(efx, phy_id, MDIO_MMD_PHYXS,
PHYXS_TEST1, LOOPBACK_NEAR_LBN,
efx->loopback_mode == LOOPBACK_PHYXS);
if (efx->phy_type != PHY_TYPE_SFX7101)
mdio_clause45_set_flag(efx, phy_id, MDIO_MMD_C22EXT,
GPHY_XCONTROL_REG,
GPHY_LOOPBACK_NEAR_LBN,
efx->loopback_mode == LOOPBACK_GPHY);
}
static void tenxpress_low_power(struct efx_nic *efx)
{
int phy_id = efx->mii.phy_id;
if (efx->phy_type == PHY_TYPE_SFX7101)
mdio_clause45_set_mmds_lpower(
efx, !!(efx->phy_mode & PHY_MODE_LOW_POWER),
TENXPRESS_REQUIRED_DEVS);
else
mdio_clause45_set_flag(
efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, PMA_PMD_EXT_LPOWER_LBN,
!!(efx->phy_mode & PHY_MODE_LOW_POWER));
}
static void tenxpress_phy_reconfigure(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
struct ethtool_cmd ecmd;
bool phy_mode_change, loop_reset, loop_toggle, loopback;
if (efx->phy_mode & (PHY_MODE_OFF | PHY_MODE_SPECIAL)) {
phy_data->phy_mode = efx->phy_mode;
return;
}
tenxpress_low_power(efx);
phy_mode_change = (efx->phy_mode == PHY_MODE_NORMAL &&
phy_data->phy_mode != PHY_MODE_NORMAL);
loopback = LOOPBACK_MASK(efx) & efx->phy_op->loopbacks;
loop_toggle = LOOPBACK_CHANGED(phy_data, efx, efx->phy_op->loopbacks);
loop_reset = (LOOPBACK_OUT_OF(phy_data, efx, efx->phy_op->loopbacks) ||
LOOPBACK_CHANGED(phy_data, efx, 1 << LOOPBACK_GPHY));
if (loop_reset || loop_toggle || loopback || phy_mode_change) {
int rc;
efx->phy_op->get_settings(efx, &ecmd);
if (loop_reset || phy_mode_change) {
tenxpress_special_reset(efx);
/* Reset XAUI if we were in 10G, and are staying
* in 10G. If we're moving into and out of 10G
* then xaui will be reset anyway */
if (EFX_IS10G(efx))
falcon_reset_xaui(efx);
}
if (efx->phy_type != PHY_TYPE_SFX7101) {
/* Only change autoneg once, on coming out or
* going into loopback */
if (loop_toggle)
ecmd.autoneg = !loopback;
if (loopback) {
ecmd.duplex = DUPLEX_FULL;
if (efx->loopback_mode == LOOPBACK_GPHY)
ecmd.speed = SPEED_1000;
else
ecmd.speed = SPEED_10000;
}
}
rc = efx->phy_op->set_settings(efx, &ecmd);
WARN_ON(rc);
}
mdio_clause45_transmit_disable(efx);
mdio_clause45_phy_reconfigure(efx);
tenxpress_ext_loopback(efx);
phy_data->loopback_mode = efx->loopback_mode;
phy_data->phy_mode = efx->phy_mode;
if (efx->phy_type == PHY_TYPE_SFX7101) {
efx->link_speed = 10000;
efx->link_fd = true;
efx->link_up = sfx7101_link_ok(efx);
} else {
efx->phy_op->get_settings(efx, &ecmd);
efx->link_speed = ecmd.speed;
efx->link_fd = ecmd.duplex == DUPLEX_FULL;
efx->link_up = sft9001_link_ok(efx, &ecmd);
}
efx->link_fc = mdio_clause45_get_pause(efx);
}
/* Poll PHY for interrupt */
static void tenxpress_phy_poll(struct efx_nic *efx)
{
struct tenxpress_phy_data *phy_data = efx->phy_data;
bool change = false, link_ok;
unsigned link_fc;
if (efx->phy_type == PHY_TYPE_SFX7101) {
link_ok = sfx7101_link_ok(efx);
if (link_ok != efx->link_up) {
change = true;
} else {
link_fc = mdio_clause45_get_pause(efx);
if (link_fc != efx->link_fc)
change = true;
}
sfx7101_check_bad_lp(efx, link_ok);
} else if (efx->loopback_mode) {
bool link_ok = sft9001_link_ok(efx, NULL);
if (link_ok != efx->link_up)
change = true;
} else {
u32 status = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD,
PMA_PMD_LASI_STATUS);
if (status & (1 << PMA_PMD_LS_ALARM_LBN))
change = true;
}
if (change)
falcon_sim_phy_event(efx);
if (phy_data->phy_mode != PHY_MODE_NORMAL)
return;
}
static void tenxpress_phy_fini(struct efx_nic *efx)
{
int reg;
if (efx->phy_type == PHY_TYPE_SFT9001B)
device_remove_file(&efx->pci_dev->dev,
&dev_attr_phy_short_reach);
if (efx->phy_type == PHY_TYPE_SFX7101) {
/* Power down the LNPGA */
