summaryrefslogblamecommitdiff
path: root/drivers/net/ethernet/sfc/siena_sriov.c
blob: d49b53dc2a500a2602093a2df63daba5c5ad2538 (plain) (tree)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651






















                                                                             


                                           












































































































































































































































































































































































































































































































                                                                                 
                                                            






























































                                                                                      
                                         








































































































                                                                                   


                                                                
















































































































                                                                                 




                                                                                
 
                                                                              
































































































































































































































                                                                                        
                                                            




































































































































































































































































































































































































































































































































































































































                                                                                  
/****************************************************************************
 * Driver for Solarflare Solarstorm network controllers and boards
 * Copyright 2010-2011 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */
#include <linux/pci.h>
#include <linux/module.h>
#include "net_driver.h"
#include "efx.h"
#include "nic.h"
#include "io.h"
#include "mcdi.h"
#include "filter.h"
#include "mcdi_pcol.h"
#include "regs.h"
#include "vfdi.h"

/* Number of longs required to track all the VIs in a VF */
#define VI_MASK_LENGTH BITS_TO_LONGS(1 << EFX_VI_SCALE_MAX)

/* Maximum number of RX queues supported */
#define VF_MAX_RX_QUEUES 63

/**
 * enum efx_vf_tx_filter_mode - TX MAC filtering behaviour
 * @VF_TX_FILTER_OFF: Disabled
 * @VF_TX_FILTER_AUTO: Enabled if MAC address assigned to VF and only
 *	2 TX queues allowed per VF.
 * @VF_TX_FILTER_ON: Enabled
 */
enum efx_vf_tx_filter_mode {
	VF_TX_FILTER_OFF,
	VF_TX_FILTER_AUTO,
	VF_TX_FILTER_ON,
};

/**
 * struct efx_vf - Back-end resource and protocol state for a PCI VF
 * @efx: The Efx NIC owning this VF
 * @pci_rid: The PCI requester ID for this VF
 * @pci_name: The PCI name (formatted address) of this VF
 * @index: Index of VF within its port and PF.
 * @req: VFDI incoming request work item. Incoming USR_EV events are received
 *	by the NAPI handler, but must be handled by executing MCDI requests
 *	inside a work item.
 * @req_addr: VFDI incoming request DMA address (in VF's PCI address space).
 * @req_type: Expected next incoming (from VF) %VFDI_EV_TYPE member.
 * @req_seqno: Expected next incoming (from VF) %VFDI_EV_SEQ member.
 * @msg_seqno: Next %VFDI_EV_SEQ member to reply to VF. Protected by
 *	@status_lock
 * @busy: VFDI request queued to be processed or being processed. Receiving
 *	a VFDI request when @busy is set is an error condition.
 * @buf: Incoming VFDI requests are DMA from the VF into this buffer.
 * @buftbl_base: Buffer table entries for this VF start at this index.
 * @rx_filtering: Receive filtering has been requested by the VF driver.
 * @rx_filter_flags: The flags sent in the %VFDI_OP_INSERT_FILTER request.
 * @rx_filter_qid: VF relative qid for RX filter requested by VF.
 * @rx_filter_id: Receive MAC filter ID. Only one filter per VF is supported.
 * @tx_filter_mode: Transmit MAC filtering mode.
 * @tx_filter_id: Transmit MAC filter ID.
 * @addr: The MAC address and outer vlan tag of the VF.
 * @status_addr: VF DMA address of page for &struct vfdi_status updates.
 * @status_lock: Mutex protecting @msg_seqno, @status_addr, @addr,
 *	@peer_page_addrs and @peer_page_count from simultaneous
 *	updates by the VM and consumption by
 *	efx_sriov_update_vf_addr()
 * @peer_page_addrs: Pointer to an array of guest pages for local addresses.
 * @peer_page_count: Number of entries in @peer_page_count.
 * @evq0_addrs: Array of guest pages backing evq0.
 * @evq0_count: Number of entries in @evq0_addrs.
 * @flush_waitq: wait queue used by %VFDI_OP_FINI_ALL_QUEUES handler
 *	to wait for flush completions.
 * @txq_lock: Mutex for TX queue allocation.
 * @txq_mask: Mask of initialized transmit queues.
 * @txq_count: Number of initialized transmit queues.
 * @rxq_mask: Mask of initialized receive queues.
 * @rxq_count: Number of initialized receive queues.
 * @rxq_retry_mask: Mask or receive queues that need to be flushed again
 *	due to flush failure.
 * @rxq_retry_count: Number of receive queues in @rxq_retry_mask.
 * @reset_work: Work item to schedule a VF reset.
 */
struct efx_vf {
	struct efx_nic *efx;
	unsigned int pci_rid;
	char pci_name[13]; /* dddd:bb:dd.f */
	unsigned int index;
	struct work_struct req;
	u64 req_addr;
	int req_type;
	unsigned req_seqno;
	unsigned msg_seqno;
	bool busy;
	struct efx_buffer buf;
	unsigned buftbl_base;
	bool rx_filtering;
	enum efx_filter_flags rx_filter_flags;
	unsigned rx_filter_qid;
	int rx_filter_id;
	enum efx_vf_tx_filter_mode tx_filter_mode;
	int tx_filter_id;
	struct vfdi_endpoint addr;
	u64 status_addr;
	struct mutex status_lock;
	u64 *peer_page_addrs;
	unsigned peer_page_count;
	u64 evq0_addrs[EFX_MAX_VF_EVQ_SIZE * sizeof(efx_qword_t) /
		       EFX_BUF_SIZE];
	unsigned evq0_count;
	wait_queue_head_t flush_waitq;
	struct mutex txq_lock;
	unsigned long txq_mask[VI_MASK_LENGTH];
	unsigned txq_count;
	unsigned long rxq_mask[VI_MASK_LENGTH];
	unsigned rxq_count;
	unsigned long rxq_retry_mask[VI_MASK_LENGTH];
	atomic_t rxq_retry_count;
	struct work_struct reset_work;
};

