/*
* AT86RF230/RF231 driver
*
* Copyright (C) 2009-2012 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Written by:
* Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
* Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/spi/at86rf230.h>
#include <linux/skbuff.h>
#include <net/mac802154.h>
#include <net/wpan-phy.h>
struct at86rf230_local {
struct spi_device *spi;
u8 part;
u8 vers;
u8 buf[2];
struct mutex bmux;
struct work_struct irqwork;
struct completion tx_complete;
struct ieee802154_dev *dev;
spinlock_t lock;
bool irq_busy;
bool is_tx;
bool tx_aret;
int rssi_base_val;
};
static bool is_rf212(struct at86rf230_local *local)
{
return local->part == 7;
}
#define RG_TRX_STATUS (0x01)
#define SR_TRX_STATUS 0x01, 0x1f, 0
#define SR_RESERVED_01_3 0x01, 0x20, 5
#define SR_CCA_STATUS 0x01, 0x40, 6
#define SR_CCA_DONE 0x01, 0x80, 7
#define RG_TRX_STATE (0x02)
#define SR_TRX_CMD 0x02, 0x1f, 0
#define SR_TRAC_STATUS 0x02, 0xe0, 5
#define RG_TRX_CTRL_0 (0x03)
#define SR_CLKM_CTRL 0x03, 0x07, 0
#define SR_CLKM_SHA_SEL 0x03, 0x08, 3
#define SR_PAD_IO_CLKM 0x03, 0x30, 4
#define SR_PAD_IO 0x03, 0xc0, 6
#define RG_TRX_CTRL_1 (0x04)
#define SR_IRQ_POLARITY 0x04, 0x01, 0
#define SR_IRQ_MASK_MODE 0x04, 0x02, 1
#define SR_SPI_CMD_MODE 0x04, 0x0c, 2
#define SR_RX_BL_CTRL 0x04, 0x10, 4
#define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
#define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
#define SR_PA_EXT_EN 0x04, 0x80, 7
#define RG_PHY_TX_PWR (0x05)
#define SR_TX_PWR 0x05, 0x0f, 0
#define SR_PA_LT 0x05, 0x30, 4
#define SR_PA_BUF_LT 0x05, 0xc0, 6
#define RG_PHY_RSSI (0x06)
#define SR_RSSI 0x06, 0x1f, 0
#define SR_RND_VALUE 0x06, 0x60, 5
#define SR_RX_CRC_VALID 0x06, 0x80, 7
#define RG_PHY_ED_LEVEL (0x07)
#define SR_ED_LEVEL 0x07, 0xff, 0
#define RG_PHY_CC_CCA (0x08)
#define SR_CHANNEL 0x08, 0x1f, 0
#define SR_CCA_MODE 0x08, 0x60, 5
#define SR_CCA_REQUEST 0x08, 0x80, 7
#define RG_CCA_THRES (0x09)
#define SR_CCA_ED_THRES 0x09, 0x0f, 0
#define SR_RESERVED_09_1 0x09, 0xf0, 4
#define RG_RX_CTRL (0x0a)
#define SR_PDT_THRES 0x0a, 0x0f, 0
#define SR_RESERVED_0a_1 0x0a, 0xf0, 4
#define RG_SFD_VALUE (0x0b)
#define SR_SFD_VALUE 0x0b, 0xff, 0
#define RG_TRX_CTRL_2 (0x0c)
#define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
#define SR_SUB_MODE 0x0c, 0x04, 2
#define SR_BPSK_QPSK 0x0c, 0x08, 3
#define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
#define SR_RESERVED_0c_5 0x0c, 0x60, 5
#define SR_RX_SAFE_MODE 0x0c, 0x80, 7
#define RG_ANT_DIV (0x0d)
#define SR_ANT_CTRL 0x0d, 0x03, 0
#define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
#define SR_ANT_DIV_EN 0x0d, 0x08, 3
#define SR_RESERVED_0d_2 0x0d, 0x70, 4
#define SR_ANT_SEL 0x0d, 0x80, 7
#define RG_IRQ_MASK (0x0e)
#define SR_IRQ_MASK 0x0e, 0xff, 0
#define RG_IRQ_STATUS (0x0f)
#define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
#define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
#define SR_IRQ_2_RX_START 0x0f, 0x04, 2
#define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
#define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
#define SR_IRQ_5_AMI 0x0f, 0x20, 5
#define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
#define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
#define RG_VREG_CTRL (0x10)
#define SR_RESERVED_10_6 0x10, 0x03, 0
