/*
* AT86RF230/RF231 driver
*
* Copyright (C) 2009-2012 Siemens AG
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Written by:
* Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
* Alexander Smirnov <alex.bluesman.smirnov@gmail.com>
* Alexander Aring <aar@pengutronix.de>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/spi/spi.h>
#include <linux/spi/at86rf230.h>
#include <linux/regmap.h>
#include <linux/skbuff.h>
#include <linux/of_gpio.h>
#include <net/ieee802154.h>
#include <net/mac802154.h>
#include <net/wpan-phy.h>
struct at86rf230_local;
/* at86rf2xx chip depend data.
* All timings are in us.
*/
struct at86rf2xx_chip_data {
u16 t_sleep_cycle;
u16 t_channel_switch;
u16 t_reset_to_off;
u16 t_off_to_aack;
u16 t_off_to_tx_on;
u16 t_frame;
u16 t_p_ack;
/* short interframe spacing time */
u16 t_sifs;
/* long interframe spacing time */
u16 t_lifs;
/* completion timeout for tx in msecs */
u16 t_tx_timeout;
int rssi_base_val;
int (*set_channel)(struct at86rf230_local *, int, int);
int (*get_desense_steps)(struct at86rf230_local *, s32);
};
#define AT86RF2XX_MAX_BUF (127 + 3)
struct at86rf230_state_change {
struct at86rf230_local *lp;
struct spi_message msg;
struct spi_transfer trx;
u8 buf[AT86RF2XX_MAX_BUF];
void (*complete)(void *context);
u8 from_state;
u8 to_state;
};
struct at86rf230_local {
struct spi_device *spi;
struct ieee802154_dev *dev;
struct at86rf2xx_chip_data *data;
struct regmap *regmap;
struct completion state_complete;
struct at86rf230_state_change state;
struct at86rf230_state_change irq;
bool tx_aret;
s8 max_frame_retries;
bool is_tx;
/* spinlock for is_tx protection */
spinlock_t lock;
struct completion tx_complete;
struct sk_buff *tx_skb;
struct at86rf230_state_change tx;
};
#define RG_TRX_STATUS (0x01)
#define SR_TRX_STATUS 0x01, 0x1f, 0
#define SR_RESERVED_01_3 0x01, 0x20, 5
#define SR_CCA_STATUS 0x01, 0x40, 6
#define SR_CCA_DONE 0x01, 0x80, 7
#define RG_TRX_STATE (0x02)
#define SR_TRX_CMD 0x02, 0x1f, 0
#define SR_TRAC_STATUS 0x02, 0xe0, 5
#define RG_TRX_CTRL_0 (0x03)
#define SR_CLKM_CTRL 0x03, 0x07, 0
#define SR_CLKM_SHA_SEL 0x03, 0x08, 3
#define SR_PAD_IO_CLKM 0x03, 0x30, 4
#define SR_PAD_IO 0x03, 0xc0, 6
#define RG_TRX_CTRL_1 (0x04)
#define SR_IRQ_POLARITY 0x04, 0x01, 0
#define SR_IRQ_MASK_MODE 0x04, 0x02, 1
#define SR_SPI_CMD_MODE 0x04, 0x0c, 2
#define SR_RX_BL_CTRL 0x04, 0x10, 4
#define SR_TX_AUTO_CRC_ON 0x04, 0x20, 5
#define SR_IRQ_2_EXT_EN 0x04, 0x40, 6
#define SR_PA_EXT_EN 0x04, 0x80, 7
#define RG_PHY_TX_PWR (0x05)
#define SR_TX_PWR 0x05, 0x0f, 0
#define SR_PA_LT 0x05, 0x30, 4
#define SR_PA_BUF_LT 0x05, 0xc0, 6
#define RG_PHY_RSSI (0x06)
#define SR_RSSI 0x06, 0x1f, 0
#define SR_RND_VALUE 0x06, 0x60, 5
#define SR_RX_CRC_VALID 0x06, 0x80, 7
#define RG_PHY_ED_LEVEL (0x07)
#define SR_ED_LEVEL 0x07, 0xff, 0
#define RG_PHY_CC_CCA (0x08)
#define SR_CHANNEL 0x08, 0x1f, 0
#define SR_CCA_MODE 0x08, 0x60, 5
#define SR_CCA_REQUEST 0x08, 0x80, 7
#define RG_CCA_THRES (0x09)
#define SR_CCA_ED_THRES 0x09, 0x0f, 0
#define SR_RESERVED_09_1 0x09, 0xf0, 4
#define RG_RX_CTRL (0x0a)
#define SR_PDT_THRES 0x0a, 0x0f, 0
#define SR_RESERVED_0a_1 0x0a, 0xf0, 4
#define RG_SFD_VALUE (0x0b)
#define SR_SFD_VALUE 0x0b, 0xff, 0
#define RG_TRX_CTRL_2 (0x0c)
#define SR_OQPSK_DATA_RATE 0x0c, 0x03, 0
#define SR_SUB_MODE 0x0c, 0x04, 2
#define SR_BPSK_QPSK 0x0c, 0x08, 3
#define SR_OQPSK_SUB1_RC_EN 0x0c, 0x10, 4
#define SR_RESERVED_0c_5 0x0c, 0x60, 5
#define SR_RX_SAFE_MODE 0x0c, 0x80, 7
#define RG_ANT_DIV (0x0d)
#define SR_ANT_CTRL 0x0d, 0x03, 0
#define SR_ANT_EXT_SW_EN 0x0d, 0x04, 2
#define SR_ANT_DIV_EN 0x0d, 0x08, 3
#define SR_RESERVED_0d_2 0x0d, 0x70, 4
#define SR_ANT_SEL 0x0d, 0x80, 7
#define RG_IRQ_MASK (0x0e)
#define SR_IRQ_MASK 0x0e, 0xff, 0
#define RG_IRQ_STATUS (0x0f)
#define SR_IRQ_0_PLL_LOCK 0x0f, 0x01, 0
#define SR_IRQ_1_PLL_UNLOCK 0x0f, 0x02, 1
#define SR_IRQ_2_RX_START 0x0f, 0x04, 2
#define SR_IRQ_3_TRX_END 0x0f, 0x08, 3
#define SR_IRQ_4_CCA_ED_DONE 0x0f, 0x10, 4
#define SR_IRQ_5_AMI 0x0f, 0x20, 5
#define SR_IRQ_6_TRX_UR 0x0f, 0x40, 6