struct efx_memcpy_req {
	unsigned int from_rid;
	void *from_buf;
	u64 from_addr;
	unsigned int to_rid;
	u64 to_addr;
	unsigned length;
};

/**
 * struct efx_local_addr - A MAC address on the vswitch without a VF.
 *
 * Siena does not have a switch, so VFs can't transmit data to each
 * other. Instead the VFs must be made aware of the local addresses
 * on the vswitch, so that they can arrange for an alternative
 * software datapath to be used.
 *
 * @link: List head for insertion into efx->local_addr_list.
 * @addr: Ethernet address
 */
struct efx_local_addr {
	struct list_head link;
	u8 addr[ETH_ALEN];
};

/**
 * struct efx_endpoint_page - Page of vfdi_endpoint structures
 *
 * @link: List head for insertion into efx->local_page_list.
 * @ptr: Pointer to page.
 * @addr: DMA address of page.
 */
struct efx_endpoint_page {
	struct list_head link;
	void *ptr;
	dma_addr_t addr;
};

/* Buffer table entries are reserved txq0,rxq0,evq0,txq1,rxq1,evq1 */
#define EFX_BUFTBL_TXQ_BASE(_vf, _qid)					\
	((_vf)->buftbl_base + EFX_VF_BUFTBL_PER_VI * (_qid))
#define EFX_BUFTBL_RXQ_BASE(_vf, _qid)					\
	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
	 (EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))
#define EFX_BUFTBL_EVQ_BASE(_vf, _qid)					\
	(EFX_BUFTBL_TXQ_BASE(_vf, _qid) +				\
	 (2 * EFX_MAX_DMAQ_SIZE * sizeof(efx_qword_t) / EFX_BUF_SIZE))

#define EFX_FIELD_MASK(_field)			\
	((1 << _field ## _WIDTH) - 1)

/* VFs can only use this many transmit channels */
static unsigned int vf_max_tx_channels = 2;
module_param(vf_max_tx_channels, uint, 0444);
MODULE_PARM_DESC(vf_max_tx_channels,
		 "Limit the number of TX channels VFs can use");

static int max_vfs = -1;
module_param(max_vfs, int, 0444);
MODULE_PARM_DESC(max_vfs,
		 "Reduce the number of VFs initialized by the driver");

/* Workqueue used by VFDI communication.  We can't use the global
 * workqueue because it may be running the VF driver's probe()
 * routine, which will be blocked there waiting for a VFDI response.
 */
static struct workqueue_struct *vfdi_workqueue;

static unsigned abs_index(struct efx_vf *vf, unsigned index)
{
	return EFX_VI_BASE + vf->index * efx_vf_size(vf->efx) + index;
}

static int efx_sriov_cmd(struct efx_nic *efx, bool enable,
			 unsigned *vi_scale_out, unsigned *vf_total_out)
{
	u8 inbuf[MC_CMD_SRIOV_IN_LEN];
	u8 outbuf[MC_CMD_SRIOV_OUT_LEN];
	unsigned vi_scale, vf_total;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, SRIOV_IN_ENABLE, enable ? 1 : 0);
	MCDI_SET_DWORD(inbuf, SRIOV_IN_VI_BASE, EFX_VI_BASE);
	MCDI_SET_DWORD(inbuf, SRIOV_IN_VF_COUNT, efx->vf_count);

	rc = efx_mcdi_rpc(efx, MC_CMD_SRIOV, inbuf, MC_CMD_SRIOV_IN_LEN,
			  outbuf, MC_CMD_SRIOV_OUT_LEN, &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_SRIOV_OUT_LEN)
		return -EIO;

	vf_total = MCDI_DWORD(outbuf, SRIOV_OUT_VF_TOTAL);
	vi_scale = MCDI_DWORD(outbuf, SRIOV_OUT_VI_SCALE);
	if (vi_scale > EFX_VI_SCALE_MAX)
		return -EOPNOTSUPP;

	if (vi_scale_out)
		*vi_scale_out = vi_scale;
	if (vf_total_out)
		*vf_total_out = vf_total;

	return 0;
}

static void efx_sriov_usrev(struct efx_nic *efx, bool enabled)
{
	efx_oword_t reg;

