/*
* RDC R6040 Fast Ethernet MAC support
*
* Copyright (C) 2004 Sten Wang <sten.wang@rdc.com.tw>
* Copyright (C) 2007
* Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>
* Florian Fainelli <florian@openwrt.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the
* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/crc32.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <asm/processor.h>
#define DRV_NAME "r6040"
#define DRV_VERSION "0.16"
#define DRV_RELDATE "10Nov2007"
/* PHY CHIP Address */
#define PHY1_ADDR 1 /* For MAC1 */
#define PHY2_ADDR 2 /* For MAC2 */
#define PHY_MODE 0x3100 /* PHY CHIP Register 0 */
#define PHY_CAP 0x01E1 /* PHY CHIP Register 4 */
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (6000 * HZ / 1000)
/* RDC MAC I/O Size */
#define R6040_IO_SIZE 256
/* MAX RDC MAC */
#define MAX_MAC 2
/* MAC registers */
#define MCR0 0x00 /* Control register 0 */
#define MCR1 0x04 /* Control register 1 */
#define MAC_RST 0x0001 /* Reset the MAC */
#define MBCR 0x08 /* Bus control */
#define MT_ICR 0x0C /* TX interrupt control */
#define MR_ICR 0x10 /* RX interrupt control */
#define MTPR 0x14 /* TX poll command register */
#define MR_BSR 0x18 /* RX buffer size */
#define MR_DCR 0x1A /* RX descriptor control */
#define MLSR 0x1C /* Last status */
#define MMDIO 0x20 /* MDIO control register */
#define MDIO_WRITE 0x4000 /* MDIO write */
#define MDIO_READ 0x2000 /* MDIO read */
#define MMRD 0x24 /* MDIO read data register */
#define MMWD 0x28 /* MDIO write data register */
#define MTD_SA0 0x2C /* TX descriptor start address 0 */
#define MTD_SA1 0x30 /* TX descriptor start address 1 */
#define MRD_SA0 0x34 /* RX descriptor start address 0 */
#define MRD_SA1 0x38 /* RX descriptor start address 1 */
#define MISR 0x3C /* Status register */
#define MIER 0x40 /* INT enable register */
#define MSK_INT 0x0000 /* Mask off interrupts */
#define RX_FINISH 0x0001 /* RX finished */
#define RX_NO_DESC 0x0002 /* No RX descriptor available */
#define RX_FIFO_FULL 0x0004 /* RX FIFO full */
#define RX_EARLY 0x0008 /* RX early */
#define TX_FINISH 0x0010 /* TX finished */
#define TX_EARLY 0x0080 /* TX early */
#define EVENT_OVRFL 0x0100 /* Event counter overflow */
#define LINK_CHANGED 0x0200 /* PHY link changed */
#define ME_CISR 0x44 /* Event counter INT status */
#define ME_CIER 0x48 /* Event counter INT enable */
#define MR_CNT 0x50 /* Successfully received packet counter */
#define ME_CNT0 0x52 /* Event counter 0 */
#define ME_CNT1 0x54 /* Event counter 1 */
#define ME_CNT2 0x56 /* Event counter 2 */
#define ME_CNT3 0x58 /* Event counter 3 */
#define MT_CNT 0x5A /* Successfully transmit packet counter */
#define ME_CNT4 0x5C /* Event counter 4 */
#define MP_CNT 0x5E /* Pause frame counter register */
#define MAR0 0x60 /* Hash table 0 */
#define MAR1 0x62 /* Hash table 1 */
#define MAR2 0x64 /* Hash table 2 */
#define MAR3 0x66 /* Hash table 3 */
#define MID_0L 0x68 /* Multicast address MID0 Low */
#define MID_0M 0x6A /* Multicast address MID0 Medium */
#define MID_0H 0x6C /* Multicast address MID0 High */
#define MID_1L 0x70 /* MID1 Low */
#define MID_1M 0x72 /* MID1 Medium */
#define MID_1H 0x74 /* MID1 High */
#define MID_2L 0x78 /* MID2 Low */
#define MID_2M 0x7A /* MID2 Medium */
#define MID_2H 0x7C /* MID2 High */
#define MID_3L 0x80 /* MID3 Low */
#define MID_3M 0x82 /* MID3 Medium */
#define MID_3H 0x84 /* MID3 High */
#define PHY_CC 0x88 /* PHY status change configuration register */
#define PHY_ST 0x8A /* PHY status register */