reg = (1 << PMA_PMD_LNPGA_POWERDOWN_LBN);
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_XCONTROL_REG, reg);
/* Waiting here ensures that the board fini, which can turn
* off the power to the PHY, won't get run until the LNPGA
* powerdown has been given long enough to complete. */
schedule_timeout_uninterruptible(LNPGA_PDOWN_WAIT); /* 200 ms */
}
kfree(efx->phy_data);
efx->phy_data = NULL;
}
/* Set the RX and TX LEDs and Link LED flashing. The other LEDs
* (which probably aren't wired anyway) are left in AUTO mode */
void tenxpress_phy_blink(struct efx_nic *efx, bool blink)
{
int reg;
if (blink)
reg = (PMA_PMD_LED_FLASH << PMA_PMD_LED_TX_LBN) |
(PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN) |
(PMA_PMD_LED_FLASH << PMA_PMD_LED_LINK_LBN);
else
reg = PMA_PMD_LED_DEFAULT;
mdio_clause45_write(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_LED_OVERR_REG, reg);
}
static const char *const sfx7101_test_names[] = {
"bist"
};
static int
sfx7101_run_tests(struct efx_nic *efx, int *results, unsigned flags)
{
int rc;
if (!(flags & ETH_TEST_FL_OFFLINE))
return 0;
/* BIST is automatically run after a special software reset */
rc = tenxpress_special_reset(efx);
results[0] = rc ? -1 : 1;
return rc;
}
static const char *const sft9001_test_names[] = {
"bist",
"cable.pairA.status",
"cable.pairB.status",
"cable.pairC.status",
"cable.pairD.status",
"cable.pairA.length",
"cable.pairB.length",
"cable.pairC.length",
"cable.pairD.length",
};
static int sft9001_run_tests(struct efx_nic *efx, int *results, unsigned flags)
{
struct ethtool_cmd ecmd;
int phy_id = efx->mii.phy_id;
int rc = 0, rc2, i, res_reg;
if (!(flags & ETH_TEST_FL_OFFLINE))
return 0;
efx->phy_op->get_settings(efx, &ecmd);
/* Initialise cable diagnostic results to unknown failure */
for (i = 1; i < 9; ++i)
results[i] = -1;
/* Run cable diagnostics; wait up to 5 seconds for them to complete.
* A cable fault is not a self-test failure, but a timeout is. */
mdio_clause45_write(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_CDIAG_CTRL_REG,
(1 << CDIAG_CTRL_IMMED_LBN) |
(1 << CDIAG_CTRL_BRK_LINK_LBN) |
(CDIAG_CTRL_LEN_METRES << CDIAG_CTRL_LEN_UNIT_LBN));
i = 0;
while (mdio_clause45_read(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_CDIAG_CTRL_REG) &
(1 << CDIAG_CTRL_IN_PROG_LBN)) {
if (++i == 50) {
rc = -ETIMEDOUT;
goto reset;
}
msleep(100);
}
res_reg = mdio_clause45_read(efx, efx->mii.phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_CDIAG_RES_REG);
for (i = 0; i < 4; i++) {
int pair_res =
(res_reg >> (CDIAG_RES_A_LBN - i * CDIAG_RES_WIDTH))
& ((1 << CDIAG_RES_WIDTH) - 1);
int len_reg = mdio_clause45_read(efx, efx->mii.phy_id,
MDIO_MMD_PMAPMD,
PMA_PMD_CDIAG_LEN_REG + i);
if (pair_res == CDIAG_RES_OK)
results[1 + i] = 1;
else if (pair_res == CDIAG_RES_INVALID)
results[1 + i] = -1;
else
results[1 + i] = -pair_res;
if (pair_res != CDIAG_RES_INVALID &&
pair_res != CDIAG_RES_OPEN &&
len_reg != 0xffff)
results[5 + i] = len_reg;
}
/* We must reset to exit cable diagnostic mode. The BIST will
* also run when we do this. */
reset:
rc2 = tenxpress_special_reset(efx);
results[0] = rc2 ? -1 : 1;
if (!rc)
rc = rc2;
rc2 = efx->phy_op->set_settings(efx, &ecmd);
if (!rc)
rc = rc2;
return rc;
}
static u32 tenxpress_get_xnp_lpa(struct efx_nic *efx)
{
int phy = efx->mii.phy_id;
u32 lpa = 0;
int reg;
if (efx->phy_type != PHY_TYPE_SFX7101) {
reg = mdio_clause45_read(efx, phy, MDIO_MMD_C22EXT,
C22EXT_MSTSLV_REG);
if (reg & (1 << C22EXT_MSTSLV_1000_HD_LBN))
lpa |= ADVERTISED_1000baseT_Half;
if (reg & (1 << C22EXT_MSTSLV_1000_FD_LBN))