	EFX_POPULATE_OWORD_2(reg,
			     FRF_CZ_USREV_DIS, enabled ? 0 : 1,
			     FRF_CZ_DFLT_EVQ, efx->vfdi_channel->channel);
	efx_writeo(efx, &reg, FR_CZ_USR_EV_CFG);
}

static int efx_sriov_memcpy(struct efx_nic *efx, struct efx_memcpy_req *req,
			    unsigned int count)
{
	u8 *inbuf, *record;
	unsigned int used;
	u32 from_rid, from_hi, from_lo;
	int rc;

	mb();	/* Finish writing source/reading dest before DMA starts */

	used = MC_CMD_MEMCPY_IN_LEN(count);
	if (WARN_ON(used > MCDI_CTL_SDU_LEN_MAX))
		return -ENOBUFS;

	/* Allocate room for the largest request */
	inbuf = kzalloc(MCDI_CTL_SDU_LEN_MAX, GFP_KERNEL);
	if (inbuf == NULL)
		return -ENOMEM;

	record = inbuf;
	MCDI_SET_DWORD(record, MEMCPY_IN_RECORD, count);
	while (count-- > 0) {
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_RID,
			       req->to_rid);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_LO,
			       (u32)req->to_addr);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_TO_ADDR_HI,
			       (u32)(req->to_addr >> 32));
		if (req->from_buf == NULL) {
			from_rid = req->from_rid;
			from_lo = (u32)req->from_addr;
			from_hi = (u32)(req->from_addr >> 32);
		} else {
			if (WARN_ON(used + req->length > MCDI_CTL_SDU_LEN_MAX)) {
				rc = -ENOBUFS;
				goto out;
			}

			from_rid = MC_CMD_MEMCPY_RECORD_TYPEDEF_RID_INLINE;
			from_lo = used;
			from_hi = 0;
			memcpy(inbuf + used, req->from_buf, req->length);
			used += req->length;
		}

		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_RID, from_rid);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_LO,
			       from_lo);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_FROM_ADDR_HI,
			       from_hi);
		MCDI_SET_DWORD(record, MEMCPY_RECORD_TYPEDEF_LENGTH,
			       req->length);

		++req;
		record += MC_CMD_MEMCPY_IN_RECORD_LEN;
	}

	rc = efx_mcdi_rpc(efx, MC_CMD_MEMCPY, inbuf, used, NULL, 0, NULL);
out:
	kfree(inbuf);

	mb();	/* Don't write source/read dest before DMA is complete */

	return rc;
}

/* The TX filter is entirely controlled by this driver, and is modified
 * underneath the feet of the VF
 */
static void efx_sriov_reset_tx_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct efx_filter_spec filter;
	u16 vlan;
	int rc;

	if (vf->tx_filter_id != -1) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  vf->tx_filter_id);
		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s tx filter %d\n",
			  vf->pci_name, vf->tx_filter_id);
		vf->tx_filter_id = -1;
	}

	if (is_zero_ether_addr(vf->addr.mac_addr))
		return;

	/* Turn on TX filtering automatically if not explicitly
	 * enabled or disabled.
	 */
	if (vf->tx_filter_mode == VF_TX_FILTER_AUTO && vf_max_tx_channels <= 2)
		vf->tx_filter_mode = VF_TX_FILTER_ON;

	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
	efx_filter_init_tx(&filter, abs_index(vf, 0));
	rc = efx_filter_set_eth_local(&filter,
				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
				      vf->addr.mac_addr);
	BUG_ON(rc);

	rc = efx_filter_insert_filter(efx, &filter, true);
	if (rc < 0) {
		netif_warn(efx, hw, efx->net_dev,
			   "Unable to migrate tx filter for vf %s\n",
			   vf->pci_name);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s tx filter %d\n",
			  vf->pci_name, rc);
		vf->tx_filter_id = rc;
	}
}

