/*
* forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
*
* Note: This driver is a cleanroom reimplementation based on reverse
* engineered documentation written by Carl-Daniel Hailfinger
* and Andrew de Quincey. It's neither supported nor endorsed
* by NVIDIA Corp. Use at your own risk.
*
* NVIDIA, nForce and other NVIDIA marks are trademarks or registered
* trademarks of NVIDIA Corporation in the United States and other
* countries.
*
* Copyright (C) 2003,4 Manfred Spraul
* Copyright (C) 2004 Andrew de Quincey (wol support)
* Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
* IRQ rate fixes, bigendian fixes, cleanups, verification)
* Copyright (c) 2004 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Changelog:
* 0.01: 05 Oct 2003: First release that compiles without warnings.
* 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
* Check all PCI BARs for the register window.
* udelay added to mii_rw.
* 0.03: 06 Oct 2003: Initialize dev->irq.
* 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
* 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
* 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
* irq mask updated
* 0.07: 14 Oct 2003: Further irq mask updates.
* 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
* added into irq handler, NULL check for drain_ring.
* 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
* requested interrupt sources.
* 0.10: 20 Oct 2003: First cleanup for release.
* 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
* MAC Address init fix, set_multicast cleanup.
* 0.12: 23 Oct 2003: Cleanups for release.
* 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
* Set link speed correctly. start rx before starting
* tx (nv_start_rx sets the link speed).
* 0.14: 25 Oct 2003: Nic dependant irq mask.
* 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
* open.
* 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
* increased to 1628 bytes.
* 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
* the tx length.
* 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
* 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
* addresses, really stop rx if already running
* in nv_start_rx, clean up a bit.
* 0.20: 07 Dec 2003: alloc fixes
* 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
* 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
* on close.
* 0.23: 26 Jan 2004: various small cleanups
* 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
* 0.25: 09 Mar 2004: wol support
* 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
* 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
* added CK804/MCP04 device IDs, code fixes
* for registers, link status and other minor fixes.
* 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
* 0.29: 31 Aug 2004: Add backup timer for link change notification.
* 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
* into nv_close, otherwise reenabling for wol can
* cause DMA to kfree'd memory.
* 0.31: 14 Nov 2004: ethtool support for getting/setting link
* capabilities.
*
* Known bugs:
* We suspect that on some hardware no TX done interrupts are generated.
* This means recovery from netif_stop_queue only happens if the hw timer
* interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
* and the timer is active in the IRQMask, or if a rx packet arrives by chance.
* If your hardware reliably generates tx done interrupts, then you can remove
* DEV_NEED_TIMERIRQ from the driver_data flags.
* DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
* superfluous timer interrupts from the nic.
*/
#define FORCEDETH_VERSION "0.31"
#define DRV_NAME "forcedeth"
#include <linux/module.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/ethtool.h>
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/mii.h>
#include <linux/random.h>
#include <linux/init.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#if 0
#define dprintk printk
#else
#define dprintk(x...) do { } while (0)
#endif
/*
* Hardware access:
*/
#define DEV_NEED_LASTPACKET1 0x0001 /* set LASTPACKET1 in tx flags */
#define DEV_IRQMASK_1 0x0002 /* use NVREG_IRQMASK_WANTED_1 for irq mask */
#define DEV_IRQMASK_2 0x0004 /* use NVREG_IRQMASK_WANTED_2 for irq mask */
#define DEV_NEED_TIMERIRQ 0x0008 /* set the timer irq flag in the irq mask */
#define DEV_NEED_LINKTIMER 0x0010 /* poll link settings. Relies on the timer irq */
enum {
NvRegIrqStatus = 0x000,
#define NVREG_IRQSTAT_MIIEVENT 0x040
#define NVREG_IRQSTAT_MASK 0x1ff
NvRegIrqMask = 0x004,
#define NVREG_IRQ_RX_ERROR 0x0001
#define NVREG_IRQ_RX 0x0002
#define NVREG_IRQ_RX_NOBUF 0x0004
#define NVREG_IRQ_TX_ERR 0x0008
#define NVREG_IRQ_TX2 0x0010
#define NVREG_IRQ_TIMER 0x0020
#define NVREG_IRQ_LINK 0x0040
#define NVREG_IRQ_TX1 0x0100
#define NVREG_IRQMASK_WANTED_1 0x005f
#define NVREG_IRQMASK_WANTED_2 0x0147
#define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR|NVREG_IRQ_TX2|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX1))
NvRegUnknownSetupReg6 = 0x008,
#define NVREG_UNKSETUP6_VAL 3
/*
* NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
* NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
*/
NvRegPollingInterval = 0x00c,
#define NVREG_POLL_DEFAULT 970
NvRegMisc1 = 0x080,
#define NVREG_MISC1_HD 0x02
#define NVREG_MISC1_FORCE 0x3b0f3c
NvRegTransmitterControl = 0x084,
#define NVREG_XMITCTL_START 0x01
NvRegTransmitterStatus = 0x088,
#define NVREG_XMITSTAT_BUSY 0x01
NvRegPacketFilterFlags = 0x8c,
#define NVREG_PFF_ALWAYS 0x7F0008
#define NVREG_PFF_PROMISC 0x80
#define NVREG_PFF_MYADDR 0x20
NvRegOffloadConfig = 0x90,
#define NVREG_OFFLOAD_HOMEPHY 0x601
#define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
