summaryrefslogblamecommitdiff
path: root/drivers/net/ethernet/sfc/tx_tso.c
blob: 99936d70ed71d5f258823976e076911e68664c5a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

























































































































































































































































































































































































































































































































































































                                                                                
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2005-2006 Fen Systems Ltd.
 * Copyright 2005-2015 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <linux/pci.h>
#include <linux/tcp.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/ipv6.h>
#include <linux/if_ether.h>
#include <linux/highmem.h>
#include <linux/moduleparam.h>
#include <linux/cache.h>
#include "net_driver.h"
#include "efx.h"
#include "io.h"
#include "nic.h"
#include "tx.h"
#include "workarounds.h"
#include "ef10_regs.h"

/* Efx legacy TCP segmentation acceleration.
 *
 * Why?  Because by doing it here in the driver we can go significantly
 * faster than the GSO.
 *
 * Requires TX checksum offload support.
 */

#define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2))

/**
 * struct tso_state - TSO state for an SKB
 * @out_len: Remaining length in current segment
 * @seqnum: Current sequence number
 * @ipv4_id: Current IPv4 ID, host endian
 * @packet_space: Remaining space in current packet
 * @dma_addr: DMA address of current position
 * @in_len: Remaining length in current SKB fragment
 * @unmap_len: Length of SKB fragment
 * @unmap_addr: DMA address of SKB fragment
 * @dma_flags: TX buffer flags for DMA mapping - %EFX_TX_BUF_MAP_SINGLE or 0
 * @protocol: Network protocol (after any VLAN header)
 * @ip_off: Offset of IP header
 * @tcp_off: Offset of TCP header
 * @header_len: Number of bytes of header
 * @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
 * @header_dma_addr: Header DMA address, when using option descriptors
 * @header_unmap_len: Header DMA mapped length, or 0 if not using option
 *	descriptors
 *
 * The state used during segmentation.  It is put into this data structure
 * just to make it easy to pass into inline functions.
 */
struct tso_state {
	/* Output position */
	unsigned int out_len;
	unsigned int seqnum;
	u16 ipv4_id;
	unsigned int packet_space;

	/* Input position */
	dma_addr_t dma_addr;
	unsigned int in_len;
	unsigned int unmap_len;
	dma_addr_t unmap_addr;
	unsigned short dma_flags;

	__be16 protocol;
	unsigned int ip_off;
	unsigned int tcp_off;
	unsigned int header_len;
	unsigned int ip_base_len;
	dma_addr_t header_dma_addr;
	unsigned int header_unmap_len;
};

static inline void prefetch_ptr(struct efx_tx_queue *tx_queue)
{
	unsigned int insert_ptr = efx_tx_queue_get_insert_index(tx_queue);
	char *ptr;

	ptr = (char *) (tx_queue->buffer + insert_ptr);
	prefetch(ptr);
	prefetch(ptr + 0x80);

	ptr = (char *) (((efx_qword_t *)tx_queue->txd.buf.addr) + insert_ptr);
	prefetch(ptr);
	prefetch(ptr + 0x80);
}

/**
 * efx_tx_queue_insert - push descriptors onto the TX queue
 * @tx_queue:		Efx TX queue
 * @dma_addr:		DMA address of fragment
 * @len:		Length of fragment
 * @final_buffer:	The final buffer inserted into the queue
 *
 * Push descriptors onto the TX queue.
 */
static void efx_tx_queue_insert(struct efx_tx_queue *tx_queue,
				dma_addr_t dma_addr, unsigned int len,
				struct efx_tx_buffer **final_buffer)
{
	struct efx_tx_buffer *buffer;
	unsigned int dma_len;

	EFX_BUG_ON_PARANOID(len <= 0);

	while (1) {
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
		++tx_queue->insert_count;

		EFX_BUG_ON_PARANOID(tx_queue->insert_count -
				    tx_queue->read_count >=
				    tx_queue->efx->txq_entries);

		buffer->dma_addr = dma_addr;

		dma_len = tx_queue->efx->type->tx_limit_len(tx_queue,
				dma_addr, len);

		/* If there's space for everything this is our last buffer. */
		if (dma_len >= len)
			break;

		buffer->len = dma_len;
		buffer->flags = EFX_TX_BUF_CONT;
		dma_addr += dma_len;
		len -= dma_len;
	}