/* The RX filter is managed here on behalf of the VF driver */
static void efx_sriov_reset_rx_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct efx_filter_spec filter;
	u16 vlan;
	int rc;

	if (vf->rx_filter_id != -1) {
		efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
					  vf->rx_filter_id);
		netif_dbg(efx, hw, efx->net_dev, "Removed vf %s rx filter %d\n",
			  vf->pci_name, vf->rx_filter_id);
		vf->rx_filter_id = -1;
	}

	if (!vf->rx_filtering || is_zero_ether_addr(vf->addr.mac_addr))
		return;

	vlan = ntohs(vf->addr.tci) & VLAN_VID_MASK;
	efx_filter_init_rx(&filter, EFX_FILTER_PRI_REQUIRED,
			   vf->rx_filter_flags,
			   abs_index(vf, vf->rx_filter_qid));
	rc = efx_filter_set_eth_local(&filter,
				      vlan ? vlan : EFX_FILTER_VID_UNSPEC,
				      vf->addr.mac_addr);
	BUG_ON(rc);

	rc = efx_filter_insert_filter(efx, &filter, true);
	if (rc < 0) {
		netif_warn(efx, hw, efx->net_dev,
			   "Unable to insert rx filter for vf %s\n",
			   vf->pci_name);
	} else {
		netif_dbg(efx, hw, efx->net_dev, "Inserted vf %s rx filter %d\n",
			  vf->pci_name, rc);
		vf->rx_filter_id = rc;
	}
}

static void __efx_sriov_update_vf_addr(struct efx_vf *vf)
{
	efx_sriov_reset_tx_filter(vf);
	efx_sriov_reset_rx_filter(vf);
	queue_work(vfdi_workqueue, &vf->efx->peer_work);
}

/* Push the peer list to this VF. The caller must hold status_lock to interlock
 * with VFDI requests, and they must be serialised against manipulation of
 * local_page_list, either by acquiring local_lock or by running from
 * efx_sriov_peer_work()
 */
static void __efx_sriov_push_vf_status(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_status *status = efx->vfdi_status.addr;
	struct efx_memcpy_req copy[4];
	struct efx_endpoint_page *epp;
	unsigned int pos, count;
	unsigned data_offset;
	efx_qword_t event;

	WARN_ON(!mutex_is_locked(&vf->status_lock));
	WARN_ON(!vf->status_addr);

	status->local = vf->addr;
	status->generation_end = ++status->generation_start;

	memset(copy, '\0', sizeof(copy));
	/* Write generation_start */
	copy[0].from_buf = &status->generation_start;
	copy[0].to_rid = vf->pci_rid;
	copy[0].to_addr = vf->status_addr + offsetof(struct vfdi_status,
						     generation_start);
	copy[0].length = sizeof(status->generation_start);
	/* DMA the rest of the structure (excluding the generations). This
	 * assumes that the non-generation portion of vfdi_status is in
	 * one chunk starting at the version member.
	 */
	data_offset = offsetof(struct vfdi_status, version);
	copy[1].from_rid = efx->pci_dev->devfn;
	copy[1].from_addr = efx->vfdi_status.dma_addr + data_offset;
	copy[1].to_rid = vf->pci_rid;
	copy[1].to_addr = vf->status_addr + data_offset;
	copy[1].length =  status->length - data_offset;

	/* Copy the peer pages */
	pos = 2;
	count = 0;
	list_for_each_entry(epp, &efx->local_page_list, link) {
		if (count == vf->peer_page_count) {
			/* The VF driver will know they need to provide more
			 * pages because peer_addr_count is too large.
			 */
			break;
		}
		copy[pos].from_buf = NULL;
		copy[pos].from_rid = efx->pci_dev->devfn;
		copy[pos].from_addr = epp->addr;
		copy[pos].to_rid = vf->pci_rid;
		copy[pos].to_addr = vf->peer_page_addrs[count];
		copy[pos].length = EFX_PAGE_SIZE;

		if (++pos == ARRAY_SIZE(copy)) {
			efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
			pos = 0;
		}
		++count;
	}

	/* Write generation_end */
	copy[pos].from_buf = &status->generation_end;
	copy[pos].to_rid = vf->pci_rid;
	copy[pos].to_addr = vf->status_addr + offsetof(struct vfdi_status,
						       generation_end);
	copy[pos].length = sizeof(status->generation_end);
	efx_sriov_memcpy(efx, copy, pos + 1);

	/* Notify the guest */
	EFX_POPULATE_QWORD_3(event,
			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
			     VFDI_EV_SEQ, (vf->msg_seqno & 0xff),
			     VFDI_EV_TYPE, VFDI_EV_TYPE_STATUS);
	++vf->msg_seqno;
	efx_generate_event(efx, EFX_VI_BASE + vf->index * efx_vf_size(efx),
			      &event);
}

static void efx_sriov_bufs(struct efx_nic *efx, unsigned offset,
			   u64 *addr, unsigned count)
{
	efx_qword_t buf;
	unsigned pos;

	for (pos = 0; pos < count; ++pos) {
		EFX_POPULATE_QWORD_3(buf,
				     FRF_AZ_BUF_ADR_REGION, 0,
				     FRF_AZ_BUF_ADR_FBUF,
				     addr ? addr[pos] >> 12 : 0,
				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
		efx_sram_writeq(efx, efx->membase + FR_BZ_BUF_FULL_TBL,
				&buf, offset + pos);
	}
}