NvRegReceiverControl = 0x094,
#define NVREG_RCVCTL_START 0x01
NvRegReceiverStatus = 0x98,
#define NVREG_RCVSTAT_BUSY 0x01
NvRegRandomSeed = 0x9c,
#define NVREG_RNDSEED_MASK 0x00ff
#define NVREG_RNDSEED_FORCE 0x7f00
#define NVREG_RNDSEED_FORCE2 0x2d00
#define NVREG_RNDSEED_FORCE3 0x7400
NvRegUnknownSetupReg1 = 0xA0,
#define NVREG_UNKSETUP1_VAL 0x16070f
NvRegUnknownSetupReg2 = 0xA4,
#define NVREG_UNKSETUP2_VAL 0x16
NvRegMacAddrA = 0xA8,
NvRegMacAddrB = 0xAC,
NvRegMulticastAddrA = 0xB0,
#define NVREG_MCASTADDRA_FORCE 0x01
NvRegMulticastAddrB = 0xB4,
NvRegMulticastMaskA = 0xB8,
NvRegMulticastMaskB = 0xBC,
NvRegPhyInterface = 0xC0,
#define PHY_RGMII 0x10000000
NvRegTxRingPhysAddr = 0x100,
NvRegRxRingPhysAddr = 0x104,
NvRegRingSizes = 0x108,
#define NVREG_RINGSZ_TXSHIFT 0
#define NVREG_RINGSZ_RXSHIFT 16
NvRegUnknownTransmitterReg = 0x10c,
NvRegLinkSpeed = 0x110,
#define NVREG_LINKSPEED_FORCE 0x10000
#define NVREG_LINKSPEED_10 1000
#define NVREG_LINKSPEED_100 100
#define NVREG_LINKSPEED_1000 50
#define NVREG_LINKSPEED_MASK (0xFFF)
NvRegUnknownSetupReg5 = 0x130,
#define NVREG_UNKSETUP5_BIT31 (1<<31)
NvRegUnknownSetupReg3 = 0x13c,
#define NVREG_UNKSETUP3_VAL1 0x200010
NvRegTxRxControl = 0x144,
#define NVREG_TXRXCTL_KICK 0x0001
#define NVREG_TXRXCTL_BIT1 0x0002
#define NVREG_TXRXCTL_BIT2 0x0004
#define NVREG_TXRXCTL_IDLE 0x0008
#define NVREG_TXRXCTL_RESET 0x0010
#define NVREG_TXRXCTL_RXCHECK 0x0400
NvRegMIIStatus = 0x180,
#define NVREG_MIISTAT_ERROR 0x0001
#define NVREG_MIISTAT_LINKCHANGE 0x0008
#define NVREG_MIISTAT_MASK 0x000f
#define NVREG_MIISTAT_MASK2 0x000f
NvRegUnknownSetupReg4 = 0x184,
#define NVREG_UNKSETUP4_VAL 8
NvRegAdapterControl = 0x188,
#define NVREG_ADAPTCTL_START 0x02
#define NVREG_ADAPTCTL_LINKUP 0x04
#define NVREG_ADAPTCTL_PHYVALID 0x40000
#define NVREG_ADAPTCTL_RUNNING 0x100000
#define NVREG_ADAPTCTL_PHYSHIFT 24
NvRegMIISpeed = 0x18c,
#define NVREG_MIISPEED_BIT8 (1<<8)
#define NVREG_MIIDELAY 5
NvRegMIIControl = 0x190,
#define NVREG_MIICTL_INUSE 0x08000
#define NVREG_MIICTL_WRITE 0x00400
#define NVREG_MIICTL_ADDRSHIFT 5
NvRegMIIData = 0x194,
NvRegWakeUpFlags = 0x200,
#define NVREG_WAKEUPFLAGS_VAL 0x7770
#define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
#define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
#define NVREG_WAKEUPFLAGS_D3SHIFT 12
#define NVREG_WAKEUPFLAGS_D2SHIFT 8
#define NVREG_WAKEUPFLAGS_D1SHIFT 4
#define NVREG_WAKEUPFLAGS_D0SHIFT 0
#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
#define NVREG_WAKEUPFLAGS_ENABLE 0x1111
NvRegPatternCRC = 0x204,
NvRegPatternMask = 0x208,
NvRegPowerCap = 0x268,
#define NVREG_POWERCAP_D3SUPP (1<<30)
#define NVREG_POWERCAP_D2SUPP (1<<26)
#define NVREG_POWERCAP_D1SUPP (1<<25)
NvRegPowerState = 0x26c,
#define NVREG_POWERSTATE_POWEREDUP 0x8000
#define NVREG_POWERSTATE_VALID 0x0100
#define NVREG_POWERSTATE_MASK 0x0003
#define NVREG_POWERSTATE_D0 0x0000
#define NVREG_POWERSTATE_D1 0x0001
#define NVREG_POWERSTATE_D2 0x0002
#define NVREG_POWERSTATE_D3 0x0003
};
/* Big endian: should work, but is untested */
struct ring_desc {
u32 PacketBuffer;
u32 FlagLen;
};
#define FLAG_MASK_V1 0xffff0000
#define FLAG_MASK_V2 0xffffc000
#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
#define NV_TX_LASTPACKET (1<<16)
#define NV_TX_RETRYERROR (1<<19)
#define NV_TX_LASTPACKET1 (1<<24)
#define NV_TX_DEFERRED (1<<26)
#define NV_TX_CARRIERLOST (1<<27)
#define NV_TX_LATECOLLISION (1<<28)
#define NV_TX_UNDERFLOW (1<<29)
#define NV_TX_ERROR (1<<30)
#define NV_TX_VALID (1<<31)
#define NV_TX2_LASTPACKET (1<<29)
#define NV_TX2_RETRYERROR (1<<18)
#define NV_TX2_LASTPACKET1 (1<<23)
#define NV_TX2_DEFERRED (1<<25)
#define NV_TX2_CARRIERLOST (1<<26)
#define NV_TX2_LATECOLLISION (1<<27)
#define NV_TX2_UNDERFLOW (1<<28)
/* error and valid are the same for both */
#define NV_TX2_ERROR (1<<30)
#define NV_TX2_VALID (1<<31)
#define NV_RX_DESCRIPTORVALID (1<<16)
#define NV_RX_MISSEDFRAME (1<<17)
#define NV_RX_SUBSTRACT1 (1<<18)
#define NV_RX_ERROR1 (1<<23)
#define NV_RX_ERROR2 (1<<24)
#define NV_RX_ERROR3 (1<<25)
#define NV_RX_ERROR4 (1<<26)
#define NV_RX_CRCERR (1<<27)
#define NV_RX_OVERFLOW (1<<28)
#define NV_RX_FRAMINGERR (1<<29)
#define NV_RX_ERROR (1<<30)
#define NV_RX_AVAIL (1<<31)
#define NV_RX2_CHECKSUMMASK (0x1C000000)
#define NV_RX2_CHECKSUMOK1 (0x10000000)
#define NV_RX2_CHECKSUMOK2 (0x14000000)
#define NV_RX2_CHECKSUMOK3 (0x18000000)
#define NV_RX2_DESCRIPTORVALID (1<<29)
#define NV_RX2_SUBSTRACT1 (1<<25)
#define NV_RX2_ERROR1 (1<<18)
#define NV_RX2_ERROR2 (1<<19)
#define NV_RX2_ERROR3 (1<<20)
#define NV_RX2_ERROR4 (1<<21)
#define NV_RX2_CRCERR (1<<22)
#define NV_RX2_OVERFLOW (1<<23)
#define NV_RX2_FRAMINGERR (1<<24)
/* error and avail are the same for both */
#define NV_RX2_ERROR (1<<30)
#define NV_RX2_AVAIL (1<<31)
/* Miscelaneous hardware related defines: */
#define NV_PCI_REGSZ 0x270
/* various timeout delays: all in usec */
#define NV_TXRX_RESET_DELAY 4
#define NV_TXSTOP_DELAY1 10
#define NV_TXSTOP_DELAY1MAX 500000
#define NV_TXSTOP_DELAY2 100
#define NV_RXSTOP_DELAY1 10
#define NV_RXSTOP_DELAY1MAX 500000
#define NV_RXSTOP_DELAY2 100
#define NV_SETUP5_DELAY 5
#define NV_SETUP5_DELAYMAX 50000
#define NV_POWERUP_DELAY 5
#define NV_POWERUP_DELAYMAX 5000
#define NV_MIIBUSY_DELAY 50
#define NV_MIIPHY_DELAY 10
#define NV_MIIPHY_DELAYMAX 10000
#define NV_WAKEUPPATTERNS 5
#define NV_WAKEUPMASKENTRIES 4
/* General driver defaults */
#define NV_WATCHDOG_TIMEO (5*HZ)
#define RX_RING 128
#define TX_RING 64
/*
* If your nic mysteriously hangs then try to reduce the limits
* to 1/0: It might be required to set NV_TX_LASTPACKET in the
* last valid ring entry. But this would be impossible to
* implement - probably a disassembly error.