	EFX_BUG_ON_PARANOID(!len);
	buffer->len = len;
	*final_buffer = buffer;
}

/*
 * Verify that our various assumptions about sk_buffs and the conditions
 * under which TSO will be attempted hold true.  Return the protocol number.
 */
static __be16 efx_tso_check_protocol(struct sk_buff *skb)
{
	__be16 protocol = skb->protocol;

	EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto !=
			    protocol);
	if (protocol == htons(ETH_P_8021Q)) {
		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;

		protocol = veh->h_vlan_encapsulated_proto;
	}

	if (protocol == htons(ETH_P_IP)) {
		EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP);
	} else {
		EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6));
		EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP);
	}
	EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data)
			     + (tcp_hdr(skb)->doff << 2u)) >
			    skb_headlen(skb));

	return protocol;
}

static u8 *efx_tsoh_get_buffer(struct efx_tx_queue *tx_queue,
			       struct efx_tx_buffer *buffer, unsigned int len)
{
	u8 *result;

	EFX_BUG_ON_PARANOID(buffer->len);
	EFX_BUG_ON_PARANOID(buffer->flags);
	EFX_BUG_ON_PARANOID(buffer->unmap_len);

	result = efx_tx_get_copy_buffer_limited(tx_queue, buffer, len);

	if (result) {
		buffer->flags = EFX_TX_BUF_CONT;
	} else {
		buffer->heap_buf = kmalloc(NET_IP_ALIGN + len, GFP_ATOMIC);
		if (unlikely(!buffer->heap_buf))
			return NULL;
		tx_queue->tso_long_headers++;
		result = (u8 *)buffer->heap_buf + NET_IP_ALIGN;
		buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_HEAP;
	}

	buffer->len = len;

	return result;
}

/*
 * Put a TSO header into the TX queue.
 *
 * This is special-cased because we know that it is small enough to fit in
 * a single fragment, and we know it doesn't cross a page boundary.  It
 * also allows us to not worry about end-of-packet etc.
 */
static int efx_tso_put_header(struct efx_tx_queue *tx_queue,
			      struct efx_tx_buffer *buffer, u8 *header)
{
	if (unlikely(buffer->flags & EFX_TX_BUF_HEAP)) {
		buffer->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
						  header, buffer->len,
						  DMA_TO_DEVICE);
		if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
					       buffer->dma_addr))) {
			kfree(buffer->heap_buf);
			buffer->len = 0;
			buffer->flags = 0;
			return -ENOMEM;
		}
		buffer->unmap_len = buffer->len;
		buffer->dma_offset = 0;
		buffer->flags |= EFX_TX_BUF_MAP_SINGLE;
	}

	++tx_queue->insert_count;
	return 0;
}


/* Parse the SKB header and initialise state. */
static int tso_start(struct tso_state *st, struct efx_nic *efx,
		     struct efx_tx_queue *tx_queue,
		     const struct sk_buff *skb)
{
	struct device *dma_dev = &efx->pci_dev->dev;
	unsigned int header_len, in_len;
	bool use_opt_desc = false;
	dma_addr_t dma_addr;

	if (tx_queue->tso_version == 1)
		use_opt_desc = true;

	st->ip_off = skb_network_header(skb) - skb->data;
	st->tcp_off = skb_transport_header(skb) - skb->data;
	header_len = st->tcp_off + (tcp_hdr(skb)->doff << 2u);
	in_len = skb_headlen(skb) - header_len;
	st->header_len = header_len;
	st->in_len = in_len;
	if (st->protocol == htons(ETH_P_IP)) {
		st->ip_base_len = st->header_len - st->ip_off;
		st->ipv4_id = ntohs(ip_hdr(skb)->id);
	} else {
		st->ip_base_len = st->header_len - st->tcp_off;
		st->ipv4_id = 0;
	}
	st->seqnum = ntohl(tcp_hdr(skb)->seq);