#define MAC_SM 0xAC /* MAC status machine */
#define MAC_ID 0xBE /* Identifier register */
#define TX_DCNT 0x80 /* TX descriptor count */
#define RX_DCNT 0x80 /* RX descriptor count */
#define MAX_BUF_SIZE 0x600
#define RX_DESC_SIZE (RX_DCNT * sizeof(struct r6040_descriptor))
#define TX_DESC_SIZE (TX_DCNT * sizeof(struct r6040_descriptor))
#define MBCR_DEFAULT 0x012A /* MAC Bus Control Register */
#define MCAST_MAX 4 /* Max number multicast addresses to filter */
/* PHY settings */
#define ICPLUS_PHY_ID 0x0243
MODULE_AUTHOR("Sten Wang <sten.wang@rdc.com.tw>,"
"Daniel Gimpelevich <daniel@gimpelevich.san-francisco.ca.us>,"
"Florian Fainelli <florian@openwrt.org>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RDC R6040 NAPI PCI FastEthernet driver");
/* RX and TX interrupts that we handle */
#define RX_INT (RX_FINISH)
#define TX_INT (TX_FINISH)
#define INT_MASK (RX_INT | TX_INT)
struct r6040_descriptor {
u16 status, len; /* 0-3 */
__le32 buf; /* 4-7 */
__le32 ndesc; /* 8-B */
u32 rev1; /* C-F */
char *vbufp; /* 10-13 */
struct r6040_descriptor *vndescp; /* 14-17 */
struct sk_buff *skb_ptr; /* 18-1B */
u32 rev2; /* 1C-1F */
} __attribute__((aligned(32)));
struct r6040_private {
spinlock_t lock; /* driver lock */
struct timer_list timer;
struct pci_dev *pdev;
struct r6040_descriptor *rx_insert_ptr;
struct r6040_descriptor *rx_remove_ptr;
struct r6040_descriptor *tx_insert_ptr;
struct r6040_descriptor *tx_remove_ptr;
struct r6040_descriptor *rx_ring;
struct r6040_descriptor *tx_ring;
dma_addr_t rx_ring_dma;
dma_addr_t tx_ring_dma;
u16 tx_free_desc, rx_free_desc, phy_addr, phy_mode;
u16 mcr0, mcr1;
u16 switch_sig;
struct net_device *dev;
struct mii_if_info mii_if;
struct napi_struct napi;
void __iomem *base;
};
static char version[] __devinitdata = KERN_INFO DRV_NAME
": RDC R6040 NAPI net driver,"
"version "DRV_VERSION " (" DRV_RELDATE ")\n";
static int phy_table[] = { PHY1_ADDR, PHY2_ADDR };
/* Read a word data from PHY Chip */
static int r6040_phy_read(void __iomem *ioaddr, int phy_addr, int reg)
{
int limit = 2048;
u16 cmd;
iowrite16(MDIO_READ + reg + (phy_addr << 8), ioaddr + MMDIO);
/* Wait for the read bit to be cleared */
while (limit--) {
cmd = ioread16(ioaddr + MMDIO);
if (cmd & MDIO_READ)
break;
}
return ioread16(ioaddr + MMRD);
}
/* Write a word data from PHY Chip */
static void r6040_phy_write(void __iomem *ioaddr, int phy_addr, int reg, u16 val)
{
int limit = 2048;
u16 cmd;
iowrite16(val, ioaddr + MMWD);
/* Write the command to the MDIO bus */
iowrite16(MDIO_WRITE + reg + (phy_addr << 8), ioaddr + MMDIO);
/* Wait for the write bit to be cleared */
while (limit--) {
cmd = ioread16(ioaddr + MMDIO);
if (cmd & MDIO_WRITE)
break;
}
}
static int r6040_mdio_read(struct net_device *dev, int mii_id, int reg)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
return (r6040_phy_read(ioaddr, lp->phy_addr, reg));
}
static void r6040_mdio_write(struct net_device *dev, int mii_id, int reg, int val)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
r6040_phy_write(ioaddr, lp->phy_addr, reg, val);
}
static void r6040_free_txbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < TX_DCNT; i++) {
if (lp->tx_insert_ptr->skb_ptr) {
pci_unmap_single(lp->pdev,
le32_to_cpu(lp->tx_insert_ptr->buf),
MAX_BUF_SIZE, PCI_DMA_TODEVICE);
dev_kfree_skb(lp->tx_insert_ptr->skb_ptr);
lp->rx_insert_ptr->skb_ptr = NULL;
}
lp->tx_insert_ptr = lp->tx_insert_ptr->vndescp;
}
}
static void r6040_free_rxbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int i;