*/
#define TX_LIMIT_STOP 63
#define TX_LIMIT_START 62
/* rx/tx mac addr + type + vlan + align + slack*/
#define RX_NIC_BUFSIZE (ETH_DATA_LEN + 64)
/* even more slack */
#define RX_ALLOC_BUFSIZE (ETH_DATA_LEN + 128)
#define OOM_REFILL (1+HZ/20)
#define POLL_WAIT (1+HZ/100)
#define LINK_TIMEOUT (3*HZ)
/*
* desc_ver values:
* This field has two purposes:
* - Newer nics uses a different ring layout. The layout is selected by
* comparing np->desc_ver with DESC_VER_xy.
* - It contains bits that are forced on when writing to NvRegTxRxControl.
*/
#define DESC_VER_1 0x0
#define DESC_VER_2 (0x02100|NVREG_TXRXCTL_RXCHECK)
/* PHY defines */
#define PHY_OUI_MARVELL 0x5043
#define PHY_OUI_CICADA 0x03f1
#define PHYID1_OUI_MASK 0x03ff
#define PHYID1_OUI_SHFT 6
#define PHYID2_OUI_MASK 0xfc00
#define PHYID2_OUI_SHFT 10
#define PHY_INIT1 0x0f000
#define PHY_INIT2 0x0e00
#define PHY_INIT3 0x01000
#define PHY_INIT4 0x0200
#define PHY_INIT5 0x0004
#define PHY_INIT6 0x02000
#define PHY_GIGABIT 0x0100
#define PHY_TIMEOUT 0x1
#define PHY_ERROR 0x2
#define PHY_100 0x1
#define PHY_1000 0x2
#define PHY_HALF 0x100
/* FIXME: MII defines that should be added to <linux/mii.h> */
#define MII_1000BT_CR 0x09
#define MII_1000BT_SR 0x0a
#define ADVERTISE_1000FULL 0x0200
#define ADVERTISE_1000HALF 0x0100
#define LPA_1000FULL 0x0800
#define LPA_1000HALF 0x0400
/*
* SMP locking:
* All hardware access under dev->priv->lock, except the performance
* critical parts:
* - rx is (pseudo-) lockless: it relies on the single-threading provided
* by the arch code for interrupts.
* - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
* needs dev->priv->lock :-(
* - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
*/
/* in dev: base, irq */
struct fe_priv {
spinlock_t lock;
/* General data:
* Locking: spin_lock(&np->lock); */
struct net_device_stats stats;
int in_shutdown;
u32 linkspeed;
int duplex;
int autoneg;
int fixed_mode;
int phyaddr;
int wolenabled;
unsigned int phy_oui;
u16 gigabit;
/* General data: RO fields */
dma_addr_t ring_addr;
struct pci_dev *pci_dev;
u32 orig_mac[2];
u32 irqmask;
u32 desc_ver;
void __iomem *base;
/* rx specific fields.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
struct ring_desc *rx_ring;
unsigned int cur_rx, refill_rx;
struct sk_buff *rx_skbuff[RX_RING];
dma_addr_t rx_dma[RX_RING];
unsigned int rx_buf_sz;
struct timer_list oom_kick;
struct timer_list nic_poll;
/* media detection workaround.
* Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
*/
int need_linktimer;
unsigned long link_timeout;
/*
* tx specific fields.
*/
struct ring_desc *tx_ring;
unsigned int next_tx, nic_tx;
struct sk_buff *tx_skbuff[TX_RING];
dma_addr_t tx_dma[TX_RING];
u32 tx_flags;
};
/*
* Maximum number of loops until we assume that a bit in the irq mask
* is stuck. Overridable with module param.
*/
static int max_interrupt_work = 5;
static inline struct fe_priv *get_nvpriv(struct net_device *dev)
{
return netdev_priv(dev);
}
static inline u8 __iomem *get_hwbase(struct net_device *dev)
{
return get_nvpriv(dev)->base;
}
static inline void pci_push(u8 __iomem *base)
{
/* force out pending posted writes */
readl(base);
}
static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
{
return le32_to_cpu(prd->FlagLen)
& ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
}
static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
int delay, int delaymax, const char *msg)
{
u8 __iomem *base = get_hwbase(dev);
pci_push(base);
do {
udelay(delay);
delaymax -= delay;
if (delaymax < 0) {
if (msg)
printk(msg);
return 1;
}
} while ((readl(base + offset) & mask) != target);
return 0;
}
#define MII_READ (-1)
/* mii_rw: read/write a register on the PHY.
*
* Caller must guarantee serialization
*/
static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
{
u8 __iomem *base = get_hwbase(dev);
u32 reg;
int retval;
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
reg = readl(base + NvRegMIIControl);
if (reg & NVREG_MIICTL_INUSE) {
writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
udelay(NV_MIIBUSY_DELAY);
}
reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
if (value != MII_READ) {
writel(value, base + NvRegMIIData);
reg |= NVREG_MIICTL_WRITE;
}
writel(reg, base + NvRegMIIControl);
if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
dev->name, miireg, addr);
retval = -1;
} else if (value != MII_READ) {
/* it was a write operation - fewer failures are detectable */
dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
dev->name, value, miireg, addr);
retval = 0;
} else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
dev->name, miireg, addr);
retval = -1;
} else {
retval = readl(base + NvRegMIIData);
dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
dev->name, miireg, addr, retval);
}
return retval;
}
static int phy_reset(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 miicontrol;
unsigned int tries = 0;
miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
miicontrol |= BMCR_RESET;
if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
return -1;
}
/* wait for 500ms */
msleep(500);
/* must wait till reset is deasserted */
while (miicontrol & BMCR_RESET) {
msleep(10);
miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
/* FIXME: 100 tries seem excessive */
if (tries++ > 100)
return -1;
}
return 0;
}
static int phy_init(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
/* set advertise register */
reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* get phy interface type */
phyinterface = readl(base + NvRegPhyInterface);
/* see if gigabit phy */
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (mii_status & PHY_GIGABIT) {
np->gigabit = PHY_GIGABIT;
mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
mii_control_1000 &= ~ADVERTISE_1000HALF;
if (phyinterface & PHY_RGMII)
mii_control_1000 |= ADVERTISE_1000FULL;
else
mii_control_1000 &= ~ADVERTISE_1000FULL;
if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
else
np->gigabit = 0;
/* reset the phy */
if (phy_reset(dev)) {
printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
/* phy vendor specific configuration */
if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
phy_reserved |= (PHY_INIT3 | PHY_INIT4);
if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
phy_reserved |= PHY_INIT5;
if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
if (np->phy_oui == PHY_OUI_CICADA) {
phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
phy_reserved |= PHY_INIT6;
if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
return PHY_ERROR;
}
}
/* restart auto negotiation */
mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
return PHY_ERROR;
}
return 0;
}
static void nv_start_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
/* Already running? Stop it. */
if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
writel(0, base + NvRegReceiverControl);
pci_push(base);
}
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
dev->name, np->duplex, np->linkspeed);
pci_push(base);
}
static void nv_stop_rx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
writel(0, base + NvRegReceiverControl);
reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
udelay(NV_RXSTOP_DELAY2);
writel(0, base + NvRegLinkSpeed);
}
static void nv_start_tx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
pci_push(base);
}
static void nv_stop_tx(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
writel(0, base + NvRegTransmitterControl);
reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
udelay(NV_TXSTOP_DELAY2);
writel(0, base + NvRegUnknownTransmitterReg);
}
static void nv_txrx_reset(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->desc_ver, base + NvRegTxRxControl);
pci_push(base);
udelay(NV_TXRX_RESET_DELAY);
writel(NVREG_TXRXCTL_BIT2 | np->desc_ver, base + NvRegTxRxControl);
pci_push(base);
}
/*
* nv_get_stats: dev->get_stats function
* Get latest stats value from the nic.