	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn);
	EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst);

	st->out_len = skb->len - header_len;

	if (!use_opt_desc) {
		st->header_unmap_len = 0;

		if (likely(in_len == 0)) {
			st->dma_flags = 0;
			st->unmap_len = 0;
			return 0;
		}

		dma_addr = dma_map_single(dma_dev, skb->data + header_len,
					  in_len, DMA_TO_DEVICE);
		st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
		st->dma_addr = dma_addr;
		st->unmap_addr = dma_addr;
		st->unmap_len = in_len;
	} else {
		dma_addr = dma_map_single(dma_dev, skb->data,
					  skb_headlen(skb), DMA_TO_DEVICE);
		st->header_dma_addr = dma_addr;
		st->header_unmap_len = skb_headlen(skb);
		st->dma_flags = 0;
		st->dma_addr = dma_addr + header_len;
		st->unmap_len = 0;
	}

	return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
}

static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
			    skb_frag_t *frag)
{
	st->unmap_addr = skb_frag_dma_map(&efx->pci_dev->dev, frag, 0,
					  skb_frag_size(frag), DMA_TO_DEVICE);
	if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
		st->dma_flags = 0;
		st->unmap_len = skb_frag_size(frag);
		st->in_len = skb_frag_size(frag);
		st->dma_addr = st->unmap_addr;
		return 0;
	}
	return -ENOMEM;
}


/**
 * tso_fill_packet_with_fragment - form descriptors for the current fragment
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Form descriptors for the current fragment, until we reach the end
 * of fragment or end-of-packet.
 */
static void tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
					  const struct sk_buff *skb,
					  struct tso_state *st)
{
	struct efx_tx_buffer *buffer;
	int n;

	if (st->in_len == 0)
		return;
	if (st->packet_space == 0)
		return;

	EFX_BUG_ON_PARANOID(st->in_len <= 0);
	EFX_BUG_ON_PARANOID(st->packet_space <= 0);

	n = min(st->in_len, st->packet_space);

	st->packet_space -= n;
	st->out_len -= n;
	st->in_len -= n;

	efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer);

	if (st->out_len == 0) {
		/* Transfer ownership of the skb */
		buffer->skb = skb;
		buffer->flags = EFX_TX_BUF_SKB;
	} else if (st->packet_space != 0) {
		buffer->flags = EFX_TX_BUF_CONT;
	}

	if (st->in_len == 0) {
		/* Transfer ownership of the DMA mapping */
		buffer->unmap_len = st->unmap_len;
		buffer->dma_offset = buffer->unmap_len - buffer->len;
		buffer->flags |= st->dma_flags;
		st->unmap_len = 0;
	}

	st->dma_addr += n;
}


#define TCP_FLAGS_OFFSET 13

/**
 * tso_start_new_packet - generate a new header and prepare for the new packet
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @st:			TSO state
 *
 * Generate a new header and prepare for the new packet.  Return 0 on
 * success, or -%ENOMEM if failed to alloc header.
 */
static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
				const struct sk_buff *skb,
				struct tso_state *st)
{
	struct efx_tx_buffer *buffer =
		efx_tx_queue_get_insert_buffer(tx_queue);
	bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
	u8 tcp_flags_mask;

	if (!is_last) {
		st->packet_space = skb_shinfo(skb)->gso_size;
		tcp_flags_mask = 0x09; /* mask out FIN and PSH */
	} else {
		st->packet_space = st->out_len;
		tcp_flags_mask = 0x00;
	}

	if (!st->header_unmap_len) {
		/* Allocate and insert a DMA-mapped header buffer. */
		struct tcphdr *tsoh_th;
		unsigned int ip_length;
		u8 *header;
		int rc;

		header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
		if (!header)
			return -ENOMEM;

		tsoh_th = (struct tcphdr *)(header + st->tcp_off);

		/* Copy and update the headers. */
		memcpy(header, skb->data, st->header_len);

		tsoh_th->seq = htonl(st->seqnum);
		((u8 *)tsoh_th)[TCP_FLAGS_OFFSET] &= ~tcp_flags_mask;

		ip_length = st->ip_base_len + st->packet_space;

		if (st->protocol == htons(ETH_P_IP)) {
			struct iphdr *tsoh_iph =
				(struct iphdr *)(header + st->ip_off);

			tsoh_iph->tot_len = htons(ip_length);
			tsoh_iph->id = htons(st->ipv4_id);
		} else {
			struct ipv6hdr *tsoh_iph =
				(struct ipv6hdr *)(header + st->ip_off);