#define SR_DVDD_OK 0x10, 0x04, 2
#define SR_DVREG_EXT 0x10, 0x08, 3
#define SR_RESERVED_10_3 0x10, 0x30, 4
#define SR_AVDD_OK 0x10, 0x40, 6
#define SR_AVREG_EXT 0x10, 0x80, 7
#define RG_BATMON (0x11)
#define SR_BATMON_VTH 0x11, 0x0f, 0
#define SR_BATMON_HR 0x11, 0x10, 4
#define SR_BATMON_OK 0x11, 0x20, 5
#define SR_RESERVED_11_1 0x11, 0xc0, 6
#define RG_XOSC_CTRL (0x12)
#define SR_XTAL_TRIM 0x12, 0x0f, 0
#define SR_XTAL_MODE 0x12, 0xf0, 4
#define RG_RX_SYN (0x15)
#define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
#define SR_RESERVED_15_2 0x15, 0x70, 4
#define SR_RX_PDT_DIS 0x15, 0x80, 7
#define RG_XAH_CTRL_1 (0x17)
#define SR_RESERVED_17_8 0x17, 0x01, 0
#define SR_AACK_PROM_MODE 0x17, 0x02, 1
#define SR_AACK_ACK_TIME 0x17, 0x04, 2
#define SR_RESERVED_17_5 0x17, 0x08, 3
#define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
#define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
#define SR_CSMA_LBT_MODE 0x17, 0x40, 6
#define SR_RESERVED_17_1 0x17, 0x80, 7
#define RG_FTN_CTRL (0x18)
#define SR_RESERVED_18_2 0x18, 0x7f, 0
#define SR_FTN_START 0x18, 0x80, 7
#define RG_PLL_CF (0x1a)
#define SR_RESERVED_1a_2 0x1a, 0x7f, 0
#define SR_PLL_CF_START 0x1a, 0x80, 7
#define RG_PLL_DCU (0x1b)
#define SR_RESERVED_1b_3 0x1b, 0x3f, 0
#define SR_RESERVED_1b_2 0x1b, 0x40, 6
#define SR_PLL_DCU_START 0x1b, 0x80, 7
#define RG_PART_NUM (0x1c)
#define SR_PART_NUM 0x1c, 0xff, 0
#define RG_VERSION_NUM (0x1d)
#define SR_VERSION_NUM 0x1d, 0xff, 0
#define RG_MAN_ID_0 (0x1e)
#define SR_MAN_ID_0 0x1e, 0xff, 0
#define RG_MAN_ID_1 (0x1f)
#define SR_MAN_ID_1 0x1f, 0xff, 0
#define RG_SHORT_ADDR_0 (0x20)
#define SR_SHORT_ADDR_0 0x20, 0xff, 0
#define RG_SHORT_ADDR_1 (0x21)
#define SR_SHORT_ADDR_1 0x21, 0xff, 0
#define RG_PAN_ID_0 (0x22)
#define SR_PAN_ID_0 0x22, 0xff, 0
#define RG_PAN_ID_1 (0x23)
#define SR_PAN_ID_1 0x23, 0xff, 0
#define RG_IEEE_ADDR_0 (0x24)
#define SR_IEEE_ADDR_0 0x24, 0xff, 0
#define RG_IEEE_ADDR_1 (0x25)
#define SR_IEEE_ADDR_1 0x25, 0xff, 0
#define RG_IEEE_ADDR_2 (0x26)
#define SR_IEEE_ADDR_2 0x26, 0xff, 0
#define RG_IEEE_ADDR_3 (0x27)
#define SR_IEEE_ADDR_3 0x27, 0xff, 0
#define RG_IEEE_ADDR_4 (0x28)
#define SR_IEEE_ADDR_4 0x28, 0xff, 0
#define RG_IEEE_ADDR_5 (0x29)
#define SR_IEEE_ADDR_5 0x29, 0xff, 0
#define RG_IEEE_ADDR_6 (0x2a)
#define SR_IEEE_ADDR_6 0x2a, 0xff, 0
#define RG_IEEE_ADDR_7 (0x2b)
#define SR_IEEE_ADDR_7 0x2b, 0xff, 0
#define RG_XAH_CTRL_0 (0x2c)
#define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
#define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
#define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
#define RG_CSMA_SEED_0 (0x2d)
#define SR_CSMA_SEED_0 0x2d, 0xff, 0
#define RG_CSMA_SEED_1 (0x2e)
#define SR_CSMA_SEED_1 0x2e, 0x07, 0
#define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
#define SR_AACK_DIS_ACK 0x2e, 0x10, 4
#define SR_AACK_SET_PD 0x2e, 0x20, 5
#define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
#define RG_CSMA_BE (0x2f)
#define SR_MIN_BE 0x2f, 0x0f, 0
#define SR_MAX_BE 0x2f, 0xf0, 4
#define CMD_REG 0x80
#define CMD_REG_MASK 0x3f
#define CMD_WRITE 0x40
#define CMD_FB 0x20
#define IRQ_BAT_LOW (1 << 7)
#define IRQ_TRX_UR (1 << 6)
#define IRQ_AMI (1 << 5)
#define IRQ_CCA_ED (1 << 4)
#define IRQ_TRX_END (1 << 3)
#define IRQ_RX_START (1 << 2)