#define SR_IRQ_7_BAT_LOW 0x0f, 0x80, 7
#define RG_VREG_CTRL (0x10)
#define SR_RESERVED_10_6 0x10, 0x03, 0
#define SR_DVDD_OK 0x10, 0x04, 2
#define SR_DVREG_EXT 0x10, 0x08, 3
#define SR_RESERVED_10_3 0x10, 0x30, 4
#define SR_AVDD_OK 0x10, 0x40, 6
#define SR_AVREG_EXT 0x10, 0x80, 7
#define RG_BATMON (0x11)
#define SR_BATMON_VTH 0x11, 0x0f, 0
#define SR_BATMON_HR 0x11, 0x10, 4
#define SR_BATMON_OK 0x11, 0x20, 5
#define SR_RESERVED_11_1 0x11, 0xc0, 6
#define RG_XOSC_CTRL (0x12)
#define SR_XTAL_TRIM 0x12, 0x0f, 0
#define SR_XTAL_MODE 0x12, 0xf0, 4
#define RG_RX_SYN (0x15)
#define SR_RX_PDT_LEVEL 0x15, 0x0f, 0
#define SR_RESERVED_15_2 0x15, 0x70, 4
#define SR_RX_PDT_DIS 0x15, 0x80, 7
#define RG_XAH_CTRL_1 (0x17)
#define SR_RESERVED_17_8 0x17, 0x01, 0
#define SR_AACK_PROM_MODE 0x17, 0x02, 1
#define SR_AACK_ACK_TIME 0x17, 0x04, 2
#define SR_RESERVED_17_5 0x17, 0x08, 3
#define SR_AACK_UPLD_RES_FT 0x17, 0x10, 4
#define SR_AACK_FLTR_RES_FT 0x17, 0x20, 5
#define SR_CSMA_LBT_MODE 0x17, 0x40, 6
#define SR_RESERVED_17_1 0x17, 0x80, 7
#define RG_FTN_CTRL (0x18)
#define SR_RESERVED_18_2 0x18, 0x7f, 0
#define SR_FTN_START 0x18, 0x80, 7
#define RG_PLL_CF (0x1a)
#define SR_RESERVED_1a_2 0x1a, 0x7f, 0
#define SR_PLL_CF_START 0x1a, 0x80, 7
#define RG_PLL_DCU (0x1b)
#define SR_RESERVED_1b_3 0x1b, 0x3f, 0
#define SR_RESERVED_1b_2 0x1b, 0x40, 6
#define SR_PLL_DCU_START 0x1b, 0x80, 7
#define RG_PART_NUM (0x1c)
#define SR_PART_NUM 0x1c, 0xff, 0
#define RG_VERSION_NUM (0x1d)
#define SR_VERSION_NUM 0x1d, 0xff, 0
#define RG_MAN_ID_0 (0x1e)
#define SR_MAN_ID_0 0x1e, 0xff, 0
#define RG_MAN_ID_1 (0x1f)
#define SR_MAN_ID_1 0x1f, 0xff, 0
#define RG_SHORT_ADDR_0 (0x20)
#define SR_SHORT_ADDR_0 0x20, 0xff, 0
#define RG_SHORT_ADDR_1 (0x21)
#define SR_SHORT_ADDR_1 0x21, 0xff, 0
#define RG_PAN_ID_0 (0x22)
#define SR_PAN_ID_0 0x22, 0xff, 0
#define RG_PAN_ID_1 (0x23)
#define SR_PAN_ID_1 0x23, 0xff, 0
#define RG_IEEE_ADDR_0 (0x24)
#define SR_IEEE_ADDR_0 0x24, 0xff, 0
#define RG_IEEE_ADDR_1 (0x25)
#define SR_IEEE_ADDR_1 0x25, 0xff, 0
#define RG_IEEE_ADDR_2 (0x26)
#define SR_IEEE_ADDR_2 0x26, 0xff, 0
#define RG_IEEE_ADDR_3 (0x27)
#define SR_IEEE_ADDR_3 0x27, 0xff, 0
#define RG_IEEE_ADDR_4 (0x28)
#define SR_IEEE_ADDR_4 0x28, 0xff, 0
#define RG_IEEE_ADDR_5 (0x29)
#define SR_IEEE_ADDR_5 0x29, 0xff, 0
#define RG_IEEE_ADDR_6 (0x2a)
#define SR_IEEE_ADDR_6 0x2a, 0xff, 0
#define RG_IEEE_ADDR_7 (0x2b)
#define SR_IEEE_ADDR_7 0x2b, 0xff, 0
#define RG_XAH_CTRL_0 (0x2c)
#define SR_SLOTTED_OPERATION 0x2c, 0x01, 0
#define SR_MAX_CSMA_RETRIES 0x2c, 0x0e, 1
#define SR_MAX_FRAME_RETRIES 0x2c, 0xf0, 4
#define RG_CSMA_SEED_0 (0x2d)
#define SR_CSMA_SEED_0 0x2d, 0xff, 0
#define RG_CSMA_SEED_1 (0x2e)
#define SR_CSMA_SEED_1 0x2e, 0x07, 0
#define SR_AACK_I_AM_COORD 0x2e, 0x08, 3
#define SR_AACK_DIS_ACK 0x2e, 0x10, 4
#define SR_AACK_SET_PD 0x2e, 0x20, 5
#define SR_AACK_FVN_MODE 0x2e, 0xc0, 6
#define RG_CSMA_BE (0x2f)
#define SR_MIN_BE 0x2f, 0x0f, 0
#define SR_MAX_BE 0x2f, 0xf0, 4
#define CMD_REG 0x80
#define CMD_REG_MASK 0x3f
#define CMD_WRITE 0x40
#define CMD_FB 0x20
#define IRQ_BAT_LOW (1 << 7)
#define IRQ_TRX_UR (1 << 6)
#define IRQ_AMI (1 << 5)
#define IRQ_CCA_ED (1 << 4)
#define IRQ_TRX_END (1 << 3)
#define IRQ_RX_START (1 << 2)
#define IRQ_PLL_UNL (1 << 1)
#define IRQ_PLL_LOCK (1 << 0)
#define IRQ_ACTIVE_HIGH 0
#define IRQ_ACTIVE_LOW 1
#define STATE_P_ON 0x00 /* BUSY */
#define STATE_BUSY_RX 0x01
#define STATE_BUSY_TX 0x02
#define STATE_FORCE_TRX_OFF 0x03
#define STATE_FORCE_TX_ON 0x04 /* IDLE */
/* 0x05 */ /* INVALID_PARAMETER */
#define STATE_RX_ON 0x06
/* 0x07 */ /* SUCCESS */
#define STATE_TRX_OFF 0x08
#define STATE_TX_ON 0x09
/* 0x0a - 0x0e */ /* 0x0a - UNSUPPORTED_ATTRIBUTE */
#define STATE_SLEEP 0x0F
#define STATE_PREP_DEEP_SLEEP 0x10
#define STATE_BUSY_RX_AACK 0x11
#define STATE_BUSY_TX_ARET 0x12
#define STATE_RX_AACK_ON 0x16
#define STATE_TX_ARET_ON 0x19
#define STATE_RX_ON_NOCLK 0x1C
#define STATE_RX_AACK_ON_NOCLK 0x1D
#define STATE_BUSY_RX_AACK_NOCLK 0x1E
#define STATE_TRANSITION_IN_PROGRESS 0x1F