* Called with read_lock(&dev_base_lock) held for read -
* only synchronized against unregister_netdevice.
*/
static struct net_device_stats *nv_get_stats(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
/* It seems that the nic always generates interrupts and doesn't
* accumulate errors internally. Thus the current values in np->stats
* are already up to date.
*/
return &np->stats;
}
/*
* nv_alloc_rx: fill rx ring entries.
* Return 1 if the allocations for the skbs failed and the
* rx engine is without Available descriptors
*/
static int nv_alloc_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
unsigned int refill_rx = np->refill_rx;
int nr;
while (np->cur_rx != refill_rx) {
struct sk_buff *skb;
nr = refill_rx % RX_RING;
if (np->rx_skbuff[nr] == NULL) {
skb = dev_alloc_skb(RX_ALLOC_BUFSIZE);
if (!skb)
break;
skb->dev = dev;
np->rx_skbuff[nr] = skb;
} else {
skb = np->rx_skbuff[nr];
}
np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len,
PCI_DMA_FROMDEVICE);
np->rx_ring[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
wmb();
np->rx_ring[nr].FlagLen = cpu_to_le32(RX_NIC_BUFSIZE | NV_RX_AVAIL);
dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
dev->name, refill_rx);
refill_rx++;
}
np->refill_rx = refill_rx;
if (np->cur_rx - refill_rx == RX_RING)
return 1;
return 0;
}
static void nv_do_rx_refill(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
disable_irq(dev->irq);
if (nv_alloc_rx(dev)) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
enable_irq(dev->irq);
}
static int nv_init_ring(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
np->next_tx = np->nic_tx = 0;
for (i = 0; i < TX_RING; i++)
np->tx_ring[i].FlagLen = 0;
np->cur_rx = RX_RING;
np->refill_rx = 0;
for (i = 0; i < RX_RING; i++)
np->rx_ring[i].FlagLen = 0;
return nv_alloc_rx(dev);
}
static void nv_drain_tx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
for (i = 0; i < TX_RING; i++) {
np->tx_ring[i].FlagLen = 0;
if (np->tx_skbuff[i]) {
pci_unmap_single(np->pci_dev, np->tx_dma[i],
np->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb(np->tx_skbuff[i]);
np->tx_skbuff[i] = NULL;
np->stats.tx_dropped++;
}
}
}
static void nv_drain_rx(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int i;
for (i = 0; i < RX_RING; i++) {
np->rx_ring[i].FlagLen = 0;
wmb();
if (np->rx_skbuff[i]) {
pci_unmap_single(np->pci_dev, np->rx_dma[i],
np->rx_skbuff[i]->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(np->rx_skbuff[i]);
np->rx_skbuff[i] = NULL;
}
}
}
static void drain_ring(struct net_device *dev)
{
nv_drain_tx(dev);
nv_drain_rx(dev);
}
/*
* nv_start_xmit: dev->hard_start_xmit function
* Called with dev->xmit_lock held.
*/
static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
int nr = np->next_tx % TX_RING;
np->tx_skbuff[nr] = skb;
np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len,
PCI_DMA_TODEVICE);
np->tx_ring[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
spin_lock_irq(&np->lock);
wmb();
np->tx_ring[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags );
dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission.\n",
dev->name, np->next_tx);
{
int j;
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)skb->data)[j]);
}
dprintk("\n");
}
np->next_tx++;
dev->trans_start = jiffies;
if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP)
netif_stop_queue(dev);
spin_unlock_irq(&np->lock);
writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl);
pci_push(get_hwbase(dev));
return 0;
}
/*
* nv_tx_done: check for completed packets, release the skbs.
*
* Caller must own np->lock.
*/
static void nv_tx_done(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 Flags;
int i;
while (np->nic_tx != np->next_tx) {
i = np->nic_tx % TX_RING;
Flags = le32_to_cpu(np->tx_ring[i].FlagLen);
dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
dev->name, np->nic_tx, Flags);
if (Flags & NV_TX_VALID)
break;
if (np->desc_ver == DESC_VER_1) {
if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
NV_TX_UNDERFLOW|NV_TX_ERROR)) {
if (Flags & NV_TX_UNDERFLOW)
np->stats.tx_fifo_errors++;
if (Flags & NV_TX_CARRIERLOST)
np->stats.tx_carrier_errors++;
np->stats.tx_errors++;
} else {
np->stats.tx_packets++;
np->stats.tx_bytes += np->tx_skbuff[i]->len;
}
} else {
if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
if (Flags & NV_TX2_UNDERFLOW)
np->stats.tx_fifo_errors++;
if (Flags & NV_TX2_CARRIERLOST)
np->stats.tx_carrier_errors++;
np->stats.tx_errors++;
} else {
np->stats.tx_packets++;
np->stats.tx_bytes += np->tx_skbuff[i]->len;
}
}
pci_unmap_single(np->pci_dev, np->tx_dma[i],
np->tx_skbuff[i]->len,
PCI_DMA_TODEVICE);
dev_kfree_skb_irq(np->tx_skbuff[i]);
np->tx_skbuff[i] = NULL;
np->nic_tx++;
}
if (np->next_tx - np->nic_tx < TX_LIMIT_START)
netif_wake_queue(dev);
}
/*
* nv_tx_timeout: dev->tx_timeout function
* Called with dev->xmit_lock held.