for (i = 0; i < RX_DCNT; i++) {
if (lp->rx_insert_ptr->skb_ptr) {
pci_unmap_single(lp->pdev,
le32_to_cpu(lp->rx_insert_ptr->buf),
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE);
dev_kfree_skb(lp->rx_insert_ptr->skb_ptr);
lp->rx_insert_ptr->skb_ptr = NULL;
}
lp->rx_insert_ptr = lp->rx_insert_ptr->vndescp;
}
}
static void r6040_init_ring_desc(struct r6040_descriptor *desc_ring,
dma_addr_t desc_dma, int size)
{
struct r6040_descriptor *desc = desc_ring;
dma_addr_t mapping = desc_dma;
while (size-- > 0) {
mapping += sizeof(*desc);
desc->ndesc = cpu_to_le32(mapping);
desc->vndescp = desc + 1;
desc++;
}
desc--;
desc->ndesc = cpu_to_le32(desc_dma);
desc->vndescp = desc_ring;
}
/* Allocate skb buffer for rx descriptor */
static void r6040_rx_buf_alloc(struct r6040_private *lp, struct net_device *dev)
{
struct r6040_descriptor *descptr;
descptr = lp->rx_insert_ptr;
while (lp->rx_free_desc < RX_DCNT) {
descptr->skb_ptr = netdev_alloc_skb(dev, MAX_BUF_SIZE);
if (!descptr->skb_ptr)
break;
descptr->buf = cpu_to_le32(pci_map_single(lp->pdev,
descptr->skb_ptr->data,
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE));
descptr->status = 0x8000;
descptr = descptr->vndescp;
lp->rx_free_desc++;
}
lp->rx_insert_ptr = descptr;
}
static void r6040_init_txbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
lp->tx_free_desc = TX_DCNT;
lp->tx_remove_ptr = lp->tx_insert_ptr = lp->tx_ring;
r6040_init_ring_desc(lp->tx_ring, lp->tx_ring_dma, TX_DCNT);
}
static int r6040_alloc_rxbufs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
struct r6040_descriptor *desc;
struct sk_buff *skb;
int rc;
lp->rx_remove_ptr = lp->rx_insert_ptr = lp->rx_ring;
r6040_init_ring_desc(lp->rx_ring, lp->rx_ring_dma, RX_DCNT);
/* Allocate skbs for the rx descriptors */
desc = lp->rx_ring;
do {
skb = netdev_alloc_skb(dev, MAX_BUF_SIZE);
if (!skb) {
printk(KERN_ERR "%s: failed to alloc skb for rx\n", dev->name);
rc = -ENOMEM;
goto err_exit;
}
desc->skb_ptr = skb;
desc->buf = cpu_to_le32(pci_map_single(lp->pdev,
desc->skb_ptr->data,
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE));
desc->status = 0x8000;
desc = desc->vndescp;
} while (desc != lp->rx_ring);
return 0;
err_exit:
/* Deallocate all previously allocated skbs */
r6040_free_rxbufs(dev);
return rc;
}
static void r6040_init_mac_regs(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int limit = 2048;
u16 cmd;
/* Mask Off Interrupt */
iowrite16(MSK_INT, ioaddr + MIER);
/* Reset RDC MAC */
iowrite16(MAC_RST, ioaddr + MCR1);
while (limit--) {
cmd = ioread16(ioaddr + MCR1);
if (cmd & 0x1)
break;
}
/* Reset internal state machine */
iowrite16(2, ioaddr + MAC_SM);
iowrite16(0, ioaddr + MAC_SM);
udelay(5000);
/* MAC Bus Control Register */
iowrite16(MBCR_DEFAULT, ioaddr + MBCR);
/* Buffer Size Register */
iowrite16(MAX_BUF_SIZE, ioaddr + MR_BSR);
/* Write TX ring start address */
iowrite16(lp->tx_ring_dma, ioaddr + MTD_SA0);
iowrite16(lp->tx_ring_dma >> 16, ioaddr + MTD_SA1);
/* Write RX ring start address */
iowrite16(lp->rx_ring_dma, ioaddr + MRD_SA0);
iowrite16(lp->rx_ring_dma >> 16, ioaddr + MRD_SA1);
/* Set interrupt waiting time and packet numbers */
iowrite16(0x0F06, ioaddr + MT_ICR);
iowrite16(0x0F06, ioaddr + MR_ICR);
/* Enable interrupts */
iowrite16(INT_MASK, ioaddr + MIER);
/* Enable TX and RX */
iowrite16(lp->mcr0 | 0x0002, ioaddr);
/* Let TX poll the descriptors
* we may got called by r6040_tx_timeout which has left
* some unsent tx buffers */
iowrite16(0x01, ioaddr + MTPR);
}