#define IRQ_PLL_UNL (1 << 1)
#define IRQ_PLL_LOCK (1 << 0)
#define IRQ_ACTIVE_HIGH 0
#define IRQ_ACTIVE_LOW 1
#define STATE_P_ON 0x00 /* BUSY */
#define STATE_BUSY_RX 0x01
#define STATE_BUSY_TX 0x02
#define STATE_FORCE_TRX_OFF 0x03
#define STATE_FORCE_TX_ON 0x04 /* IDLE */
/* 0x05 */ /* INVALID_PARAMETER */
#define STATE_RX_ON 0x06
/* 0x07 */ /* SUCCESS */
#define STATE_TRX_OFF 0x08
#define STATE_TX_ON 0x09
/* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
#define STATE_SLEEP 0x0F
#define STATE_PREP_DEEP_SLEEP 0x10
#define STATE_BUSY_RX_AACK 0x11
#define STATE_BUSY_TX_ARET 0x12
#define STATE_RX_AACK_ON 0x16
#define STATE_TX_ARET_ON 0x19
#define STATE_RX_ON_NOCLK 0x1C
#define STATE_RX_AACK_ON_NOCLK 0x1D
#define STATE_BUSY_RX_AACK_NOCLK 0x1E
#define STATE_TRANSITION_IN_PROGRESS 0x1F
static int
__at86rf230_detect_device(struct spi_device *spi, u16 *man_id, u8 *part,
u8 *version)
{
u8 data[4];
u8 *buf = kmalloc(2, GFP_KERNEL);
int status;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 2,
.tx_buf = buf,
.rx_buf = buf,
};
u8 reg;
if (!buf)
return -ENOMEM;
for (reg = RG_PART_NUM; reg <= RG_MAN_ID_1; reg++) {
buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
buf[1] = 0xff;
dev_vdbg(&spi->dev, "buf[0] = %02x\n", buf[0]);
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
status = spi_sync(spi, &msg);
dev_vdbg(&spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&spi->dev, "status = %d\n", status);
dev_vdbg(&spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&spi->dev, "buf[1] = %02x\n", buf[1]);
if (status == 0)
data[reg - RG_PART_NUM] = buf[1];
else
break;
}
if (status == 0) {
*part = data[0];
*version = data[1];
*man_id = (data[3] << 8) | data[2];
}
kfree(buf);
return status;
}
static int
__at86rf230_write(struct at86rf230_local *lp, u8 addr, u8 data)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 2,
.tx_buf = buf,
};
buf[0] = (addr & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
buf[1] = data;
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
status = spi_sync(lp->spi, &msg);
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
return status;
}
static int
__at86rf230_read_subreg(struct at86rf230_local *lp,
u8 addr, u8 mask, int shift, u8 *data)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer = {
.len = 2,
.tx_buf = buf,
.rx_buf = buf,
};
buf[0] = (addr & CMD_REG_MASK) | CMD_REG;
buf[1] = 0xff;
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
status = spi_sync(lp->spi, &msg);
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
if (status == 0)
*data = buf[1];
return status;
}
static int
at86rf230_read_subreg(struct at86rf230_local *lp,
u8 addr, u8 mask, int shift, u8 *data)
{
int status;
mutex_lock(&lp->bmux);
status = __at86rf230_read_subreg(lp, addr, mask, shift, data);
mutex_unlock(&lp->bmux);
return status;
}
static int
at86rf230_write_subreg(struct at86rf230_local *lp,
u8 addr, u8 mask, int shift, u8 data)
{
int status;
u8 val;
mutex_lock(&lp->bmux);
status = __at86rf230_read_subreg(lp, addr, 0xff, 0, &val);
if (status)
goto out;
val &= ~mask;
val |= (data << shift) & mask;
status = __at86rf230_write(lp, addr, val);
out:
mutex_unlock(&lp->bmux);
return status;
}
static int
at86rf230_write_fbuf(struct at86rf230_local *lp, u8 *data, u8 len)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 2,