#define AT86RF2XX_NUMREGS 0x3F
static int
at86rf230_async_state_change(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx,
const u8 state, void (*complete)(void *context));
static inline int
__at86rf230_write(struct at86rf230_local *lp,
unsigned int addr, unsigned int data)
{
return regmap_write(lp->regmap, addr, data);
}
static inline int
__at86rf230_read(struct at86rf230_local *lp,
unsigned int addr, unsigned int *data)
{
return regmap_read(lp->regmap, addr, data);
}
static inline int
at86rf230_read_subreg(struct at86rf230_local *lp,
unsigned int addr, unsigned int mask,
unsigned int shift, unsigned int *data)
{
int rc;
rc = __at86rf230_read(lp, addr, data);
if (rc > 0)
*data = (*data & mask) >> shift;
return rc;
}
static inline int
at86rf230_write_subreg(struct at86rf230_local *lp,
unsigned int addr, unsigned int mask,
unsigned int shift, unsigned int data)
{
return regmap_update_bits(lp->regmap, addr, mask, data << shift);
}
static bool
at86rf230_reg_writeable(struct device *dev, unsigned int reg)
{
switch (reg) {
case RG_TRX_STATE:
case RG_TRX_CTRL_0:
case RG_TRX_CTRL_1:
case RG_PHY_TX_PWR:
case RG_PHY_ED_LEVEL:
case RG_PHY_CC_CCA:
case RG_CCA_THRES:
case RG_RX_CTRL:
case RG_SFD_VALUE:
case RG_TRX_CTRL_2:
case RG_ANT_DIV:
case RG_IRQ_MASK:
case RG_VREG_CTRL:
case RG_BATMON:
case RG_XOSC_CTRL:
case RG_RX_SYN:
case RG_XAH_CTRL_1:
case RG_FTN_CTRL:
case RG_PLL_CF:
case RG_PLL_DCU:
case RG_SHORT_ADDR_0:
case RG_SHORT_ADDR_1:
case RG_PAN_ID_0:
case RG_PAN_ID_1:
case RG_IEEE_ADDR_0:
case RG_IEEE_ADDR_1:
case RG_IEEE_ADDR_2:
case RG_IEEE_ADDR_3:
case RG_IEEE_ADDR_4:
case RG_IEEE_ADDR_5:
case RG_IEEE_ADDR_6:
case RG_IEEE_ADDR_7:
case RG_XAH_CTRL_0:
case RG_CSMA_SEED_0:
case RG_CSMA_SEED_1:
case RG_CSMA_BE:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_readable(struct device *dev, unsigned int reg)
{
bool rc;
/* all writeable are also readable */
rc = at86rf230_reg_writeable(dev, reg);
if (rc)
return rc;
/* readonly regs */
switch (reg) {
case RG_TRX_STATUS:
case RG_PHY_RSSI:
case RG_IRQ_STATUS:
case RG_PART_NUM:
case RG_VERSION_NUM:
case RG_MAN_ID_1:
case RG_MAN_ID_0:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_volatile(struct device *dev, unsigned int reg)
{
/* can be changed during runtime */
switch (reg) {
case RG_TRX_STATUS:
case RG_TRX_STATE:
case RG_PHY_RSSI:
case RG_PHY_ED_LEVEL:
case RG_IRQ_STATUS:
case RG_VREG_CTRL:
return true;
default:
return false;
}
}
static bool
at86rf230_reg_precious(struct device *dev, unsigned int reg)
{
/* don't clear irq line on read */
switch (reg) {
case RG_IRQ_STATUS:
return true;
default:
return false;
}
}
static struct regmap_config at86rf230_regmap_spi_config = {
.reg_bits = 8,
.val_bits = 8,
.write_flag_mask = CMD_REG | CMD_WRITE,
.read_flag_mask = CMD_REG,
.cache_type = REGCACHE_RBTREE,
.max_register = AT86RF2XX_NUMREGS,
.writeable_reg = at86rf230_reg_writeable,
.readable_reg = at86rf230_reg_readable,
.volatile_reg = at86rf230_reg_volatile,
.precious_reg = at86rf230_reg_precious,
};
static void
at86rf230_async_error_recover(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
at86rf230_async_state_change(lp, ctx, STATE_RX_AACK_ON, NULL);
}
static void
at86rf230_async_error(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx, int rc)
{
dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
at86rf230_async_error_recover);
}
/* Generic function to get some register value in async mode */
static int
at86rf230_async_read_reg(struct at86rf230_local *lp, const u8 reg,
struct at86rf230_state_change *ctx,
void (*complete)(void *context))
{
u8 *tx_buf = ctx->buf;
tx_buf[0] = (reg & CMD_REG_MASK) | CMD_REG;
ctx->trx.len = 2;
ctx->msg.complete = complete;
return spi_async(lp->spi, &ctx->msg);
}
static void
at86rf230_async_state_assert(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = ctx->buf;
const u8 trx_state = buf[1] & 0x1f;
/* Assert state change */
if (trx_state != ctx->to_state) {
/* Special handling if transceiver state is in
* STATE_BUSY_RX_AACK and a SHR was detected.