static void r6040_tx_timeout(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
printk(KERN_WARNING "%s: transmit timed out, int enable %4.4x "
"status %4.4x, PHY status %4.4x\n",
dev->name, ioread16(ioaddr + MIER),
ioread16(ioaddr + MISR),
r6040_mdio_read(dev, priv->mii_if.phy_id, MII_BMSR));
dev->stats.tx_errors++;
/* Reset MAC and re-init all registers */
r6040_init_mac_regs(dev);
}
static struct net_device_stats *r6040_get_stats(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
void __iomem *ioaddr = priv->base;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
dev->stats.rx_crc_errors += ioread8(ioaddr + ME_CNT1);
dev->stats.multicast += ioread8(ioaddr + ME_CNT0);
spin_unlock_irqrestore(&priv->lock, flags);
return &dev->stats;
}
/* Stop RDC MAC and Free the allocated resource */
static void r6040_down(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
struct pci_dev *pdev = lp->pdev;
int limit = 2048;
u16 *adrp;
u16 cmd;
/* Stop MAC */
iowrite16(MSK_INT, ioaddr + MIER); /* Mask Off Interrupt */
iowrite16(MAC_RST, ioaddr + MCR1); /* Reset RDC MAC */
while (limit--) {
cmd = ioread16(ioaddr + MCR1);
if (cmd & 0x1)
break;
}
/* Restore MAC Address to MIDx */
adrp = (u16 *) dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
free_irq(dev->irq, dev);
/* Free RX buffer */
r6040_free_rxbufs(dev);
/* Free TX buffer */
r6040_free_txbufs(dev);
/* Free Descriptor memory */
pci_free_consistent(pdev, RX_DESC_SIZE, lp->rx_ring, lp->rx_ring_dma);
pci_free_consistent(pdev, TX_DESC_SIZE, lp->tx_ring, lp->tx_ring_dma);
}
static int r6040_close(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
/* deleted timer */
del_timer_sync(&lp->timer);
spin_lock_irq(&lp->lock);
napi_disable(&lp->napi);
netif_stop_queue(dev);
r6040_down(dev);
spin_unlock_irq(&lp->lock);
return 0;
}
/* Status of PHY CHIP */
static int r6040_phy_mode_chk(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int phy_dat;
/* PHY Link Status Check */
phy_dat = r6040_phy_read(ioaddr, lp->phy_addr, 1);
if (!(phy_dat & 0x4))
phy_dat = 0x8000; /* Link Failed, full duplex */
/* PHY Chip Auto-Negotiation Status */
phy_dat = r6040_phy_read(ioaddr, lp->phy_addr, 1);
if (phy_dat & 0x0020) {
/* Auto Negotiation Mode */
phy_dat = r6040_phy_read(ioaddr, lp->phy_addr, 5);
phy_dat &= r6040_phy_read(ioaddr, lp->phy_addr, 4);
if (phy_dat & 0x140)
/* Force full duplex */
phy_dat = 0x8000;
else
phy_dat = 0;
} else {
/* Force Mode */
phy_dat = r6040_phy_read(ioaddr, lp->phy_addr, 0);
if (phy_dat & 0x100)
phy_dat = 0x8000;
else
phy_dat = 0x0000;
}
return phy_dat;
};
static void r6040_set_carrier(struct mii_if_info *mii)
{
if (r6040_phy_mode_chk(mii->dev)) {
/* autoneg is off: Link is always assumed to be up */
if (!netif_carrier_ok(mii->dev))
netif_carrier_on(mii->dev);
} else
r6040_phy_mode_chk(mii->dev);
}
static int r6040_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct r6040_private *lp = netdev_priv(dev);
struct mii_ioctl_data *data = if_mii(rq);
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irq(&lp->lock);
rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
spin_unlock_irq(&lp->lock);
r6040_set_carrier(&lp->mii_if);
return rc;
}
static int r6040_rx(struct net_device *dev, int limit)
{
struct r6040_private *priv = netdev_priv(dev);
int count;
void __iomem *ioaddr = priv->base;
u16 err;
for (count = 0; count < limit; ++count) {
struct r6040_descriptor *descptr = priv->rx_remove_ptr;
struct sk_buff *skb_ptr;
descptr = priv->rx_remove_ptr;
/* Check for errors */
err = ioread16(ioaddr + MLSR);