.tx_buf = buf,
};
struct spi_transfer xfer_buf = {
.len = len,
.tx_buf = data,
};
mutex_lock(&lp->bmux);
buf[0] = CMD_WRITE | CMD_FB;
buf[1] = len + 2; /* 2 bytes for CRC that isn't written */
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
spi_message_add_tail(&xfer_buf, &msg);
status = spi_sync(lp->spi, &msg);
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
if (msg.status)
status = msg.status;
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
mutex_unlock(&lp->bmux);
return status;
}
static int
at86rf230_read_fbuf(struct at86rf230_local *lp, u8 *data, u8 *len, u8 *lqi)
{
u8 *buf = lp->buf;
int status;
struct spi_message msg;
struct spi_transfer xfer_head = {
.len = 2,
.tx_buf = buf,
.rx_buf = buf,
};
struct spi_transfer xfer_head1 = {
.len = 2,
.tx_buf = buf,
.rx_buf = buf,
};
struct spi_transfer xfer_buf = {
.len = 0,
.rx_buf = data,
};
mutex_lock(&lp->bmux);
buf[0] = CMD_FB;
buf[1] = 0x00;
spi_message_init(&msg);
spi_message_add_tail(&xfer_head, &msg);
status = spi_sync(lp->spi, &msg);
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
xfer_buf.len = *(buf + 1) + 1;
*len = buf[1];
buf[0] = CMD_FB;
buf[1] = 0x00;
spi_message_init(&msg);
spi_message_add_tail(&xfer_head1, &msg);
spi_message_add_tail(&xfer_buf, &msg);
status = spi_sync(lp->spi, &msg);
if (msg.status)
status = msg.status;
dev_vdbg(&lp->spi->dev, "status = %d\n", status);
dev_vdbg(&lp->spi->dev, "buf[0] = %02x\n", buf[0]);
dev_vdbg(&lp->spi->dev, "buf[1] = %02x\n", buf[1]);
if (status) {
if (lqi && (*len > lp->buf[1]))
*lqi = data[lp->buf[1]];
}
mutex_unlock(&lp->bmux);
return status;
}
static int
at86rf230_ed(struct ieee802154_dev *dev, u8 *level)
{
might_sleep();
BUG_ON(!level);
*level = 0xbe;
return 0;
}
static int
at86rf230_state(struct ieee802154_dev *dev, int state)
{
struct at86rf230_local *lp = dev->priv;
int rc;
u8 val;
u8 desired_status;
might_sleep();
if (state == STATE_FORCE_TX_ON)
desired_status = STATE_TX_ON;
else if (state == STATE_FORCE_TRX_OFF)
desired_status = STATE_TRX_OFF;
else
desired_status = state;
do {
rc = at86rf230_read_subreg(lp, SR_TRX_STATUS, &val);
if (rc)
goto err;
} while (val == STATE_TRANSITION_IN_PROGRESS);
if (val == desired_status)
return 0;
/* state is equal to phy states */
rc = at86rf230_write_subreg(lp, SR_TRX_CMD, state);
if (rc)
goto err;
do {
rc = at86rf230_read_subreg(lp, SR_TRX_STATUS, &val);
if (rc)
goto err;
} while (val == STATE_TRANSITION_IN_PROGRESS);
if (val == desired_status ||
(desired_status == STATE_RX_ON && val == STATE_BUSY_RX) ||
(desired_status == STATE_RX_AACK_ON && val == STATE_BUSY_RX_AACK))
return 0;
pr_err("unexpected state change: %d, asked for %d\n", val, state);
return -EBUSY;
err:
pr_err("error: %d\n", rc);
return rc;
}
static int
at86rf230_start(struct ieee802154_dev *dev)
{
struct at86rf230_local *lp = dev->priv;
u8 rc;
rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
if (rc)
return rc;
rc = at86rf230_state(dev, STATE_FORCE_TX_ON);
if (rc)
return rc;
return at86rf230_state(dev, STATE_RX_AACK_ON);
}
static void
at86rf230_stop(struct ieee802154_dev *dev)
{
at86rf230_state(dev, STATE_FORCE_TRX_OFF);
}
static int
at86rf230_set_channel(struct at86rf230_local *lp, int page, int channel)
{
lp->rssi_base_val = -91;