*/
if (trx_state == STATE_BUSY_RX_AACK) {
/* Undocumented race condition. If we send a state
* change to STATE_RX_AACK_ON the transceiver could
* change his state automatically to STATE_BUSY_RX_AACK
* if a SHR was detected. This is not an error, but we
* can't assert this.
*/
if (ctx->to_state == STATE_RX_AACK_ON)
goto done;
/* If we change to STATE_TX_ON without forcing and
* transceiver state is STATE_BUSY_RX_AACK, we wait
* 'tFrame + tPAck' receiving time. In this time the
* PDU should be received. If the transceiver is still
* in STATE_BUSY_RX_AACK, we run a force state change
* to STATE_TX_ON. This is a timeout handling, if the
* transceiver stucks in STATE_BUSY_RX_AACK.
*/
if (ctx->to_state == STATE_TX_ON) {
at86rf230_async_state_change(lp, ctx,
STATE_FORCE_TX_ON,
ctx->complete);
return;
}
}
dev_warn(&lp->spi->dev, "unexcept state change from 0x%02x to 0x%02x. Actual state: 0x%02x\n",
ctx->from_state, ctx->to_state, trx_state);
}
done:
if (ctx->complete)
ctx->complete(context);
}
/* Do state change timing delay. */
static void
at86rf230_async_state_delay(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
struct at86rf2xx_chip_data *c = lp->data;
bool force = false;
int rc;
/* The force state changes are will show as normal states in the
* state status subregister. We change the to_state to the
* corresponding one and remember if it was a force change, this
* differs if we do a state change from STATE_BUSY_RX_AACK.
*/
switch (ctx->to_state) {
case STATE_FORCE_TX_ON:
ctx->to_state = STATE_TX_ON;
force = true;
break;
case STATE_FORCE_TRX_OFF:
ctx->to_state = STATE_TRX_OFF;
force = true;
break;
default:
break;
}
switch (ctx->from_state) {
case STATE_TRX_OFF:
switch (ctx->to_state) {
case STATE_RX_AACK_ON:
usleep_range(c->t_off_to_aack, c->t_off_to_aack + 10);
goto change;
case STATE_TX_ON:
usleep_range(c->t_off_to_tx_on,
c->t_off_to_tx_on + 10);
goto change;
default:
break;
}
break;
case STATE_BUSY_RX_AACK:
switch (ctx->to_state) {
case STATE_TX_ON:
/* Wait for worst case receiving time if we
* didn't make a force change from BUSY_RX_AACK
* to TX_ON.
*/
if (!force) {
usleep_range(c->t_frame + c->t_p_ack,
c->t_frame + c->t_p_ack + 1000);
goto change;
}
break;
default:
break;
}
break;
/* Default value, means RESET state */
case STATE_P_ON:
switch (ctx->to_state) {
case STATE_TRX_OFF:
usleep_range(c->t_reset_to_off, c->t_reset_to_off + 10);
goto change;
default:
break;
}
break;
default:
break;
}
/* Default delay is 1us in the most cases */
udelay(1);
change:
rc = at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_assert);
if (rc)
dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
}
static void
at86rf230_async_state_change_start(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
u8 *buf = ctx->buf;
const u8 trx_state = buf[1] & 0x1f;
int rc;
/* Check for "possible" STATE_TRANSITION_IN_PROGRESS */
if (trx_state == STATE_TRANSITION_IN_PROGRESS) {
udelay(1);
rc = at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_change_start);
if (rc)
dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
return;
}
/* Check if we already are in the state which we change in */
if (trx_state == ctx->to_state) {
if (ctx->complete)
ctx->complete(context);
return;
}
/* Set current state to the context of state change */
ctx->from_state = trx_state;
/* Going into the next step for a state change which do a timing
* relevant delay.
*/
buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
buf[1] = ctx->to_state;
ctx->trx.len = 2;
ctx->msg.complete = at86rf230_async_state_delay;
rc = spi_async(lp->spi, &ctx->msg);
if (rc)
dev_err(&lp->spi->dev, "spi_async error %d\n", rc);
}
static int
at86rf230_async_state_change(struct at86rf230_local *lp,
struct at86rf230_state_change *ctx,
const u8 state, void (*complete)(void *context))
{
/* Initialization for the state change context */
ctx->to_state = state;
ctx->complete = complete;
return at86rf230_async_read_reg(lp, RG_TRX_STATUS, ctx,
at86rf230_async_state_change_start);
}
static void
at86rf230_sync_state_change_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
complete(&lp->state_complete);
}
/* This function do a sync framework above the async state change.
* Some callbacks of the IEEE 802.15.4 driver interface need to be
* handled synchronously.
*/
static int
at86rf230_sync_state_change(struct at86rf230_local *lp, unsigned int state)
{
int rc;
rc = at86rf230_async_state_change(lp, &lp->state, state,
at86rf230_sync_state_change_complete);
if (rc) {
at86rf230_async_error(lp, &lp->state, rc);
return rc;
}
rc = wait_for_completion_timeout(&lp->state_complete,
msecs_to_jiffies(100));
if (!rc) {
at86rf230_async_error(lp, &lp->state, -ETIMEDOUT);
return -ETIMEDOUT;
}
return 0;
}
static void
at86rf230_tx_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
complete(&lp->tx_complete);
}
static void
at86rf230_tx_on(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
int rc;
rc = at86rf230_async_state_change(lp, &lp->irq, STATE_RX_AACK_ON,
at86rf230_tx_complete);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_tx_trac_error(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
int rc;
rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
at86rf230_tx_on);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_tx_trac_check(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = ctx->buf;
const u8 trac = (buf[1] & 0xe0) >> 5;
int rc;
/* If trac status is different than zero we need to do a state change
* to STATE_FORCE_TRX_OFF then STATE_TX_ON to recover the transceiver
* state to TX_ON.