if (err & 0x0400)
dev->stats.rx_errors++;
/* RX FIFO over-run */
if (err & 0x8000)
dev->stats.rx_fifo_errors++;
/* RX descriptor unavailable */
if (err & 0x0080)
dev->stats.rx_frame_errors++;
/* Received packet with length over buffer lenght */
if (err & 0x0020)
dev->stats.rx_over_errors++;
/* Received packet with too long or short */
if (err & (0x0010 | 0x0008))
dev->stats.rx_length_errors++;
/* Received packet with CRC errors */
if (err & 0x0004) {
spin_lock(&priv->lock);
dev->stats.rx_crc_errors++;
spin_unlock(&priv->lock);
}
while (priv->rx_free_desc) {
/* No RX packet */
if (descptr->status & 0x8000)
break;
skb_ptr = descptr->skb_ptr;
if (!skb_ptr) {
printk(KERN_ERR "%s: Inconsistent RX"
"descriptor chain\n",
dev->name);
break;
}
descptr->skb_ptr = NULL;
skb_ptr->dev = priv->dev;
/* Do not count the CRC */
skb_put(skb_ptr, descptr->len - 4);
pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf),
MAX_BUF_SIZE, PCI_DMA_FROMDEVICE);
skb_ptr->protocol = eth_type_trans(skb_ptr, priv->dev);
/* Send to upper layer */
netif_receive_skb(skb_ptr);
dev->last_rx = jiffies;
dev->stats.rx_packets++;
dev->stats.rx_bytes += descptr->len;
/* To next descriptor */
descptr = descptr->vndescp;
priv->rx_free_desc--;
}
priv->rx_remove_ptr = descptr;
}
/* Allocate new RX buffer */
if (priv->rx_free_desc < RX_DCNT)
r6040_rx_buf_alloc(priv, priv->dev);
return count;
}
static void r6040_tx(struct net_device *dev)
{
struct r6040_private *priv = netdev_priv(dev);
struct r6040_descriptor *descptr;
void __iomem *ioaddr = priv->base;
struct sk_buff *skb_ptr;
u16 err;
spin_lock(&priv->lock);
descptr = priv->tx_remove_ptr;
while (priv->tx_free_desc < TX_DCNT) {
/* Check for errors */
err = ioread16(ioaddr + MLSR);
if (err & 0x0200)
dev->stats.rx_fifo_errors++;
if (err & (0x2000 | 0x4000))
dev->stats.tx_carrier_errors++;
if (descptr->status & 0x8000)
break; /* Not complete */
skb_ptr = descptr->skb_ptr;
pci_unmap_single(priv->pdev, le32_to_cpu(descptr->buf),
skb_ptr->len, PCI_DMA_TODEVICE);
/* Free buffer */
dev_kfree_skb_irq(skb_ptr);
descptr->skb_ptr = NULL;
/* To next descriptor */
descptr = descptr->vndescp;
priv->tx_free_desc++;
}
priv->tx_remove_ptr = descptr;
if (priv->tx_free_desc)
netif_wake_queue(dev);
spin_unlock(&priv->lock);
}
static int r6040_poll(struct napi_struct *napi, int budget)
{
struct r6040_private *priv =
container_of(napi, struct r6040_private, napi);
struct net_device *dev = priv->dev;
void __iomem *ioaddr = priv->base;
int work_done;
work_done = r6040_rx(dev, budget);
if (work_done < budget) {
netif_rx_complete(dev, napi);
/* Enable RX interrupt */
iowrite16(ioread16(ioaddr + MIER) | RX_INT, ioaddr + MIER);
}
return work_done;
}
/* The RDC interrupt handler. */
static irqreturn_t r6040_interrupt(int irq, void *dev_id)
{
struct net_device *dev = dev_id;
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 status;
/* Mask off RDC MAC interrupt */
iowrite16(MSK_INT, ioaddr + MIER);
/* Read MISR status and clear */
status = ioread16(ioaddr + MISR);
if (status == 0x0000 || status == 0xffff)
return IRQ_NONE;
/* RX interrupt request */
if (status & 0x01) {
/* Mask off RX interrupt */
iowrite16(ioread16(ioaddr + MIER) & ~RX_INT, ioaddr + MIER);
netif_rx_schedule(dev, &lp->napi);
}
/* TX interrupt request */
if (status & 0x10)
r6040_tx(dev);
return IRQ_HANDLED;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void r6040_poll_controller(struct net_device *dev)
{
disable_irq(dev->irq);
r6040_interrupt(dev->irq, dev);
enable_irq(dev->irq);