static bool bad_vf_index(struct efx_nic *efx, unsigned index)
{
	return index >= efx_vf_size(efx);
}

static bool bad_buf_count(unsigned buf_count, unsigned max_entry_count)
{
	unsigned max_buf_count = max_entry_count *
		sizeof(efx_qword_t) / EFX_BUF_SIZE;

	return ((buf_count & (buf_count - 1)) || buf_count > max_buf_count);
}

/* Check that VI specified by per-port index belongs to a VF.
 * Optionally set VF index and VI index within the VF.
 */
static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
			 struct efx_vf **vf_out, unsigned *rel_index_out)
{
	unsigned vf_i;

	if (abs_index < EFX_VI_BASE)
		return true;
	vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
	if (vf_i >= efx->vf_init_count)
		return true;

	if (vf_out)
		*vf_out = efx->vf + vf_i;
	if (rel_index_out)
		*rel_index_out = abs_index % efx_vf_size(efx);
	return false;
}

static int efx_vfdi_init_evq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_evq = req->u.init_evq.index;
	unsigned buf_count = req->u.init_evq.buf_count;
	unsigned abs_evq = abs_index(vf, vf_evq);
	unsigned buftbl = EFX_BUFTBL_EVQ_BASE(vf, vf_evq);
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) ||
	    bad_buf_count(buf_count, EFX_MAX_VF_EVQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_EVQ from %s: evq %d bufs %d\n",
				  vf->pci_name, vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}

	efx_sriov_bufs(efx, buftbl, req->u.init_evq.addr, buf_count);

	EFX_POPULATE_OWORD_3(reg,
			     FRF_CZ_TIMER_Q_EN, 1,
			     FRF_CZ_HOST_NOTIFY_MODE, 0,
			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(buf_count),
			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);

	if (vf_evq == 0) {
		memcpy(vf->evq0_addrs, req->u.init_evq.addr,
		       buf_count * sizeof(u64));
		vf->evq0_count = buf_count;
	}

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_init_rxq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_rxq = req->u.init_rxq.index;
	unsigned vf_evq = req->u.init_rxq.evq;
	unsigned buf_count = req->u.init_rxq.buf_count;
	unsigned buftbl = EFX_BUFTBL_RXQ_BASE(vf, vf_rxq);
	unsigned label;
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_rxq) ||
	    vf_rxq >= VF_MAX_RX_QUEUES ||
	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_RXQ from %s: rxq %d evq %d "
				  "buf_count %d\n", vf->pci_name, vf_rxq,
				  vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}
	if (__test_and_set_bit(req->u.init_rxq.index, vf->rxq_mask))
		++vf->rxq_count;
	efx_sriov_bufs(efx, buftbl, req->u.init_rxq.addr, buf_count);

	label = req->u.init_rxq.label & EFX_FIELD_MASK(FRF_AZ_RX_DESCQ_LABEL);
	EFX_POPULATE_OWORD_6(reg,
			     FRF_AZ_RX_DESCQ_BUF_BASE_ID, buftbl,
			     FRF_AZ_RX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
			     FRF_AZ_RX_DESCQ_LABEL, label,
			     FRF_AZ_RX_DESCQ_SIZE, __ffs(buf_count),
			     FRF_AZ_RX_DESCQ_JUMBO,
			     !!(req->u.init_rxq.flags &
				VFDI_RXQ_FLAG_SCATTER_EN),
			     FRF_AZ_RX_DESCQ_EN, 1);
	efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
			 abs_index(vf, vf_rxq));

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_init_txq(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_txq = req->u.init_txq.index;
	unsigned vf_evq = req->u.init_txq.evq;
	unsigned buf_count = req->u.init_txq.buf_count;
	unsigned buftbl = EFX_BUFTBL_TXQ_BASE(vf, vf_txq);
	unsigned label, eth_filt_en;
	efx_oword_t reg;

	if (bad_vf_index(efx, vf_evq) || bad_vf_index(efx, vf_txq) ||
	    vf_txq >= vf_max_tx_channels ||
	    bad_buf_count(buf_count, EFX_MAX_DMAQ_SIZE)) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INIT_TXQ from %s: txq %d evq %d "
				  "buf_count %d\n", vf->pci_name, vf_txq,
				  vf_evq, buf_count);
		return VFDI_RC_EINVAL;
	}

	mutex_lock(&vf->txq_lock);
	if (__test_and_set_bit(req->u.init_txq.index, vf->txq_mask))
		++vf->txq_count;
	mutex_unlock(&vf->txq_lock);
	efx_sriov_bufs(efx, buftbl, req->u.init_txq.addr, buf_count);