*/
if (trac) {
rc = at86rf230_async_state_change(lp, ctx, STATE_FORCE_TRX_OFF,
at86rf230_tx_trac_error);
if (rc)
at86rf230_async_error(lp, ctx, rc);
return;
}
at86rf230_tx_on(context);
}
static void
at86rf230_tx_trac_status(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
int rc;
rc = at86rf230_async_read_reg(lp, RG_TRX_STATE, ctx,
at86rf230_tx_trac_check);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_rx(struct at86rf230_local *lp,
const u8 *data, u8 len)
{
u8 lqi;
struct sk_buff *skb;
u8 rx_local_buf[AT86RF2XX_MAX_BUF];
if (len < 2)
return;
/* read full frame buffer and invalid lqi value to lowest
* indicator if frame was is in a corrupted state.
*/
if (len > IEEE802154_MTU) {
lqi = 0;
len = IEEE802154_MTU;
dev_vdbg(&lp->spi->dev, "corrupted frame received\n");
} else {
lqi = data[len];
}
memcpy(rx_local_buf, data, len);
enable_irq(lp->spi->irq);
skb = alloc_skb(IEEE802154_MTU, GFP_ATOMIC);
if (!skb) {
dev_vdbg(&lp->spi->dev, "failed to allocate sk_buff\n");
return;
}
memcpy(skb_put(skb, len), rx_local_buf, len);
/* We do not put CRC into the frame */
skb_trim(skb, len - 2);
ieee802154_rx_irqsafe(lp->dev, skb, lqi);
}
static void
at86rf230_rx_read_frame_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = lp->irq.buf;
const u8 len = buf[1];
at86rf230_rx(lp, buf + 2, len);
}
static int
at86rf230_rx_read_frame(struct at86rf230_local *lp)
{
u8 *buf = lp->irq.buf;
buf[0] = CMD_FB;
lp->irq.trx.len = AT86RF2XX_MAX_BUF;
lp->irq.msg.complete = at86rf230_rx_read_frame_complete;
return spi_async(lp->spi, &lp->irq.msg);
}
static void
at86rf230_rx_trac_check(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
int rc;
/* Possible check on trac status here. This could be useful to make
* some stats why receive is failed. Not used at the moment, but it's
* maybe timing relevant. Datasheet doesn't say anything about this.
* The programming guide say do it so.
*/
rc = at86rf230_rx_read_frame(lp);
if (rc) {
enable_irq(lp->spi->irq);
at86rf230_async_error(lp, ctx, rc);
}
}
static int
at86rf230_irq_trx_end(struct at86rf230_local *lp)
{
spin_lock(&lp->lock);
if (lp->is_tx) {
lp->is_tx = 0;
spin_unlock(&lp->lock);
enable_irq(lp->spi->irq);
if (lp->tx_aret)
return at86rf230_async_state_change(lp, &lp->irq,
STATE_FORCE_TX_ON,
at86rf230_tx_trac_status);
else
return at86rf230_async_state_change(lp, &lp->irq,
STATE_RX_AACK_ON,
at86rf230_tx_complete);
} else {
spin_unlock(&lp->lock);
return at86rf230_async_read_reg(lp, RG_TRX_STATE, &lp->irq,
at86rf230_rx_trac_check);
}
}
static void
at86rf230_irq_status(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
const u8 *buf = lp->irq.buf;
const u8 irq = buf[1];
int rc;
if (irq & IRQ_TRX_END) {
rc = at86rf230_irq_trx_end(lp);
if (rc)
at86rf230_async_error(lp, ctx, rc);
} else {
enable_irq(lp->spi->irq);
dev_err(&lp->spi->dev, "not supported irq %02x received\n",
irq);
}
}
static irqreturn_t at86rf230_isr(int irq, void *data)
{
struct at86rf230_local *lp = data;
struct at86rf230_state_change *ctx = &lp->irq;
u8 *buf = ctx->buf;
int rc;
disable_irq_nosync(lp->spi->irq);
buf[0] = (RG_IRQ_STATUS & CMD_REG_MASK) | CMD_REG;
ctx->trx.len = 2;
ctx->msg.complete = at86rf230_irq_status;
rc = spi_async(lp->spi, &ctx->msg);
if (rc) {
at86rf230_async_error(lp, ctx, rc);
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static void
at86rf230_write_frame_complete(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
u8 *buf = ctx->buf;
int rc;
buf[0] = (RG_TRX_STATE & CMD_REG_MASK) | CMD_REG | CMD_WRITE;
buf[1] = STATE_BUSY_TX;
ctx->trx.len = 2;
ctx->msg.complete = NULL;
rc = spi_async(lp->spi, &ctx->msg);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_write_frame(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
struct sk_buff *skb = lp->tx_skb;
u8 *buf = lp->tx.buf;
int rc;
spin_lock(&lp->lock);
lp->is_tx = 1;
spin_unlock(&lp->lock);
buf[0] = CMD_FB | CMD_WRITE;
buf[1] = skb->len + 2;
memcpy(buf + 2, skb->data, skb->len);
lp->tx.trx.len = skb->len + 2;
lp->tx.msg.complete = at86rf230_write_frame_complete;
rc = spi_async(lp->spi, &lp->tx.msg);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static void
at86rf230_xmit_tx_on(void *context)
{
struct at86rf230_state_change *ctx = context;
struct at86rf230_local *lp = ctx->lp;
int rc;
rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ARET_ON,
at86rf230_write_frame);
if (rc)
at86rf230_async_error(lp, ctx, rc);
}
static int
at86rf230_xmit(struct ieee802154_dev *dev, struct sk_buff *skb)
{
struct at86rf230_local *lp = dev->priv;
struct at86rf230_state_change *ctx = &lp->tx;
void (*tx_complete)(void *context) = at86rf230_write_frame;
int rc;
lp->tx_skb = skb;
/* In ARET mode we need to go into STATE_TX_ARET_ON after we
* are in STATE_TX_ON. The pfad differs here, so we change
* the complete handler.