}
#endif
/* Init RDC MAC */
static int r6040_up(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
int ret;
/* Initialise and alloc RX/TX buffers */
r6040_init_txbufs(dev);
ret = r6040_alloc_rxbufs(dev);
if (ret)
return ret;
/* Read the PHY ID */
lp->switch_sig = r6040_phy_read(ioaddr, 0, 2);
if (lp->switch_sig == ICPLUS_PHY_ID) {
r6040_phy_write(ioaddr, 29, 31, 0x175C); /* Enable registers */
lp->phy_mode = 0x8000;
} else {
/* PHY Mode Check */
r6040_phy_write(ioaddr, lp->phy_addr, 4, PHY_CAP);
r6040_phy_write(ioaddr, lp->phy_addr, 0, PHY_MODE);
if (PHY_MODE == 0x3100)
lp->phy_mode = r6040_phy_mode_chk(dev);
else
lp->phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0;
}
/* Set duplex mode */
lp->mcr0 |= lp->phy_mode;
/* improve performance (by RDC guys) */
r6040_phy_write(ioaddr, 30, 17, (r6040_phy_read(ioaddr, 30, 17) | 0x4000));
r6040_phy_write(ioaddr, 30, 17, ~((~r6040_phy_read(ioaddr, 30, 17)) | 0x2000));
r6040_phy_write(ioaddr, 0, 19, 0x0000);
r6040_phy_write(ioaddr, 0, 30, 0x01F0);
/* Initialize all MAC registers */
r6040_init_mac_regs(dev);
return 0;
}
/*
A periodic timer routine
Polling PHY Chip Link Status
*/
static void r6040_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 phy_mode;
/* Polling PHY Chip Status */
if (PHY_MODE == 0x3100)
phy_mode = r6040_phy_mode_chk(dev);
else
phy_mode = (PHY_MODE & 0x0100) ? 0x8000:0x0;
if (phy_mode != lp->phy_mode) {
lp->phy_mode = phy_mode;
lp->mcr0 = (lp->mcr0 & 0x7fff) | phy_mode;
iowrite16(lp->mcr0, ioaddr);
printk(KERN_INFO "Link Change %x \n", ioread16(ioaddr));
}
/* Timer active again */
mod_timer(&lp->timer, round_jiffies(jiffies + HZ));
}
/* Read/set MAC address routines */
static void r6040_mac_address(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 *adrp;
/* MAC operation register */
iowrite16(0x01, ioaddr + MCR1); /* Reset MAC */
iowrite16(2, ioaddr + MAC_SM); /* Reset internal state machine */
iowrite16(0, ioaddr + MAC_SM);
udelay(5000);
/* Restore MAC Address */
adrp = (u16 *) dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
}
static int r6040_open(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
int ret;
/* Request IRQ and Register interrupt handler */
ret = request_irq(dev->irq, &r6040_interrupt,
IRQF_SHARED, dev->name, dev);
if (ret)
return ret;
/* Set MAC address */
r6040_mac_address(dev);
/* Allocate Descriptor memory */
lp->rx_ring =
pci_alloc_consistent(lp->pdev, RX_DESC_SIZE, &lp->rx_ring_dma);
if (!lp->rx_ring)
return -ENOMEM;
lp->tx_ring =
pci_alloc_consistent(lp->pdev, TX_DESC_SIZE, &lp->tx_ring_dma);
if (!lp->tx_ring) {
pci_free_consistent(lp->pdev, RX_DESC_SIZE, lp->rx_ring,
lp->rx_ring_dma);
return -ENOMEM;
}
ret = r6040_up(dev);
if (ret) {
pci_free_consistent(lp->pdev, TX_DESC_SIZE, lp->tx_ring,
lp->tx_ring_dma);
pci_free_consistent(lp->pdev, RX_DESC_SIZE, lp->rx_ring,
lp->rx_ring_dma);
return ret;
}
napi_enable(&lp->napi);
netif_start_queue(dev);
/* set and active a timer process */
setup_timer(&lp->timer, r6040_timer, (unsigned long) dev);
if (lp->switch_sig != ICPLUS_PHY_ID)
mod_timer(&lp->timer, jiffies + HZ);
return 0;
}
static int r6040_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
struct r6040_descriptor *descptr;
void __iomem *ioaddr = lp->base;
unsigned long flags;
int ret = NETDEV_TX_OK;
/* Critical Section */
spin_lock_irqsave(&lp->lock, flags);
/* TX resource check */
if (!lp->tx_free_desc) {
spin_unlock_irqrestore(&lp->lock, flags);
netif_stop_queue(dev);
printk(KERN_ERR DRV_NAME ": no tx descriptor\n");