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
static int
at86rf212_set_channel(struct at86rf230_local *lp, int page, int channel)
{
int rc;
if (channel == 0)
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
else
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
if (rc < 0)
return rc;
if (page == 0) {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
lp->rssi_base_val = -100;
} else {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
lp->rssi_base_val = -98;
}
if (rc < 0)
return rc;
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
static int
at86rf230_channel(struct ieee802154_dev *dev, int page, int channel)
{
struct at86rf230_local *lp = dev->priv;
int rc;
might_sleep();
if (page < 0 || page > 31 ||
!(lp->dev->phy->channels_supported[page] & BIT(channel))) {
WARN_ON(1);
return -EINVAL;
}
if (is_rf212(lp))
rc = at86rf212_set_channel(lp, page, channel);
else
rc = at86rf230_set_channel(lp, page, channel);
if (rc < 0)
return rc;
msleep(1); /* Wait for PLL */
dev->phy->current_channel = channel;
dev->phy->current_page = page;
return 0;
}
static int
at86rf230_xmit(struct ieee802154_dev *dev, struct sk_buff *skb)
{
struct at86rf230_local *lp = dev->priv;
int rc;
unsigned long flags;
spin_lock(&lp->lock);
if (lp->irq_busy) {
spin_unlock(&lp->lock);
return -EBUSY;
}
spin_unlock(&lp->lock);
might_sleep();
rc = at86rf230_state(dev, STATE_FORCE_TX_ON);
if (rc)
goto err;
spin_lock_irqsave(&lp->lock, flags);
lp->is_tx = 1;
reinit_completion(&lp->tx_complete);
spin_unlock_irqrestore(&lp->lock, flags);
rc = at86rf230_write_fbuf(lp, skb->data, skb->len);
if (rc)
goto err_rx;
if (lp->tx_aret) {
rc = at86rf230_write_subreg(lp, SR_TRX_CMD, STATE_TX_ARET_ON);
if (rc)
goto err_rx;
}
rc = at86rf230_write_subreg(lp, SR_TRX_CMD, STATE_BUSY_TX);
if (rc)
goto err_rx;
rc = wait_for_completion_interruptible(&lp->tx_complete);
if (rc < 0)
goto err_rx;
rc = at86rf230_start(dev);
return rc;
err_rx:
at86rf230_start(dev);
err:
pr_err("error: %d\n", rc);
spin_lock_irqsave(&lp->lock, flags);
lp->is_tx = 0;
spin_unlock_irqrestore(&lp->lock, flags);
return rc;
}
static int at86rf230_rx(struct at86rf230_local *lp)
{
u8 len = 128, lqi = 0;
struct sk_buff *skb;
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
if (at86rf230_read_fbuf(lp, skb_put(skb, len), &len, &lqi))
goto err;
if (len < 2)
goto err;
skb_trim(skb, len - 2); /* We do not put CRC into the frame */
ieee802154_rx_irqsafe(lp->dev, skb, lqi);
dev_dbg(&lp->spi->dev, "READ_FBUF: %d %x\n", len, lqi);
return 0;
err:
pr_debug("received frame is too small\n");
kfree_skb(skb);
return -EINVAL;
}
static int
at86rf230_set_hw_addr_filt(struct ieee802154_dev *dev,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct at86rf230_local *lp = dev->priv;
if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for saddr\n");
__at86rf230_write(lp, RG_SHORT_ADDR_0, filt->short_addr);
__at86rf230_write(lp, RG_SHORT_ADDR_1, filt->short_addr >> 8);
}
if (changed & IEEE802515_AFILT_PANID_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for pan id\n");
__at86rf230_write(lp, RG_PAN_ID_0, filt->pan_id);
__at86rf230_write(lp, RG_PAN_ID_1, filt->pan_id >> 8);
}
if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for IEEE addr\n");