*/
static void nv_tx_timeout(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
dprintk(KERN_DEBUG "%s: Got tx_timeout. irq: %08x\n", dev->name,
readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
spin_lock_irq(&np->lock);
/* 1) stop tx engine */
nv_stop_tx(dev);
/* 2) check that the packets were not sent already: */
nv_tx_done(dev);
/* 3) if there are dead entries: clear everything */
if (np->next_tx != np->nic_tx) {
printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
nv_drain_tx(dev);
np->next_tx = np->nic_tx = 0;
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
netif_wake_queue(dev);
}
/* 4) restart tx engine */
nv_start_tx(dev);
spin_unlock_irq(&np->lock);
}
static void nv_rx_process(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u32 Flags;
for (;;) {
struct sk_buff *skb;
int len;
int i;
if (np->cur_rx - np->refill_rx >= RX_RING)
break; /* we scanned the whole ring - do not continue */
i = np->cur_rx % RX_RING;
Flags = le32_to_cpu(np->rx_ring[i].FlagLen);
len = nv_descr_getlength(&np->rx_ring[i], np->desc_ver);
dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
dev->name, np->cur_rx, Flags);
if (Flags & NV_RX_AVAIL)
break; /* still owned by hardware, */
/*
* the packet is for us - immediately tear down the pci mapping.
* TODO: check if a prefetch of the first cacheline improves
* the performance.
*/
pci_unmap_single(np->pci_dev, np->rx_dma[i],
np->rx_skbuff[i]->len,
PCI_DMA_FROMDEVICE);
{
int j;
dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
for (j=0; j<64; j++) {
if ((j%16) == 0)
dprintk("\n%03x:", j);
dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
}
dprintk("\n");
}
/* look at what we actually got: */
if (np->desc_ver == DESC_VER_1) {
if (!(Flags & NV_RX_DESCRIPTORVALID))
goto next_pkt;
if (Flags & NV_RX_MISSEDFRAME) {
np->stats.rx_missed_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4)) {
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_CRCERR) {
np->stats.rx_crc_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_OVERFLOW) {
np->stats.rx_over_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX_ERROR) {
/* framing errors are soft errors, the rest is fatal. */
if (Flags & NV_RX_FRAMINGERR) {
if (Flags & NV_RX_SUBSTRACT1) {
len--;
}
} else {
np->stats.rx_errors++;
goto next_pkt;
}
}
} else {
if (!(Flags & NV_RX2_DESCRIPTORVALID))
goto next_pkt;
if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4)) {
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_CRCERR) {
np->stats.rx_crc_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_OVERFLOW) {
np->stats.rx_over_errors++;
np->stats.rx_errors++;
goto next_pkt;
}
if (Flags & NV_RX2_ERROR) {
/* framing errors are soft errors, the rest is fatal. */
if (Flags & NV_RX2_FRAMINGERR) {
if (Flags & NV_RX2_SUBSTRACT1) {
len--;
}
} else {
np->stats.rx_errors++;
goto next_pkt;
}
}
Flags &= NV_RX2_CHECKSUMMASK;
if (Flags == NV_RX2_CHECKSUMOK1 ||
Flags == NV_RX2_CHECKSUMOK2 ||
Flags == NV_RX2_CHECKSUMOK3) {
dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
} else {
dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
}
}
/* got a valid packet - forward it to the network core */
skb = np->rx_skbuff[i];
np->rx_skbuff[i] = NULL;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, dev);
dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
dev->name, np->cur_rx, len, skb->protocol);
netif_rx(skb);
dev->last_rx = jiffies;
np->stats.rx_packets++;
np->stats.rx_bytes += len;
next_pkt:
np->cur_rx++;
}
}
/*
* nv_change_mtu: dev->change_mtu function
* Called with dev_base_lock held for read.
*/
static int nv_change_mtu(struct net_device *dev, int new_mtu)
{
if (new_mtu > ETH_DATA_LEN)
return -EINVAL;
dev->mtu = new_mtu;
return 0;
}
/*
* nv_set_multicast: dev->set_multicast function
* Called with dev->xmit_lock held.
*/
static void nv_set_multicast(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 addr[2];
u32 mask[2];
u32 pff;
memset(addr, 0, sizeof(addr));
memset(mask, 0, sizeof(mask));
if (dev->flags & IFF_PROMISC) {
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
pff = NVREG_PFF_PROMISC;
} else {
pff = NVREG_PFF_MYADDR;
if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
u32 alwaysOff[2];
u32 alwaysOn[2];
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
if (dev->flags & IFF_ALLMULTI) {
alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
} else {
struct dev_mc_list *walk;
walk = dev->mc_list;
while (walk != NULL) {
u32 a, b;
a = le32_to_cpu(*(u32 *) walk->dmi_addr);
b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
alwaysOn[0] &= a;
alwaysOff[0] &= ~a;
alwaysOn[1] &= b;
alwaysOff[1] &= ~b;
walk = walk->next;
}
}
addr[0] = alwaysOn[0];
addr[1] = alwaysOn[1];
mask[0] = alwaysOn[0] | alwaysOff[0];
mask[1] = alwaysOn[1] | alwaysOff[1];
}
}
addr[0] |= NVREG_MCASTADDRA_FORCE;
pff |= NVREG_PFF_ALWAYS;
spin_lock_irq(&np->lock);
nv_stop_rx(dev);
writel(addr[0], base + NvRegMulticastAddrA);
writel(addr[1], base + NvRegMulticastAddrB);
writel(mask[0], base + NvRegMulticastMaskA);
writel(mask[1], base + NvRegMulticastMaskB);
writel(pff, base + NvRegPacketFilterFlags);
dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
dev->name);
nv_start_rx(dev);
spin_unlock_irq(&np->lock);
}
static int nv_update_linkspeed(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
int adv, lpa;
int newls = np->linkspeed;
int newdup = np->duplex;
int mii_status;
int retval = 0;
u32 control_1000, status_1000, phyreg;
/* BMSR_LSTATUS is latched, read it twice:
* we want the current value.