	eth_filt_en = vf->tx_filter_mode == VF_TX_FILTER_ON;

	label = req->u.init_txq.label & EFX_FIELD_MASK(FRF_AZ_TX_DESCQ_LABEL);
	EFX_POPULATE_OWORD_8(reg,
			     FRF_CZ_TX_DPT_Q_MASK_WIDTH, min(efx->vi_scale, 1U),
			     FRF_CZ_TX_DPT_ETH_FILT_EN, eth_filt_en,
			     FRF_AZ_TX_DESCQ_EN, 1,
			     FRF_AZ_TX_DESCQ_BUF_BASE_ID, buftbl,
			     FRF_AZ_TX_DESCQ_EVQ_ID, abs_index(vf, vf_evq),
			     FRF_AZ_TX_DESCQ_LABEL, label,
			     FRF_AZ_TX_DESCQ_SIZE, __ffs(buf_count),
			     FRF_BZ_TX_NON_IP_DROP_DIS, 1);
	efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
			 abs_index(vf, vf_txq));

	return VFDI_RC_SUCCESS;
}

/* Returns true when efx_vfdi_fini_all_queues should wake */
static bool efx_vfdi_flush_wake(struct efx_vf *vf)
{
	/* Ensure that all updates are visible to efx_vfdi_fini_all_queues() */
	smp_mb();

	return (!vf->txq_count && !vf->rxq_count) ||
		atomic_read(&vf->rxq_retry_count);
}

static void efx_vfdi_flush_clear(struct efx_vf *vf)
{
	memset(vf->txq_mask, 0, sizeof(vf->txq_mask));
	vf->txq_count = 0;
	memset(vf->rxq_mask, 0, sizeof(vf->rxq_mask));
	vf->rxq_count = 0;
	memset(vf->rxq_retry_mask, 0, sizeof(vf->rxq_retry_mask));
	atomic_set(&vf->rxq_retry_count, 0);
}

static int efx_vfdi_fini_all_queues(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	efx_oword_t reg;
	unsigned count = efx_vf_size(efx);
	unsigned vf_offset = EFX_VI_BASE + vf->index * efx_vf_size(efx);
	unsigned timeout = HZ;
	unsigned index, rxqs_count;
	__le32 *rxqs;
	int rc;

	BUILD_BUG_ON(VF_MAX_RX_QUEUES >
		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);

	rxqs = kmalloc(count * sizeof(*rxqs), GFP_KERNEL);
	if (rxqs == NULL)
		return VFDI_RC_ENOMEM;

	rtnl_lock();
	if (efx->fc_disable++ == 0)
		efx_mcdi_set_mac(efx);
	rtnl_unlock();

	/* Flush all the initialized queues */
	rxqs_count = 0;
	for (index = 0; index < count; ++index) {
		if (test_bit(index, vf->txq_mask)) {
			EFX_POPULATE_OWORD_2(reg,
					     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
					     FRF_AZ_TX_FLUSH_DESCQ,
					     vf_offset + index);
			efx_writeo(efx, &reg, FR_AZ_TX_FLUSH_DESCQ);
		}
		if (test_bit(index, vf->rxq_mask))
			rxqs[rxqs_count++] = cpu_to_le32(vf_offset + index);
	}

	atomic_set(&vf->rxq_retry_count, 0);
	while (timeout && (vf->rxq_count || vf->txq_count)) {
		rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, (u8 *)rxqs,
				  rxqs_count * sizeof(*rxqs), NULL, 0, NULL);
		WARN_ON(rc < 0);

		timeout = wait_event_timeout(vf->flush_waitq,
					     efx_vfdi_flush_wake(vf),
					     timeout);
		rxqs_count = 0;
		for (index = 0; index < count; ++index) {
			if (test_and_clear_bit(index, vf->rxq_retry_mask)) {
				atomic_dec(&vf->rxq_retry_count);
				rxqs[rxqs_count++] =
					cpu_to_le32(vf_offset + index);
			}
		}
	}

	rtnl_lock();
	if (--efx->fc_disable == 0)
		efx_mcdi_set_mac(efx);
	rtnl_unlock();

	/* Irrespective of success/failure, fini the queues */
	EFX_ZERO_OWORD(reg);
	for (index = 0; index < count; ++index) {
		efx_writeo_table(efx, &reg, FR_BZ_RX_DESC_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_TX_DESC_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL,
				 vf_offset + index);
		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL,
				 vf_offset + index);
	}
	efx_sriov_bufs(efx, vf->buftbl_base, NULL,
		       EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx));
	kfree(rxqs);
	efx_vfdi_flush_clear(vf);

	vf->evq0_count = 0;

	return timeout ? 0 : VFDI_RC_ETIMEDOUT;
}

static int efx_vfdi_insert_filter(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	unsigned vf_rxq = req->u.mac_filter.rxq;
	unsigned flags;