at86rf230_write_subreg(lp, SR_IEEE_ADDR_0, filt->ieee_addr[7]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_1, filt->ieee_addr[6]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_2, filt->ieee_addr[5]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_3, filt->ieee_addr[4]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_4, filt->ieee_addr[3]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_5, filt->ieee_addr[2]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_6, filt->ieee_addr[1]);
at86rf230_write_subreg(lp, SR_IEEE_ADDR_7, filt->ieee_addr[0]);
}
if (changed & IEEE802515_AFILT_PANC_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for panc change\n");
if (filt->pan_coord)
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
else
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
}
return 0;
}
static int
at86rf212_set_txpower(struct ieee802154_dev *dev, int db)
{
struct at86rf230_local *lp = dev->priv;
/* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
* bits decrease power in 1dB steps. 0x60 represents extra PA gain of
* 0dB.
* thus, supported values for db range from -26 to 5, for 31dB of
* reduction to 0dB of reduction.
*/
if (db > 5 || db < -26)
return -EINVAL;
db = -(db - 5);
return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
}
static int
at86rf212_set_lbt(struct ieee802154_dev *dev, bool on)
{
struct at86rf230_local *lp = dev->priv;
return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
}
static int
at86rf212_set_cca_mode(struct ieee802154_dev *dev, u8 mode)
{
struct at86rf230_local *lp = dev->priv;
return at86rf230_write_subreg(lp, SR_CCA_MODE, mode);
}
static int
at86rf212_set_cca_ed_level(struct ieee802154_dev *dev, s32 level)
{
struct at86rf230_local *lp = dev->priv;
int desens_steps;
if (level < lp->rssi_base_val || level > 30)
return -EINVAL;
desens_steps = (level - lp->rssi_base_val) * 100 / 207;
return at86rf230_write_subreg(lp, SR_CCA_ED_THRES, desens_steps);
}
static int
at86rf212_set_csma_params(struct ieee802154_dev *dev, u8 min_be, u8 max_be,
u8 retries)
{
struct at86rf230_local *lp = dev->priv;
int rc;
if (min_be > max_be || max_be > 8 || retries > 5)
return -EINVAL;
rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
if (rc)
return rc;
return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, max_be);
}
static int
at86rf212_set_frame_retries(struct ieee802154_dev *dev, s8 retries)
{
struct at86rf230_local *lp = dev->priv;
int rc = 0;
if (retries < -1 || retries > 15)
return -EINVAL;
lp->tx_aret = retries >= 0;
if (retries >= 0)
rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
return rc;
}
static struct ieee802154_ops at86rf230_ops = {
.owner = THIS_MODULE,
.xmit = at86rf230_xmit,
.ed = at86rf230_ed,
.set_channel = at86rf230_channel,
.start = at86rf230_start,
.stop = at86rf230_stop,
.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
};
static struct ieee802154_ops at86rf212_ops = {
.owner = THIS_MODULE,
.xmit = at86rf230_xmit,
.ed = at86rf230_ed,
.set_channel = at86rf230_channel,
.start = at86rf230_start,
.stop = at86rf230_stop,
.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
.set_txpower = at86rf212_set_txpower,
.set_lbt = at86rf212_set_lbt,
.set_cca_mode = at86rf212_set_cca_mode,
.set_cca_ed_level = at86rf212_set_cca_ed_level,
.set_csma_params = at86rf212_set_csma_params,
.set_frame_retries = at86rf212_set_frame_retries,