*/
mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
if (!(mii_status & BMSR_LSTATUS)) {
dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
goto set_speed;
}
if (np->autoneg == 0) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
dev->name, np->fixed_mode);
if (np->fixed_mode & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (np->fixed_mode & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (np->fixed_mode & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
retval = 1;
goto set_speed;
}
/* check auto negotiation is complete */
if (!(mii_status & BMSR_ANEGCOMPLETE)) {
/* still in autonegotiation - configure nic for 10 MBit HD and wait. */
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
retval = 0;
dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
goto set_speed;
}
retval = 1;
if (np->gigabit == PHY_GIGABIT) {
control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
if ((control_1000 & ADVERTISE_1000FULL) &&
(status_1000 & LPA_1000FULL)) {
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
dev->name);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
newdup = 1;
goto set_speed;
}
}
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
dev->name, adv, lpa);
/* FIXME: handle parallel detection properly */
lpa = lpa & adv;
if (lpa & LPA_100FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 1;
} else if (lpa & LPA_100HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
newdup = 0;
} else if (lpa & LPA_10FULL) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 1;
} else if (lpa & LPA_10HALF) {
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
} else {
dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
newdup = 0;
}
set_speed:
if (np->duplex == newdup && np->linkspeed == newls)
return retval;
dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
dev->name, np->linkspeed, np->duplex, newls, newdup);
np->duplex = newdup;
np->linkspeed = newls;
if (np->gigabit == PHY_GIGABIT) {
phyreg = readl(base + NvRegRandomSeed);
phyreg &= ~(0x3FF00);
if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
phyreg |= NVREG_RNDSEED_FORCE3;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
phyreg |= NVREG_RNDSEED_FORCE2;
else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
phyreg |= NVREG_RNDSEED_FORCE;
writel(phyreg, base + NvRegRandomSeed);
}
phyreg = readl(base + NvRegPhyInterface);
phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
if (np->duplex == 0)
phyreg |= PHY_HALF;
if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
phyreg |= PHY_100;
else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
phyreg |= PHY_1000;
writel(phyreg, base + NvRegPhyInterface);
writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
base + NvRegMisc1);
pci_push(base);
writel(np->linkspeed, base + NvRegLinkSpeed);
pci_push(base);
return retval;
}
static void nv_linkchange(struct net_device *dev)
{
if (nv_update_linkspeed(dev)) {
if (netif_carrier_ok(dev)) {
nv_stop_rx(dev);
} else {
netif_carrier_on(dev);
printk(KERN_INFO "%s: link up.\n", dev->name);
}
nv_start_rx(dev);
} else {
if (netif_carrier_ok(dev)) {
netif_carrier_off(dev);
printk(KERN_INFO "%s: link down.\n", dev->name);
nv_stop_rx(dev);
}
}
}
static void nv_link_irq(struct net_device *dev)
{
u8 __iomem *base = get_hwbase(dev);
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
if (miistat & (NVREG_MIISTAT_LINKCHANGE))
nv_linkchange(dev);
dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
}
static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
u32 events;
int i;
dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
for (i=0; ; i++) {
events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
pci_push(base);
dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
if (!(events & np->irqmask))
break;
if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX2|NVREG_IRQ_TX_ERR)) {
spin_lock(&np->lock);
nv_tx_done(dev);
spin_unlock(&np->lock);
}
if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) {
nv_rx_process(dev);
if (nv_alloc_rx(dev)) {
spin_lock(&np->lock);
if (!np->in_shutdown)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock(&np->lock);
}
}
if (events & NVREG_IRQ_LINK) {
spin_lock(&np->lock);
nv_link_irq(dev);
spin_unlock(&np->lock);
}
if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
spin_lock(&np->lock);
nv_linkchange(dev);
spin_unlock(&np->lock);
np->link_timeout = jiffies + LINK_TIMEOUT;
}
if (events & (NVREG_IRQ_TX_ERR)) {
dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
dev->name, events);
}
if (events & (NVREG_IRQ_UNKNOWN)) {
printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
dev->name, events);
}
if (i > max_interrupt_work) {
spin_lock(&np->lock);
/* disable interrupts on the nic */
writel(0, base + NvRegIrqMask);
pci_push(base);
if (!np->in_shutdown)
mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
spin_unlock(&np->lock);
break;
}
}
dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
return IRQ_RETVAL(i);
}
static void nv_do_nic_poll(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
disable_irq(dev->irq);
/* FIXME: Do we need synchronize_irq(dev->irq) here? */
/*
* reenable interrupts on the nic, we have to do this before calling
* nv_nic_irq because that may decide to do otherwise
*/
writel(np->irqmask, base + NvRegIrqMask);
pci_push(base);
nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
enable_irq(dev->irq);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void nv_poll_controller(struct net_device *dev)
{
nv_do_nic_poll((unsigned long) dev);
}
#endif
static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct fe_priv *np = get_nvpriv(dev);
strcpy(info->driver, "forcedeth");
strcpy(info->version, FORCEDETH_VERSION);
strcpy(info->bus_info, pci_name(np->pci_dev));
}
static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = get_nvpriv(dev);
wolinfo->supported = WAKE_MAGIC;
spin_lock_irq(&np->lock);
if (np->wolenabled)
wolinfo->wolopts = WAKE_MAGIC;
spin_unlock_irq(&np->lock);
}
static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
spin_lock_irq(&np->lock);
if (wolinfo->wolopts == 0) {
writel(0, base + NvRegWakeUpFlags);
np->wolenabled = 0;
}
if (wolinfo->wolopts & WAKE_MAGIC) {
writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
np->wolenabled = 1;
}
spin_unlock_irq(&np->lock);
return 0;
}
static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
int adv;
spin_lock_irq(&np->lock);
ecmd->port = PORT_MII;
if (!netif_running(dev)) {
/* We do not track link speed / duplex setting if the
* interface is disabled. Force a link check */
nv_update_linkspeed(dev);
}
switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
case NVREG_LINKSPEED_10:
ecmd->speed = SPEED_10;
break;