*/
if (lp->tx_aret)
tx_complete = at86rf230_xmit_tx_on;
rc = at86rf230_async_state_change(lp, ctx, STATE_TX_ON,
tx_complete);
if (rc) {
at86rf230_async_error(lp, ctx, rc);
return rc;
}
rc = wait_for_completion_interruptible_timeout(&lp->tx_complete,
msecs_to_jiffies(lp->data->t_tx_timeout));
if (!rc) {
at86rf230_async_error(lp, ctx, -ETIMEDOUT);
return -ETIMEDOUT;
}
if (lp->max_frame_retries > 0)
return 0;
/* Interfame spacing time, which is phy depend.
* TODO
* Move this handling in MAC 802.15.4 layer.
* This is currently a workaround to avoid fragmenation issues.
*/
if (skb->len > 18)
usleep_range(lp->data->t_lifs, lp->data->t_lifs + 10);
else
usleep_range(lp->data->t_sifs, lp->data->t_sifs + 10);
return 0;
}
static int
at86rf230_ed(struct ieee802154_dev *dev, u8 *level)
{
might_sleep();
BUG_ON(!level);
*level = 0xbe;
return 0;
}
static int
at86rf230_start(struct ieee802154_dev *dev)
{
return at86rf230_sync_state_change(dev->priv, STATE_RX_AACK_ON);
}
static void
at86rf230_stop(struct ieee802154_dev *dev)
{
at86rf230_sync_state_change(dev->priv, STATE_FORCE_TRX_OFF);
}
static int
at86rf23x_set_channel(struct at86rf230_local *lp, int page, int channel)
{
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
static int
at86rf212_set_channel(struct at86rf230_local *lp, int page, int channel)
{
int rc;
if (channel == 0)
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 0);
else
rc = at86rf230_write_subreg(lp, SR_SUB_MODE, 1);
if (rc < 0)
return rc;
if (page == 0) {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 0);
lp->data->rssi_base_val = -100;
} else {
rc = at86rf230_write_subreg(lp, SR_BPSK_QPSK, 1);
lp->data->rssi_base_val = -98;
}
if (rc < 0)
return rc;
return at86rf230_write_subreg(lp, SR_CHANNEL, channel);
}
static int
at86rf230_channel(struct ieee802154_dev *dev, int page, int channel)
{
struct at86rf230_local *lp = dev->priv;
int rc;
might_sleep();
if (page < 0 || page > 31 ||
!(lp->dev->phy->channels_supported[page] & BIT(channel))) {
WARN_ON(1);
return -EINVAL;
}
rc = lp->data->set_channel(lp, page, channel);
if (rc < 0)
return rc;
/* Wait for PLL */
usleep_range(lp->data->t_channel_switch,
lp->data->t_channel_switch + 10);
dev->phy->current_channel = channel;
dev->phy->current_page = page;
return 0;
}
static int
at86rf230_set_hw_addr_filt(struct ieee802154_dev *dev,
struct ieee802154_hw_addr_filt *filt,
unsigned long changed)
{
struct at86rf230_local *lp = dev->priv;
if (changed & IEEE802515_AFILT_SADDR_CHANGED) {
u16 addr = le16_to_cpu(filt->short_addr);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for saddr\n");
__at86rf230_write(lp, RG_SHORT_ADDR_0, addr);
__at86rf230_write(lp, RG_SHORT_ADDR_1, addr >> 8);
}
if (changed & IEEE802515_AFILT_PANID_CHANGED) {
u16 pan = le16_to_cpu(filt->pan_id);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for pan id\n");
__at86rf230_write(lp, RG_PAN_ID_0, pan);
__at86rf230_write(lp, RG_PAN_ID_1, pan >> 8);
}
if (changed & IEEE802515_AFILT_IEEEADDR_CHANGED) {
u8 i, addr[8];
memcpy(addr, &filt->ieee_addr, 8);
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for IEEE addr\n");
for (i = 0; i < 8; i++)
__at86rf230_write(lp, RG_IEEE_ADDR_0 + i, addr[i]);
}
if (changed & IEEE802515_AFILT_PANC_CHANGED) {
dev_vdbg(&lp->spi->dev,
"at86rf230_set_hw_addr_filt called for panc change\n");
if (filt->pan_coord)
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 1);
else
at86rf230_write_subreg(lp, SR_AACK_I_AM_COORD, 0);
}
return 0;
}
static int
at86rf230_set_txpower(struct ieee802154_dev *dev, int db)
{
struct at86rf230_local *lp = dev->priv;
/* typical maximum output is 5dBm with RG_PHY_TX_PWR 0x60, lower five
* bits decrease power in 1dB steps. 0x60 represents extra PA gain of
* 0dB.
* thus, supported values for db range from -26 to 5, for 31dB of
* reduction to 0dB of reduction.