};
static void at86rf230_irqwork(struct work_struct *work)
{
struct at86rf230_local *lp =
container_of(work, struct at86rf230_local, irqwork);
u8 status = 0, val;
int rc;
unsigned long flags;
rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &val);
status |= val;
status &= ~IRQ_PLL_LOCK; /* ignore */
status &= ~IRQ_RX_START; /* ignore */
status &= ~IRQ_AMI; /* ignore */
status &= ~IRQ_TRX_UR; /* FIXME: possibly handle ???*/
if (status & IRQ_TRX_END) {
spin_lock_irqsave(&lp->lock, flags);
status &= ~IRQ_TRX_END;
if (lp->is_tx) {
lp->is_tx = 0;
spin_unlock_irqrestore(&lp->lock, flags);
complete(&lp->tx_complete);
} else {
spin_unlock_irqrestore(&lp->lock, flags);
at86rf230_rx(lp);
}
}
spin_lock_irqsave(&lp->lock, flags);
lp->irq_busy = 0;
spin_unlock_irqrestore(&lp->lock, flags);
}
static void at86rf230_irqwork_level(struct work_struct *work)
{
struct at86rf230_local *lp =
container_of(work, struct at86rf230_local, irqwork);
at86rf230_irqwork(work);
enable_irq(lp->spi->irq);
}
static irqreturn_t at86rf230_isr(int irq, void *data)
{
struct at86rf230_local *lp = data;
spin_lock(&lp->lock);
lp->irq_busy = 1;
spin_unlock(&lp->lock);
schedule_work(&lp->irqwork);
return IRQ_HANDLED;
}
static irqreturn_t at86rf230_isr_level(int irq, void *data)
{
disable_irq_nosync(irq);
return at86rf230_isr(irq, data);
}
static int at86rf230_irq_polarity(struct at86rf230_local *lp, int pol)
{
return at86rf230_write_subreg(lp, SR_IRQ_POLARITY, pol);
}
static int at86rf230_hw_init(struct at86rf230_local *lp)
{
struct at86rf230_platform_data *pdata = lp->spi->dev.platform_data;
int rc, irq_pol;
u8 status;
u8 csma_seed[2];
rc = at86rf230_read_subreg(lp, SR_TRX_STATUS, &status);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_TRX_CMD, STATE_FORCE_TRX_OFF);
if (rc)
return rc;
/* configure irq polarity, defaults to high active */
if (pdata->irq_type & (IRQF_TRIGGER_FALLING | IRQF_TRIGGER_LOW))
irq_pol = IRQ_ACTIVE_LOW;
else
irq_pol = IRQ_ACTIVE_HIGH;
rc = at86rf230_irq_polarity(lp, irq_pol);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
if (rc)
return rc;
get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
if (rc)
return rc;
/* CLKM changes are applied immediately */
rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
if (rc)
return rc;
/* Turn CLKM Off */
rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
if (rc)
return rc;
/* Wait the next SLEEP cycle */
msleep(100);
rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &status);
if (rc)
return rc;
if (!status) {
dev_err(&lp->spi->dev, "DVDD error\n");
return -EINVAL;
}
rc = at86rf230_read_subreg(lp, SR_AVDD_OK, &status);
if (rc)
return rc;
if (!status) {
dev_err(&lp->spi->dev, "AVDD error\n");
return -EINVAL;
}
return 0;
}
static int at86rf230_probe(struct spi_device *spi)
{
struct at86rf230_platform_data *pdata;
struct ieee802154_dev *dev;
struct at86rf230_local *lp;
u16 man_id = 0;
u8 part = 0, version = 0, status;
irq_handler_t irq_handler;
work_func_t irq_worker;
int rc;
const char *chip;
struct ieee802154_ops *ops = NULL;
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
pdata = spi->dev.platform_data;
if (!pdata) {
dev_err(&spi->dev, "no platform_data\n");
return -EINVAL;
}
rc = gpio_request(pdata->rstn, "rstn");
if (rc)
return rc;
if (gpio_is_valid(pdata->slp_tr)) {