	if (bad_vf_index(efx, vf_rxq) || vf->rx_filtering) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid INSERT_FILTER from %s: rxq %d "
				  "flags 0x%x\n", vf->pci_name, vf_rxq,
				  req->u.mac_filter.flags);
		return VFDI_RC_EINVAL;
	}

	flags = 0;
	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_RSS)
		flags |= EFX_FILTER_FLAG_RX_RSS;
	if (req->u.mac_filter.flags & VFDI_MAC_FILTER_FLAG_SCATTER)
		flags |= EFX_FILTER_FLAG_RX_SCATTER;
	vf->rx_filter_flags = flags;
	vf->rx_filter_qid = vf_rxq;
	vf->rx_filtering = true;

	efx_sriov_reset_rx_filter(vf);
	queue_work(vfdi_workqueue, &efx->peer_work);

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_remove_all_filters(struct efx_vf *vf)
{
	vf->rx_filtering = false;
	efx_sriov_reset_rx_filter(vf);
	queue_work(vfdi_workqueue, &vf->efx->peer_work);

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_set_status_page(struct efx_vf *vf)
{
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	u64 page_count = req->u.set_status_page.peer_page_count;
	u64 max_page_count =
		(EFX_PAGE_SIZE -
		 offsetof(struct vfdi_req, u.set_status_page.peer_page_addr[0]))
		/ sizeof(req->u.set_status_page.peer_page_addr[0]);

	if (!req->u.set_status_page.dma_addr || page_count > max_page_count) {
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Invalid SET_STATUS_PAGE from %s\n",
				  vf->pci_name);
		return VFDI_RC_EINVAL;
	}

	mutex_lock(&efx->local_lock);
	mutex_lock(&vf->status_lock);
	vf->status_addr = req->u.set_status_page.dma_addr;

	kfree(vf->peer_page_addrs);
	vf->peer_page_addrs = NULL;
	vf->peer_page_count = 0;

	if (page_count) {
		vf->peer_page_addrs = kcalloc(page_count, sizeof(u64),
					      GFP_KERNEL);
		if (vf->peer_page_addrs) {
			memcpy(vf->peer_page_addrs,
			       req->u.set_status_page.peer_page_addr,
			       page_count * sizeof(u64));
			vf->peer_page_count = page_count;
		}
	}

	__efx_sriov_push_vf_status(vf);
	mutex_unlock(&vf->status_lock);
	mutex_unlock(&efx->local_lock);

	return VFDI_RC_SUCCESS;
}

static int efx_vfdi_clear_status_page(struct efx_vf *vf)
{
	mutex_lock(&vf->status_lock);
	vf->status_addr = 0;
	mutex_unlock(&vf->status_lock);

	return VFDI_RC_SUCCESS;
}

typedef int (*efx_vfdi_op_t)(struct efx_vf *vf);

static const efx_vfdi_op_t vfdi_ops[VFDI_OP_LIMIT] = {
	[VFDI_OP_INIT_EVQ] = efx_vfdi_init_evq,
	[VFDI_OP_INIT_TXQ] = efx_vfdi_init_txq,
	[VFDI_OP_INIT_RXQ] = efx_vfdi_init_rxq,
	[VFDI_OP_FINI_ALL_QUEUES] = efx_vfdi_fini_all_queues,
	[VFDI_OP_INSERT_FILTER] = efx_vfdi_insert_filter,
	[VFDI_OP_REMOVE_ALL_FILTERS] = efx_vfdi_remove_all_filters,
	[VFDI_OP_SET_STATUS_PAGE] = efx_vfdi_set_status_page,
	[VFDI_OP_CLEAR_STATUS_PAGE] = efx_vfdi_clear_status_page,
};

static void efx_sriov_vfdi(struct work_struct *work)
{
	struct efx_vf *vf = container_of(work, struct efx_vf, req);
	struct efx_nic *efx = vf->efx;
	struct vfdi_req *req = vf->buf.addr;
	struct efx_memcpy_req copy[2];
	int rc;

	/* Copy this page into the local address space */
	memset(copy, '\0', sizeof(copy));
	copy[0].from_rid = vf->pci_rid;
	copy[0].from_addr = vf->req_addr;
	copy[0].to_rid = efx->pci_dev->devfn;
	copy[0].to_addr = vf->buf.dma_addr;
	copy[0].length = EFX_PAGE_SIZE;
	rc = efx_sriov_memcpy(efx, copy, 1);
	if (rc) {
		/* If we can't get the request, we can't reply to the caller */
		if (net_ratelimit())
			netif_err(efx, hw, efx->net_dev,
				  "ERROR: Unable to fetch VFDI request from %s rc %d\n",
				  vf->pci_name, -rc);
		vf->busy = false;
		return;
	}

	if (req->op < VFDI_OP_LIMIT && vfdi_ops[req->op] != NULL) {
		rc = vfdi_ops[req->op](vf);
		if (rc == 0) {
			netif_dbg(efx, hw, efx->net_dev,
				  "vfdi request %d from %s ok\n",
				  req->op, vf->pci_name);
		}
	} else {
		netif_dbg(efx, hw, efx->net_dev,
			  "ERROR: Unrecognised request %d from VF %s addr "
			  "%llx\n", req->op, vf->pci_name,
			  (unsigned long long)vf->req_addr);
		rc = VFDI_RC_EOPNOTSUPP;
	}