*/
if (db > 5 || db < -26)
return -EINVAL;
db = -(db - 5);
return __at86rf230_write(lp, RG_PHY_TX_PWR, 0x60 | db);
}
static int
at86rf230_set_lbt(struct ieee802154_dev *dev, bool on)
{
struct at86rf230_local *lp = dev->priv;
return at86rf230_write_subreg(lp, SR_CSMA_LBT_MODE, on);
}
static int
at86rf230_set_cca_mode(struct ieee802154_dev *dev, u8 mode)
{
struct at86rf230_local *lp = dev->priv;
return at86rf230_write_subreg(lp, SR_CCA_MODE, mode);
}
static int
at86rf212_get_desens_steps(struct at86rf230_local *lp, s32 level)
{
return (level - lp->data->rssi_base_val) * 100 / 207;
}
static int
at86rf23x_get_desens_steps(struct at86rf230_local *lp, s32 level)
{
return (level - lp->data->rssi_base_val) / 2;
}
static int
at86rf230_set_cca_ed_level(struct ieee802154_dev *dev, s32 level)
{
struct at86rf230_local *lp = dev->priv;
if (level < lp->data->rssi_base_val || level > 30)
return -EINVAL;
return at86rf230_write_subreg(lp, SR_CCA_ED_THRES,
lp->data->get_desense_steps(lp, level));
}
static int
at86rf230_set_csma_params(struct ieee802154_dev *dev, u8 min_be, u8 max_be,
u8 retries)
{
struct at86rf230_local *lp = dev->priv;
int rc;
if (min_be > max_be || max_be > 8 || retries > 5)
return -EINVAL;
rc = at86rf230_write_subreg(lp, SR_MIN_BE, min_be);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_MAX_BE, max_be);
if (rc)
return rc;
return at86rf230_write_subreg(lp, SR_MAX_CSMA_RETRIES, retries);
}
static int
at86rf230_set_frame_retries(struct ieee802154_dev *dev, s8 retries)
{
struct at86rf230_local *lp = dev->priv;
int rc = 0;
if (retries < -1 || retries > 15)
return -EINVAL;
lp->tx_aret = retries >= 0;
lp->max_frame_retries = retries;
if (retries >= 0)
rc = at86rf230_write_subreg(lp, SR_MAX_FRAME_RETRIES, retries);
return rc;
}
static struct ieee802154_ops at86rf230_ops = {
.owner = THIS_MODULE,
.xmit = at86rf230_xmit,
.ed = at86rf230_ed,
.set_channel = at86rf230_channel,
.start = at86rf230_start,
.stop = at86rf230_stop,
.set_hw_addr_filt = at86rf230_set_hw_addr_filt,
.set_txpower = at86rf230_set_txpower,
.set_lbt = at86rf230_set_lbt,
.set_cca_mode = at86rf230_set_cca_mode,
.set_cca_ed_level = at86rf230_set_cca_ed_level,
.set_csma_params = at86rf230_set_csma_params,
.set_frame_retries = at86rf230_set_frame_retries,
};
static struct at86rf2xx_chip_data at86rf233_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 11,
.t_reset_to_off = 26,
.t_off_to_aack = 80,
.t_off_to_tx_on = 80,
.t_frame = 4096,
.t_p_ack = 545,
.t_sifs = 192,
.t_lifs = 640,
.t_tx_timeout = 2000,
.rssi_base_val = -91,
.set_channel = at86rf23x_set_channel,
.get_desense_steps = at86rf23x_get_desens_steps
};
static struct at86rf2xx_chip_data at86rf231_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 24,
.t_reset_to_off = 37,
.t_off_to_aack = 110,
.t_off_to_tx_on = 110,
.t_frame = 4096,
.t_p_ack = 545,
.t_sifs = 192,
.t_lifs = 640,
.t_tx_timeout = 2000,
.rssi_base_val = -91,
.set_channel = at86rf23x_set_channel,
.get_desense_steps = at86rf23x_get_desens_steps
};
static struct at86rf2xx_chip_data at86rf212_data = {
.t_sleep_cycle = 330,
.t_channel_switch = 11,
.t_reset_to_off = 26,
.t_off_to_aack = 200,
.t_off_to_tx_on = 200,
.t_frame = 4096,
.t_p_ack = 545,
.t_sifs = 192,
.t_lifs = 640,
.t_tx_timeout = 2000,
.rssi_base_val = -100,
.set_channel = at86rf212_set_channel,
.get_desense_steps = at86rf212_get_desens_steps
};
static int at86rf230_hw_init(struct at86rf230_local *lp)
{
int rc, irq_type, irq_pol = IRQ_ACTIVE_HIGH;
unsigned int dvdd;
u8 csma_seed[2];
rc = at86rf230_sync_state_change(lp, STATE_FORCE_TRX_OFF);
if (rc)
return rc;
irq_type = irq_get_trigger_type(lp->spi->irq);
if (irq_type == IRQ_TYPE_EDGE_FALLING)
irq_pol = IRQ_ACTIVE_LOW;
rc = at86rf230_write_subreg(lp, SR_IRQ_POLARITY, irq_pol);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_RX_SAFE_MODE, 1);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_IRQ_MASK, IRQ_TRX_END);
if (rc)
return rc;
get_random_bytes(csma_seed, ARRAY_SIZE(csma_seed));
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_0, csma_seed[0]);
if (rc)
return rc;
rc = at86rf230_write_subreg(lp, SR_CSMA_SEED_1, csma_seed[1]);
if (rc)
return rc;
/* CLKM changes are applied immediately */
rc = at86rf230_write_subreg(lp, SR_CLKM_SHA_SEL, 0x00);
if (rc)
return rc;
/* Turn CLKM Off */
rc = at86rf230_write_subreg(lp, SR_CLKM_CTRL, 0x00);
if (rc)
return rc;
/* Wait the next SLEEP cycle */
usleep_range(lp->data->t_sleep_cycle,
lp->data->t_sleep_cycle + 100);
rc = at86rf230_read_subreg(lp, SR_DVDD_OK, &dvdd);
if (rc)
return rc;
if (!dvdd) {
dev_err(&lp->spi->dev, "DVDD error\n");
return -EINVAL;
}
return 0;
}
static struct at86rf230_platform_data *
at86rf230_get_pdata(struct spi_device *spi)
{
struct at86rf230_platform_data *pdata;
if (!IS_ENABLED(CONFIG_OF) || !spi->dev.of_node)
return spi->dev.platform_data;
pdata = devm_kzalloc(&spi->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
goto done;
pdata->rstn = of_get_named_gpio(spi->dev.of_node, "reset-gpio", 0);
pdata->slp_tr = of_get_named_gpio(spi->dev.of_node, "sleep-gpio", 0);
spi->dev.platform_data = pdata;
done:
return pdata;
}
static int
at86rf230_detect_device(struct at86rf230_local *lp)