rc = gpio_request(pdata->slp_tr, "slp_tr");
if (rc)
goto err_slp_tr;
}
rc = gpio_direction_output(pdata->rstn, 1);
if (rc)
goto err_gpio_dir;
if (gpio_is_valid(pdata->slp_tr)) {
rc = gpio_direction_output(pdata->slp_tr, 0);
if (rc)
goto err_gpio_dir;
}
/* Reset */
msleep(1);
gpio_set_value(pdata->rstn, 0);
msleep(1);
gpio_set_value(pdata->rstn, 1);
msleep(1);
rc = __at86rf230_detect_device(spi, &man_id, &part, &version);
if (rc < 0)
goto err_gpio_dir;
if (man_id != 0x001f) {
dev_err(&spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
man_id >> 8, man_id & 0xFF);
rc = -EINVAL;
goto err_gpio_dir;
}
switch (part) {
case 2:
chip = "at86rf230";
/* FIXME: should be easy to support; */
break;
case 3:
chip = "at86rf231";
ops = &at86rf230_ops;
break;
case 7:
chip = "at86rf212";
if (version == 1)
ops = &at86rf212_ops;
break;
case 11:
chip = "at86rf233";
ops = &at86rf230_ops;
break;
default:
chip = "UNKNOWN";
break;
}
dev_info(&spi->dev, "Detected %s chip version %d\n", chip, version);
if (!ops) {
rc = -ENOTSUPP;
goto err_gpio_dir;
}
dev = ieee802154_alloc_device(sizeof(*lp), ops);
if (!dev) {
rc = -ENOMEM;
goto err_gpio_dir;
}
lp = dev->priv;
lp->dev = dev;
lp->part = part;
lp->vers = version;
lp->spi = spi;
dev->parent = &spi->dev;
dev->extra_tx_headroom = 0;
dev->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_AACK;
if (pdata->irq_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
irq_worker = at86rf230_irqwork;
irq_handler = at86rf230_isr;
} else {
irq_worker = at86rf230_irqwork_level;
irq_handler = at86rf230_isr_level;
}
mutex_init(&lp->bmux);
INIT_WORK(&lp->irqwork, irq_worker);
spin_lock_init(&lp->lock);
init_completion(&lp->tx_complete);
spi_set_drvdata(spi, lp);
if (is_rf212(lp)) {
dev->phy->channels_supported[0] = 0x00007FF;
dev->phy->channels_supported[2] = 0x00007FF;
} else {
dev->phy->channels_supported[0] = 0x7FFF800;
}
rc = at86rf230_hw_init(lp);
if (rc)
goto err_hw_init;
rc = request_irq(spi->irq, irq_handler,
IRQF_SHARED | pdata->irq_type,
dev_name(&spi->dev), lp);
if (rc)
goto err_hw_init;
/* Read irq status register to reset irq line */
rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
if (rc)
goto err_irq;
rc = ieee802154_register_device(lp->dev);
if (rc)
goto err_irq;
return rc;
err_irq:
free_irq(spi->irq, lp);
err_hw_init:
flush_work(&lp->irqwork);
spi_set_drvdata(spi, NULL);
mutex_destroy(&lp->bmux);
ieee802154_free_device(lp->dev);
err_gpio_dir:
if (gpio_is_valid(pdata->slp_tr))
gpio_free(pdata->slp_tr);
err_slp_tr:
gpio_free(pdata->rstn);
return rc;
}
static int at86rf230_remove(struct spi_device *spi)
{
struct at86rf230_local *lp = spi_get_drvdata(spi);
struct at86rf230_platform_data *pdata = spi->dev.platform_data;
ieee802154_unregister_device(lp->dev);
free_irq(spi->irq, lp);
flush_work(&lp->irqwork);
if (gpio_is_valid(pdata->slp_tr))
gpio_free(pdata->slp_tr);
gpio_free(pdata->rstn);
mutex_destroy(&lp->bmux);
ieee802154_free_device(lp->dev);
dev_dbg(&spi->dev, "unregistered at86rf230\n");
return 0;
}
static struct spi_driver at86rf230_driver = {
.driver = {
.name = "at86rf230",
.owner = THIS_MODULE,
},
.probe = at86rf230_probe,
.remove = at86rf230_remove,
};
module_spi_driver(at86rf230_driver);
MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
MODULE_LICENSE("GPL v2");