case NVREG_LINKSPEED_100:
ecmd->speed = SPEED_100;
break;
case NVREG_LINKSPEED_1000:
ecmd->speed = SPEED_1000;
break;
}
ecmd->duplex = DUPLEX_HALF;
if (np->duplex)
ecmd->duplex = DUPLEX_FULL;
ecmd->autoneg = np->autoneg;
ecmd->advertising = ADVERTISED_MII;
if (np->autoneg) {
ecmd->advertising |= ADVERTISED_Autoneg;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
} else {
adv = np->fixed_mode;
}
if (adv & ADVERTISE_10HALF)
ecmd->advertising |= ADVERTISED_10baseT_Half;
if (adv & ADVERTISE_10FULL)
ecmd->advertising |= ADVERTISED_10baseT_Full;
if (adv & ADVERTISE_100HALF)
ecmd->advertising |= ADVERTISED_100baseT_Half;
if (adv & ADVERTISE_100FULL)
ecmd->advertising |= ADVERTISED_100baseT_Full;
if (np->autoneg && np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
if (adv & ADVERTISE_1000FULL)
ecmd->advertising |= ADVERTISED_1000baseT_Full;
}
ecmd->supported = (SUPPORTED_Autoneg |
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_MII);
if (np->gigabit == PHY_GIGABIT)
ecmd->supported |= SUPPORTED_1000baseT_Full;
ecmd->phy_address = np->phyaddr;
ecmd->transceiver = XCVR_EXTERNAL;
/* ignore maxtxpkt, maxrxpkt for now */
spin_unlock_irq(&np->lock);
return 0;
}
static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct fe_priv *np = netdev_priv(dev);
if (ecmd->port != PORT_MII)
return -EINVAL;
if (ecmd->transceiver != XCVR_EXTERNAL)
return -EINVAL;
if (ecmd->phy_address != np->phyaddr) {
/* TODO: support switching between multiple phys. Should be
* trivial, but not enabled due to lack of test hardware. */
return -EINVAL;
}
if (ecmd->autoneg == AUTONEG_ENABLE) {
u32 mask;
mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
if (np->gigabit == PHY_GIGABIT)
mask |= ADVERTISED_1000baseT_Full;
if ((ecmd->advertising & mask) == 0)
return -EINVAL;
} else if (ecmd->autoneg == AUTONEG_DISABLE) {
/* Note: autonegotiation disable, speed 1000 intentionally
* forbidden - noone should need that. */
if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
return -EINVAL;
if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
return -EINVAL;
} else {
return -EINVAL;
}
spin_lock_irq(&np->lock);
if (ecmd->autoneg == AUTONEG_ENABLE) {
int adv, bmcr;
np->autoneg = 1;
/* advertise only what has been requested */
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (ecmd->advertising & ADVERTISED_10baseT_Half)
adv |= ADVERTISE_10HALF;
if (ecmd->advertising & ADVERTISED_10baseT_Full)
adv |= ADVERTISE_10FULL;
if (ecmd->advertising & ADVERTISED_100baseT_Half)
adv |= ADVERTISE_100HALF;
if (ecmd->advertising & ADVERTISED_100baseT_Full)
adv |= ADVERTISE_100FULL;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
adv &= ~ADVERTISE_1000FULL;
if (ecmd->advertising & ADVERTISED_1000baseT_Full)
adv |= ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
} else {
int adv, bmcr;
np->autoneg = 0;
adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_10HALF;
if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_10FULL;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
adv |= ADVERTISE_100HALF;
if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
adv |= ADVERTISE_100FULL;
mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
np->fixed_mode = adv;
if (np->gigabit == PHY_GIGABIT) {
adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
adv &= ~ADVERTISE_1000FULL;
mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
}
bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
bmcr |= BMCR_FULLDPLX;
if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
bmcr |= BMCR_SPEED100;
mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
if (netif_running(dev)) {
/* Wait a bit and then reconfigure the nic. */
udelay(10);
nv_linkchange(dev);
}
}
spin_unlock_irq(&np->lock);
return 0;
}
static struct ethtool_ops ops = {
.get_drvinfo = nv_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_wol = nv_get_wol,
.set_wol = nv_set_wol,
.get_settings = nv_get_settings,
.set_settings = nv_set_settings,
};
static int nv_open(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
int ret, oom, i;
dprintk(KERN_DEBUG "nv_open: begin\n");
/* 1) erase previous misconfiguration */
/* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(0, base + NvRegMulticastMaskA);
writel(0, base + NvRegMulticastMaskB);
writel(0, base + NvRegPacketFilterFlags);
writel(0, base + NvRegTransmitterControl);
writel(0, base + NvRegReceiverControl);
writel(0, base + NvRegAdapterControl);
/* 2) initialize descriptor rings */
oom = nv_init_ring(dev);
writel(0, base + NvRegLinkSpeed);
writel(0, base + NvRegUnknownTransmitterReg);
nv_txrx_reset(dev);
writel(0, base + NvRegUnknownSetupReg6);
np->in_shutdown = 0;
/* 3) set mac address */
{
u32 mac[2];
mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
(dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
writel(mac[0], base + NvRegMacAddrA);
writel(mac[1], base + NvRegMacAddrB);
}
/* 4) give hw rings */
writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr);
writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
base + NvRegRingSizes);
/* 5) continue setup */
writel(np->linkspeed, base + NvRegLinkSpeed);
writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
writel(np->desc_ver, base + NvRegTxRxControl);
pci_push(base);
writel(NVREG_TXRXCTL_BIT1|np->desc_ver, base + NvRegTxRxControl);
reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
writel(0, base + NvRegUnknownSetupReg4);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
/* 6) continue setup */
writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
writel(NVREG_OFFLOAD_NORMAL, base + NvRegOffloadConfig);
writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
get_random_bytes(&i, sizeof(i));
writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval);
writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
base + NvRegAdapterControl);
writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
i = readl(base + NvRegPowerState);
if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
pci_push(base);
udelay(10);
writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
writel(0, base + NvRegIrqMask);
pci_push(base);
writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
pci_push(base);
ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
if (ret)
goto out_drain;
/* ask for interrupts */
writel(np->irqmask, base + NvRegIrqMask);
spin_lock_irq(&np->lock);
writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
writel(0, base + NvRegMulticastAddrB);
writel(0, base + NvRegMulticastMaskA);
writel(0, base + NvRegMulticastMaskB);
writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
/* One manual link speed update: Interrupts are enabled, future link
* speed changes cause interrupts and are handled by nv_link_irq().