ret = NETDEV_TX_BUSY;
return ret;
}
/* Statistic Counter */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* Set TX descriptor & Transmit it */
lp->tx_free_desc--;
descptr = lp->tx_insert_ptr;
if (skb->len < MISR)
descptr->len = MISR;
else
descptr->len = skb->len;
descptr->skb_ptr = skb;
descptr->buf = cpu_to_le32(pci_map_single(lp->pdev,
skb->data, skb->len, PCI_DMA_TODEVICE));
descptr->status = 0x8000;
/* Trigger the MAC to check the TX descriptor */
iowrite16(0x01, ioaddr + MTPR);
lp->tx_insert_ptr = descptr->vndescp;
/* If no tx resource, stop */
if (!lp->tx_free_desc)
netif_stop_queue(dev);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&lp->lock, flags);
return ret;
}
static void r6040_multicast_list(struct net_device *dev)
{
struct r6040_private *lp = netdev_priv(dev);
void __iomem *ioaddr = lp->base;
u16 *adrp;
u16 reg;
unsigned long flags;
struct dev_mc_list *dmi = dev->mc_list;
int i;
/* MAC Address */
adrp = (u16 *)dev->dev_addr;
iowrite16(adrp[0], ioaddr + MID_0L);
iowrite16(adrp[1], ioaddr + MID_0M);
iowrite16(adrp[2], ioaddr + MID_0H);
/* Promiscous Mode */
spin_lock_irqsave(&lp->lock, flags);
/* Clear AMCP & PROM bits */
reg = ioread16(ioaddr) & ~0x0120;
if (dev->flags & IFF_PROMISC) {
reg |= 0x0020;
lp->mcr0 |= 0x0020;
}
/* Too many multicast addresses
* accept all traffic */
else if ((dev->mc_count > MCAST_MAX)
|| (dev->flags & IFF_ALLMULTI))
reg |= 0x0020;
iowrite16(reg, ioaddr);
spin_unlock_irqrestore(&lp->lock, flags);
/* Build the hash table */
if (dev->mc_count > MCAST_MAX) {
u16 hash_table[4];
u32 crc;
for (i = 0; i < 4; i++)
hash_table[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
char *addrs = dmi->dmi_addr;
dmi = dmi->next;
if (!(*addrs & 1))
continue;
crc = ether_crc_le(6, addrs);
crc >>= 26;
hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
}
/* Write the index of the hash table */
for (i = 0; i < 4; i++)
iowrite16(hash_table[i] << 14, ioaddr + MCR1);
/* Fill the MAC hash tables with their values */
iowrite16(hash_table[0], ioaddr + MAR0);
iowrite16(hash_table[1], ioaddr + MAR1);
iowrite16(hash_table[2], ioaddr + MAR2);
iowrite16(hash_table[3], ioaddr + MAR3);
}
/* Multicast Address 1~4 case */
for (i = 0, dmi; (i < dev->mc_count) && (i < MCAST_MAX); i++) {
adrp = (u16 *)dmi->dmi_addr;
iowrite16(adrp[0], ioaddr + MID_1L + 8*i);
iowrite16(adrp[1], ioaddr + MID_1M + 8*i);
iowrite16(adrp[2], ioaddr + MID_1H + 8*i);
dmi = dmi->next;
}
for (i = dev->mc_count; i < MCAST_MAX; i++) {
iowrite16(0xffff, ioaddr + MID_0L + 8*i);
iowrite16(0xffff, ioaddr + MID_0M + 8*i);
iowrite16(0xffff, ioaddr + MID_0H + 8*i);
}
}
static void netdev_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct r6040_private *rp = netdev_priv(dev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(rp->pdev));
}
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct r6040_private *rp = netdev_priv(dev);
int rc;
spin_lock_irq(&rp->lock);
rc = mii_ethtool_gset(&rp->mii_if, cmd);
spin_unlock_irq(&rp->lock);
return rc;
}
static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct r6040_private *rp = netdev_priv(dev);
int rc;
spin_lock_irq(&rp->lock);
rc = mii_ethtool_sset(&rp->mii_if, cmd);
spin_unlock_irq(&rp->lock);
r6040_set_carrier(&rp->mii_if);
return rc;
}
static u32 netdev_get_link(struct net_device *dev)
{
struct r6040_private *rp = netdev_priv(dev);
return mii_link_ok(&rp->mii_if);
}
static struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_settings = netdev_get_settings,
.set_settings = netdev_set_settings,