lpa |= ADVERTISED_1000baseT_Full;
}
reg = mdio_clause45_read(efx, phy, MDIO_MMD_AN, MDIO_AN_10GBT_STATUS);
if (reg & (1 << MDIO_AN_10GBT_STATUS_LP_10G_LBN))
lpa |= ADVERTISED_10000baseT_Full;
return lpa;
}
static void sfx7101_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
mdio_clause45_get_settings_ext(efx, ecmd, ADVERTISED_10000baseT_Full,
tenxpress_get_xnp_lpa(efx));
ecmd->supported |= SUPPORTED_10000baseT_Full;
ecmd->advertising |= ADVERTISED_10000baseT_Full;
}
static void sft9001_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int phy_id = efx->mii.phy_id;
u32 xnp_adv = 0;
int reg;
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_PMAPMD,
PMA_PMD_SPEED_ENABLE_REG);
if (EFX_WORKAROUND_13204(efx) && (reg & (1 << PMA_PMD_100TX_ADV_LBN)))
xnp_adv |= ADVERTISED_100baseT_Full;
if (reg & (1 << PMA_PMD_1000T_ADV_LBN))
xnp_adv |= ADVERTISED_1000baseT_Full;
if (reg & (1 << PMA_PMD_10000T_ADV_LBN))
xnp_adv |= ADVERTISED_10000baseT_Full;
mdio_clause45_get_settings_ext(efx, ecmd, xnp_adv,
tenxpress_get_xnp_lpa(efx));
ecmd->supported |= (SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full);
/* Use the vendor defined C22ext register for duplex settings */
if (ecmd->speed != SPEED_10000 && !ecmd->autoneg) {
reg = mdio_clause45_read(efx, phy_id, MDIO_MMD_C22EXT,
GPHY_XCONTROL_REG);
ecmd->duplex = (reg & (1 << GPHY_DUPLEX_LBN) ?
DUPLEX_FULL : DUPLEX_HALF);
}
}
static int sft9001_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
int phy_id = efx->mii.phy_id;
int rc;
rc = mdio_clause45_set_settings(efx, ecmd);
if (rc)
return rc;
if (ecmd->speed != SPEED_10000 && !ecmd->autoneg)
mdio_clause45_set_flag(efx, phy_id, MDIO_MMD_C22EXT,
GPHY_XCONTROL_REG, GPHY_DUPLEX_LBN,
ecmd->duplex == DUPLEX_FULL);
return rc;
}
static bool sft9001_set_xnp_advertise(struct efx_nic *efx, u32 advertising)
{
int phy = efx->mii.phy_id;
int reg = mdio_clause45_read(efx, phy, MDIO_MMD_PMAPMD,
PMA_PMD_SPEED_ENABLE_REG);
bool enabled;
reg &= ~((1 << 2) | (1 << 3));
if (EFX_WORKAROUND_13204(efx) &&
(advertising & ADVERTISED_100baseT_Full))
reg |= 1 << PMA_PMD_100TX_ADV_LBN;
if (advertising & ADVERTISED_1000baseT_Full)
reg |= 1 << PMA_PMD_1000T_ADV_LBN;
if (advertising & ADVERTISED_10000baseT_Full)
reg |= 1 << PMA_PMD_10000T_ADV_LBN;
mdio_clause45_write(efx, phy, MDIO_MMD_PMAPMD,
PMA_PMD_SPEED_ENABLE_REG, reg);
enabled = (advertising &
(ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_10000baseT_Full));
if (EFX_WORKAROUND_13204(efx))
enabled |= (advertising & ADVERTISED_100baseT_Full);
return enabled;
}
struct efx_phy_operations falcon_sfx7101_phy_ops = {
.macs = EFX_XMAC,
.init = tenxpress_phy_init,
.reconfigure = tenxpress_phy_reconfigure,
.poll = tenxpress_phy_poll,
.fini = tenxpress_phy_fini,
.clear_interrupt = efx_port_dummy_op_void,
.get_settings = sfx7101_get_settings,
.set_settings = mdio_clause45_set_settings,
.num_tests = ARRAY_SIZE(sfx7101_test_names),
.test_names = sfx7101_test_names,
.run_tests = sfx7101_run_tests,
.mmds = TENXPRESS_REQUIRED_DEVS,
.loopbacks = SFX7101_LOOPBACKS,
};
struct efx_phy_operations falcon_sft9001_phy_ops = {
.macs = EFX_GMAC | EFX_XMAC,
.init = tenxpress_phy_init,
.reconfigure = tenxpress_phy_reconfigure,
.poll = tenxpress_phy_poll,
.fini = tenxpress_phy_fini,
.clear_interrupt = efx_port_dummy_op_void,
.get_settings = sft9001_get_settings,
.set_settings = sft9001_set_settings,
.set_xnp_advertise = sft9001_set_xnp_advertise,
.num_tests = ARRAY_SIZE(sft9001_test_names),
.test_names = sft9001_test_names,
.run_tests = sft9001_run_tests,
.mmds = TENXPRESS_REQUIRED_DEVS,
.loopbacks = SFT9001_LOOPBACKS,
};