{
unsigned int part, version, val;
u16 man_id = 0;
const char *chip;
int rc;
rc = __at86rf230_read(lp, RG_MAN_ID_0, &val);
if (rc)
return rc;
man_id |= val;
rc = __at86rf230_read(lp, RG_MAN_ID_1, &val);
if (rc)
return rc;
man_id |= (val << 8);
rc = __at86rf230_read(lp, RG_PART_NUM, &part);
if (rc)
return rc;
rc = __at86rf230_read(lp, RG_PART_NUM, &version);
if (rc)
return rc;
if (man_id != 0x001f) {
dev_err(&lp->spi->dev, "Non-Atmel dev found (MAN_ID %02x %02x)\n",
man_id >> 8, man_id & 0xFF);
return -EINVAL;
}
lp->dev->extra_tx_headroom = 0;
lp->dev->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_AACK |
IEEE802154_HW_TXPOWER | IEEE802154_HW_CSMA;
switch (part) {
case 2:
chip = "at86rf230";
rc = -ENOTSUPP;
break;
case 3:
chip = "at86rf231";
lp->data = &at86rf231_data;
lp->dev->phy->channels_supported[0] = 0x7FFF800;
break;
case 7:
chip = "at86rf212";
if (version == 1) {
lp->data = &at86rf212_data;
lp->dev->flags |= IEEE802154_HW_LBT;
lp->dev->phy->channels_supported[0] = 0x00007FF;
lp->dev->phy->channels_supported[2] = 0x00007FF;
} else {
rc = -ENOTSUPP;
}
break;
case 11:
chip = "at86rf233";
lp->data = &at86rf233_data;
lp->dev->phy->channels_supported[0] = 0x7FFF800;
break;
default:
chip = "unkown";
rc = -ENOTSUPP;
break;
}
dev_info(&lp->spi->dev, "Detected %s chip version %d\n", chip, version);
return rc;
}
static void
at86rf230_setup_spi_messages(struct at86rf230_local *lp)
{
lp->state.lp = lp;
spi_message_init(&lp->state.msg);
lp->state.msg.context = &lp->state;
lp->state.trx.tx_buf = lp->state.buf;
lp->state.trx.rx_buf = lp->state.buf;
spi_message_add_tail(&lp->state.trx, &lp->state.msg);
lp->irq.lp = lp;
spi_message_init(&lp->irq.msg);
lp->irq.msg.context = &lp->irq;
lp->irq.trx.tx_buf = lp->irq.buf;
lp->irq.trx.rx_buf = lp->irq.buf;
spi_message_add_tail(&lp->irq.trx, &lp->irq.msg);
lp->tx.lp = lp;
spi_message_init(&lp->tx.msg);
lp->tx.msg.context = &lp->tx;
lp->tx.trx.tx_buf = lp->tx.buf;
lp->tx.trx.rx_buf = lp->tx.buf;
spi_message_add_tail(&lp->tx.trx, &lp->tx.msg);
}
static int at86rf230_probe(struct spi_device *spi)
{
struct at86rf230_platform_data *pdata;
struct ieee802154_dev *dev;
struct at86rf230_local *lp;
unsigned int status;
int rc, irq_type;
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ specified\n");
return -EINVAL;
}
pdata = at86rf230_get_pdata(spi);
if (!pdata) {
dev_err(&spi->dev, "no platform_data\n");
return -EINVAL;
}
if (gpio_is_valid(pdata->rstn)) {
rc = devm_gpio_request_one(&spi->dev, pdata->rstn,
GPIOF_OUT_INIT_HIGH, "rstn");
if (rc)
return rc;
}
if (gpio_is_valid(pdata->slp_tr)) {
rc = devm_gpio_request_one(&spi->dev, pdata->slp_tr,
GPIOF_OUT_INIT_LOW, "slp_tr");
if (rc)
return rc;
}
/* Reset */
if (gpio_is_valid(pdata->rstn)) {
udelay(1);
gpio_set_value(pdata->rstn, 0);
udelay(1);
gpio_set_value(pdata->rstn, 1);
usleep_range(120, 240);
}
dev = ieee802154_alloc_device(sizeof(*lp), &at86rf230_ops);
if (!dev)
return -ENOMEM;
lp = dev->priv;
lp->dev = dev;
lp->spi = spi;
dev->parent = &spi->dev;
lp->regmap = devm_regmap_init_spi(spi, &at86rf230_regmap_spi_config);
if (IS_ERR(lp->regmap)) {
rc = PTR_ERR(lp->regmap);
dev_err(&spi->dev, "Failed to allocate register map: %d\n",
rc);
goto free_dev;
}
at86rf230_setup_spi_messages(lp);
rc = at86rf230_detect_device(lp);
if (rc < 0)
goto free_dev;
spin_lock_init(&lp->lock);
init_completion(&lp->tx_complete);
init_completion(&lp->state_complete);
spi_set_drvdata(spi, lp);
rc = at86rf230_hw_init(lp);
if (rc)
goto free_dev;
/* Read irq status register to reset irq line */
rc = at86rf230_read_subreg(lp, RG_IRQ_STATUS, 0xff, 0, &status);
if (rc)
goto free_dev;
irq_type = irq_get_trigger_type(spi->irq);
if (!irq_type)
irq_type = IRQF_TRIGGER_RISING;
rc = devm_request_irq(&spi->dev, spi->irq, at86rf230_isr,
IRQF_SHARED | irq_type, dev_name(&spi->dev), lp);
if (rc)
goto free_dev;
rc = ieee802154_register_device(lp->dev);
if (rc)
goto free_dev;
return rc;
free_dev:
ieee802154_free_device(lp->dev);
return rc;
}
static int at86rf230_remove(struct spi_device *spi)
{
struct at86rf230_local *lp = spi_get_drvdata(spi);
/* mask all at86rf230 irq's */
at86rf230_write_subreg(lp, SR_IRQ_MASK, 0);
ieee802154_unregister_device(lp->dev);
ieee802154_free_device(lp->dev);
dev_dbg(&spi->dev, "unregistered at86rf230\n");
return 0;
}
static const struct of_device_id at86rf230_of_match[] = {
{ .compatible = "atmel,at86rf230", },
{ .compatible = "atmel,at86rf231", },
{ .compatible = "atmel,at86rf233", },
{ .compatible = "atmel,at86rf212", },
{ },
};
MODULE_DEVICE_TABLE(of, at86rf230_of_match);
static const struct spi_device_id at86rf230_device_id[] = {
{ .name = "at86rf230", },
{ .name = "at86rf231", },
{ .name = "at86rf233", },
{ .name = "at86rf212", },
{ },
};
MODULE_DEVICE_TABLE(spi, at86rf230_device_id);
static struct spi_driver at86rf230_driver = {
.id_table = at86rf230_device_id,
.driver = {
.of_match_table = of_match_ptr(at86rf230_of_match),
.name = "at86rf230",
.owner = THIS_MODULE,
},
.probe = at86rf230_probe,
.remove = at86rf230_remove,
};
module_spi_driver(at86rf230_driver);
MODULE_DESCRIPTION("AT86RF230 Transceiver Driver");
MODULE_LICENSE("GPL v2");