.get_link = netdev_get_link,
};
static int __devinit r6040_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *dev;
struct r6040_private *lp;
void __iomem *ioaddr;
int err, io_size = R6040_IO_SIZE;
static int card_idx = -1;
int bar = 0;
long pioaddr;
u16 *adrp;
printk(KERN_INFO "%s\n", version);
err = pci_enable_device(pdev);
if (err)
return err;
/* this should always be supported */
if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses"
"not supported by the card\n");
return -ENODEV;
}
if (pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) {
printk(KERN_ERR DRV_NAME "32-bit PCI DMA addresses"
"not supported by the card\n");
return -ENODEV;
}
/* IO Size check */
if (pci_resource_len(pdev, 0) < io_size) {
printk(KERN_ERR "Insufficient PCI resources, aborting\n");
return -EIO;
}
pioaddr = pci_resource_start(pdev, 0); /* IO map base address */
pci_set_master(pdev);
dev = alloc_etherdev(sizeof(struct r6040_private));
if (!dev) {
printk(KERN_ERR "Failed to allocate etherdev\n");
return -ENOMEM;
}
SET_NETDEV_DEV(dev, &pdev->dev);
lp = netdev_priv(dev);
if (pci_request_regions(pdev, DRV_NAME)) {
printk(KERN_ERR DRV_NAME ": Failed to request PCI regions\n");
err = -ENODEV;
goto err_out_disable;
}
ioaddr = pci_iomap(pdev, bar, io_size);
if (!ioaddr) {
printk(KERN_ERR "ioremap failed for device %s\n",
pci_name(pdev));
return -EIO;
}
/* Init system & device */
lp->base = ioaddr;
dev->irq = pdev->irq;
spin_lock_init(&lp->lock);
pci_set_drvdata(pdev, dev);
/* Set MAC address */
card_idx++;
adrp = (u16 *)dev->dev_addr;
adrp[0] = ioread16(ioaddr + MID_0L);
adrp[1] = ioread16(ioaddr + MID_0M);
adrp[2] = ioread16(ioaddr + MID_0H);
/* Link new device into r6040_root_dev */
lp->pdev = pdev;
lp->dev = dev;
/* Init RDC private data */
lp->mcr0 = 0x1002;
lp->phy_addr = phy_table[card_idx];
lp->switch_sig = 0;
/* The RDC-specific entries in the device structure. */
dev->open = &r6040_open;
dev->hard_start_xmit = &r6040_start_xmit;
dev->stop = &r6040_close;
dev->get_stats = r6040_get_stats;
dev->set_multicast_list = &r6040_multicast_list;
dev->do_ioctl = &r6040_ioctl;
dev->ethtool_ops = &netdev_ethtool_ops;
dev->tx_timeout = &r6040_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = r6040_poll_controller;
#endif
netif_napi_add(dev, &lp->napi, r6040_poll, 64);
lp->mii_if.dev = dev;
lp->mii_if.mdio_read = r6040_mdio_read;
lp->mii_if.mdio_write = r6040_mdio_write;
lp->mii_if.phy_id = lp->phy_addr;
lp->mii_if.phy_id_mask = 0x1f;
lp->mii_if.reg_num_mask = 0x1f;
/* Register net device. After this dev->name assign */
err = register_netdev(dev);
if (err) {
printk(KERN_ERR DRV_NAME ": Failed to register net device\n");
goto err_out_res;
}
return 0;
err_out_res:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return err;
}
static void __devexit r6040_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
unregister_netdev(dev);
pci_release_regions(pdev);
free_netdev(dev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static struct pci_device_id r6040_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_RDC, 0x6040) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, r6040_pci_tbl);
static struct pci_driver r6040_driver = {
.name = DRV_NAME,
.id_table = r6040_pci_tbl,
.probe = r6040_init_one,
.remove = __devexit_p(r6040_remove_one),
};
static int __init r6040_init(void)
{
return pci_register_driver(&r6040_driver);
}
static void __exit r6040_cleanup(void)
{
pci_unregister_driver(&r6040_driver);
}
module_init(r6040_init);
module_exit(r6040_cleanup);