			tsoh_iph->payload_len = htons(ip_length);
		}

		rc = efx_tso_put_header(tx_queue, buffer, header);
		if (unlikely(rc))
			return rc;
	} else {
		/* Send the original headers with a TSO option descriptor
		 * in front
		 */
		u8 tcp_flags = ((u8 *)tcp_hdr(skb))[TCP_FLAGS_OFFSET] &
				~tcp_flags_mask;

		buffer->flags = EFX_TX_BUF_OPTION;
		buffer->len = 0;
		buffer->unmap_len = 0;
		EFX_POPULATE_QWORD_5(buffer->option,
				     ESF_DZ_TX_DESC_IS_OPT, 1,
				     ESF_DZ_TX_OPTION_TYPE,
				     ESE_DZ_TX_OPTION_DESC_TSO,
				     ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
				     ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
				     ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
		++tx_queue->insert_count;

		/* We mapped the headers in tso_start().  Unmap them
		 * when the last segment is completed.
		 */
		buffer = efx_tx_queue_get_insert_buffer(tx_queue);
		buffer->dma_addr = st->header_dma_addr;
		buffer->len = st->header_len;
		if (is_last) {
			buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
			buffer->unmap_len = st->header_unmap_len;
			buffer->dma_offset = 0;
			/* Ensure we only unmap them once in case of a
			 * later DMA mapping error and rollback
			 */
			st->header_unmap_len = 0;
		} else {
			buffer->flags = EFX_TX_BUF_CONT;
			buffer->unmap_len = 0;
		}
		++tx_queue->insert_count;
	}

	st->seqnum += skb_shinfo(skb)->gso_size;

	/* Linux leaves suitable gaps in the IP ID space for us to fill. */
	++st->ipv4_id;

	return 0;
}

/**
 * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer
 * @tx_queue:		Efx TX queue
 * @skb:		Socket buffer
 * @data_mapped:        Did we map the data? Always set to true
 *                      by this on success.
 *
 * Context: You must hold netif_tx_lock() to call this function.
 *
 * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if
 * @skb was not enqueued.  In all cases @skb is consumed.  Return
 * %NETDEV_TX_OK.
 */
int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
			struct sk_buff *skb,
			bool *data_mapped)
{
	struct efx_nic *efx = tx_queue->efx;
	int frag_i, rc;
	struct tso_state state;

	prefetch(skb->data);

	/* Find the packet protocol and sanity-check it */
	state.protocol = efx_tso_check_protocol(skb);

	EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count);

	rc = tso_start(&state, efx, tx_queue, skb);
	if (rc)
		goto mem_err;

	if (likely(state.in_len == 0)) {
		/* Grab the first payload fragment. */
		EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1);
		frag_i = 0;
		rc = tso_get_fragment(&state, efx,
				      skb_shinfo(skb)->frags + frag_i);
		if (rc)
			goto mem_err;
	} else {
		/* Payload starts in the header area. */
		frag_i = -1;
	}

	if (tso_start_new_packet(tx_queue, skb, &state) < 0)
		goto mem_err;

	prefetch_ptr(tx_queue);

	while (1) {
		tso_fill_packet_with_fragment(tx_queue, skb, &state);

		/* Move onto the next fragment? */
		if (state.in_len == 0) {
			if (++frag_i >= skb_shinfo(skb)->nr_frags)
				/* End of payload reached. */
				break;
			rc = tso_get_fragment(&state, efx,
					      skb_shinfo(skb)->frags + frag_i);
			if (rc)
				goto mem_err;
		}

		/* Start at new packet? */
		if (state.packet_space == 0 &&
		    tso_start_new_packet(tx_queue, skb, &state) < 0)
			goto mem_err;
	}

	*data_mapped = true;

	return 0;

 mem_err:
	netif_err(efx, tx_err, efx->net_dev,
		  "Out of memory for TSO headers, or DMA mapping error\n");

	/* Free the DMA mapping we were in the process of writing out */
	if (state.unmap_len) {
		if (state.dma_flags & EFX_TX_BUF_MAP_SINGLE)
			dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
					 state.unmap_len, DMA_TO_DEVICE);
		else
			dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
				       state.unmap_len, DMA_TO_DEVICE);
	}

	/* Free the header DMA mapping, if using option descriptors */
	if (state.header_unmap_len)
		dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
				 state.header_unmap_len, DMA_TO_DEVICE);

	return -ENOMEM;
}