*/
{
u32 miistat;
miistat = readl(base + NvRegMIIStatus);
writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
}
ret = nv_update_linkspeed(dev);
nv_start_rx(dev);
nv_start_tx(dev);
netif_start_queue(dev);
if (ret) {
netif_carrier_on(dev);
} else {
printk("%s: no link during initialization.\n", dev->name);
netif_carrier_off(dev);
}
if (oom)
mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
spin_unlock_irq(&np->lock);
return 0;
out_drain:
drain_ring(dev);
return ret;
}
static int nv_close(struct net_device *dev)
{
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base;
spin_lock_irq(&np->lock);
np->in_shutdown = 1;
spin_unlock_irq(&np->lock);
synchronize_irq(dev->irq);
del_timer_sync(&np->oom_kick);
del_timer_sync(&np->nic_poll);
netif_stop_queue(dev);
spin_lock_irq(&np->lock);
nv_stop_tx(dev);
nv_stop_rx(dev);
nv_txrx_reset(dev);
/* disable interrupts on the nic or we will lock up */
base = get_hwbase(dev);
writel(0, base + NvRegIrqMask);
pci_push(base);
dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
spin_unlock_irq(&np->lock);
free_irq(dev->irq, dev);
drain_ring(dev);
if (np->wolenabled)
nv_start_rx(dev);
/* FIXME: power down nic */
return 0;
}
static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct net_device *dev;
struct fe_priv *np;
unsigned long addr;
u8 __iomem *base;
int err, i;
dev = alloc_etherdev(sizeof(struct fe_priv));
err = -ENOMEM;
if (!dev)
goto out;
np = get_nvpriv(dev);
np->pci_dev = pci_dev;
spin_lock_init(&np->lock);
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &pci_dev->dev);
init_timer(&np->oom_kick);
np->oom_kick.data = (unsigned long) dev;
np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
init_timer(&np->nic_poll);
np->nic_poll.data = (unsigned long) dev;
np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
err = pci_enable_device(pci_dev);
if (err) {
printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
err, pci_name(pci_dev));
goto out_free;
}
pci_set_master(pci_dev);
err = pci_request_regions(pci_dev, DRV_NAME);
if (err < 0)
goto out_disable;
err = -EINVAL;
addr = 0;
for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
pci_resource_len(pci_dev, i),
pci_resource_flags(pci_dev, i));
if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
addr = pci_resource_start(pci_dev, i);
break;
}
}
if (i == DEVICE_COUNT_RESOURCE) {
printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
pci_name(pci_dev));
goto out_relreg;
}
/* handle different descriptor versions */
if (pci_dev->device == PCI_DEVICE_ID_NVIDIA_NVENET_1 ||
pci_dev->device == PCI_DEVICE_ID_NVIDIA_NVENET_2 ||
pci_dev->device == PCI_DEVICE_ID_NVIDIA_NVENET_3)
np->desc_ver = DESC_VER_1;
else
np->desc_ver = DESC_VER_2;
err = -ENOMEM;
np->base = ioremap(addr, NV_PCI_REGSZ);
if (!np->base)
goto out_relreg;
dev->base_addr = (unsigned long)np->base;
dev->irq = pci_dev->irq;
np->rx_ring = pci_alloc_consistent(pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
&np->ring_addr);
if (!np->rx_ring)
goto out_unmap;
np->tx_ring = &np->rx_ring[RX_RING];
dev->open = nv_open;
dev->stop = nv_close;
dev->hard_start_xmit = nv_start_xmit;
dev->get_stats = nv_get_stats;
dev->change_mtu = nv_change_mtu;
dev->set_multicast_list = nv_set_multicast;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = nv_poll_controller;
#endif
SET_ETHTOOL_OPS(dev, &ops);
dev->tx_timeout = nv_tx_timeout;
dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
pci_set_drvdata(pci_dev, dev);
/* read the mac address */
base = get_hwbase(dev);
np->orig_mac[0] = readl(base + NvRegMacAddrA);
np->orig_mac[1] = readl(base + NvRegMacAddrB);
dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
if (!is_valid_ether_addr(dev->dev_addr)) {
/*
* Bad mac address. At least one bios sets the mac address
* to 01:23:45:67:89:ab
*/
printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
pci_name(pci_dev),
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
dev->dev_addr[0] = 0x00;
dev->dev_addr[1] = 0x00;
dev->dev_addr[2] = 0x6c;
get_random_bytes(&dev->dev_addr[3], 3);
}
dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
/* disable WOL */
writel(0, base + NvRegWakeUpFlags);
np->wolenabled = 0;
if (np->desc_ver == DESC_VER_1) {
np->tx_flags = NV_TX_LASTPACKET|NV_TX_VALID;
if (id->driver_data & DEV_NEED_LASTPACKET1)
np->tx_flags |= NV_TX_LASTPACKET1;
} else {
np->tx_flags = NV_TX2_LASTPACKET|NV_TX2_VALID;
if (id->driver_data & DEV_NEED_LASTPACKET1)
np->tx_flags |= NV_TX2_LASTPACKET1;
}
if (id->driver_data & DEV_IRQMASK_1)
np->irqmask = NVREG_IRQMASK_WANTED_1;
if (id->driver_data & DEV_IRQMASK_2)
np->irqmask = NVREG_IRQMASK_WANTED_2;
if (id->driver_data & DEV_NEED_TIMERIRQ)
np->irqmask |= NVREG_IRQ_TIMER;
if (id->driver_data & DEV_NEED_LINKTIMER) {
dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
np->need_linktimer = 1;
np->link_timeout = jiffies + LINK_TIMEOUT;
} else {
dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
np->need_linktimer = 0;
}
/* find a suitable phy */
for (i = 1; i < 32; i++) {
int id1, id2;
spin_lock_irq(&np->lock);
id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ);
spin_unlock_irq(&np->lock);
if (id1 < 0 || id1 == 0xffff)
continue;
spin_lock_irq(&np->lock);
id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ);
spin_unlock_irq(&np->lock);
if (id2 < 0 || id2 == 0xffff)
continue;
id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
pci_name(pci_dev), id1, id2, i);
np->phyaddr = i;
np->phy_oui = id1 | id2;
break;
}
if (i == 32) {
/* PHY in isolate mode? No phy attached and user wants to
* test loopback? Very odd, but can be correct.
*/
printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
pci_name(pci_dev));
}
if (i != 32) {
/* reset it */
phy_init(dev);
}
/* set default link speed settings */
np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
np->duplex = 0;
np->autoneg = 1;
err = register_netdev(dev);
if (err) {
printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
goto out_freering;
}
printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
pci_name(pci_dev));
return 0;
out_freering:
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
np->rx_ring, np->ring_addr);
pci_set_drvdata(pci_dev, NULL);
out_unmap:
iounmap(get_hwbase(dev));
out_relreg:
pci_release_regions(pci_dev);
out_disable:
pci_disable_device(pci_dev);
out_free:
free_netdev(dev);
out:
return err;
}
static void __devexit nv_remove(struct pci_dev *pci_dev)
{
struct net_device *dev = pci_get_drvdata(pci_dev);
struct fe_priv *np = get_nvpriv(dev);
u8 __iomem *base = get_hwbase(dev);
unregister_netdev(dev);
/* special op: write back the misordered MAC address - otherwise
* the next nv_probe would see a wrong address.
*/
writel(np->orig_mac[0], base + NvRegMacAddrA);
writel(np->orig_mac[1], base + NvRegMacAddrB);
/* free all structures */
pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring, np->ring_addr);
iounmap(get_hwbase(dev));
pci_release_regions(pci_dev);
pci_disable_device(pci_dev);
free_netdev(dev);
pci_set_drvdata(pci_dev, NULL);
}
static struct pci_device_id pci_tbl[] = {
{ /* nForce Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_1,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_IRQMASK_1|DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce2 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_2,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_3,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
},
{ /* nForce3 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_4,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* nForce3 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_5,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* nForce3 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_6,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* nForce3 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_7,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* CK804 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_8,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* CK804 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_9,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* MCP04 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_10,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{ /* MCP04 Ethernet Controller */
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_DEVICE_ID_NVIDIA_NVENET_11,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.driver_data = DEV_NEED_LASTPACKET1|DEV_IRQMASK_2|DEV_NEED_TIMERIRQ,
},
{0,},
};
static struct pci_driver driver = {
.name = "forcedeth",
.id_table = pci_tbl,
.probe = nv_probe,
.remove = __devexit_p(nv_remove),
};
static int __init init_nic(void)
{
printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
return pci_module_init(&driver);
}
static void __exit exit_nic(void)
{
pci_unregister_driver(&driver);
}
module_param(max_interrupt_work, int, 0);
MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, pci_tbl);
module_init(init_nic);
module_exit(exit_nic);