	/* Allow subsequent VF requests */
	vf->busy = false;
	smp_wmb();

	/* Respond to the request */
	req->rc = rc;
	req->op = VFDI_OP_RESPONSE;

	memset(copy, '\0', sizeof(copy));
	copy[0].from_buf = &req->rc;
	copy[0].to_rid = vf->pci_rid;
	copy[0].to_addr = vf->req_addr + offsetof(struct vfdi_req, rc);
	copy[0].length = sizeof(req->rc);
	copy[1].from_buf = &req->op;
	copy[1].to_rid = vf->pci_rid;
	copy[1].to_addr = vf->req_addr + offsetof(struct vfdi_req, op);
	copy[1].length = sizeof(req->op);

	(void) efx_sriov_memcpy(efx, copy, ARRAY_SIZE(copy));
}



/* After a reset the event queues inside the guests no longer exist. Fill the
 * event ring in guest memory with VFDI reset events, then (re-initialise) the
 * event queue to raise an interrupt. The guest driver will then recover.
 */
static void efx_sriov_reset_vf(struct efx_vf *vf, struct efx_buffer *buffer)
{
	struct efx_nic *efx = vf->efx;
	struct efx_memcpy_req copy_req[4];
	efx_qword_t event;
	unsigned int pos, count, k, buftbl, abs_evq;
	efx_oword_t reg;
	efx_dword_t ptr;
	int rc;

	BUG_ON(buffer->len != EFX_PAGE_SIZE);

	if (!vf->evq0_count)
		return;
	BUG_ON(vf->evq0_count & (vf->evq0_count - 1));

	mutex_lock(&vf->status_lock);
	EFX_POPULATE_QWORD_3(event,
			     FSF_AZ_EV_CODE, FSE_CZ_EV_CODE_USER_EV,
			     VFDI_EV_SEQ, vf->msg_seqno,
			     VFDI_EV_TYPE, VFDI_EV_TYPE_RESET);
	vf->msg_seqno++;
	for (pos = 0; pos < EFX_PAGE_SIZE; pos += sizeof(event))
		memcpy(buffer->addr + pos, &event, sizeof(event));

	for (pos = 0; pos < vf->evq0_count; pos += count) {
		count = min_t(unsigned, vf->evq0_count - pos,
			      ARRAY_SIZE(copy_req));
		for (k = 0; k < count; k++) {
			copy_req[k].from_buf = NULL;
			copy_req[k].from_rid = efx->pci_dev->devfn;
			copy_req[k].from_addr = buffer->dma_addr;
			copy_req[k].to_rid = vf->pci_rid;
			copy_req[k].to_addr = vf->evq0_addrs[pos + k];
			copy_req[k].length = EFX_PAGE_SIZE;
		}
		rc = efx_sriov_memcpy(efx, copy_req, count);
		if (rc) {
			if (net_ratelimit())
				netif_err(efx, hw, efx->net_dev,
					  "ERROR: Unable to notify %s of reset"
					  ": %d\n", vf->pci_name, -rc);
			break;
		}
	}

	/* Reinitialise, arm and trigger evq0 */
	abs_evq = abs_index(vf, 0);
	buftbl = EFX_BUFTBL_EVQ_BASE(vf, 0);
	efx_sriov_bufs(efx, buftbl, vf->evq0_addrs, vf->evq0_count);

	EFX_POPULATE_OWORD_3(reg,
			     FRF_CZ_TIMER_Q_EN, 1,
			     FRF_CZ_HOST_NOTIFY_MODE, 0,
			     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
	efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, abs_evq);
	EFX_POPULATE_OWORD_3(reg,
			     FRF_AZ_EVQ_EN, 1,
			     FRF_AZ_EVQ_SIZE, __ffs(vf->evq0_count),
			     FRF_AZ_EVQ_BUF_BASE_ID, buftbl);
	efx_writeo_table(efx, &reg, FR_BZ_EVQ_PTR_TBL, abs_evq);
	EFX_POPULATE_DWORD_1(ptr, FRF_AZ_EVQ_RPTR, 0);
	efx_writed_table(efx, &ptr, FR_BZ_EVQ_RPTR, abs_evq);

	mutex_unlock(&vf->status_lock);
}

static void efx_sriov_reset_vf_work(struct work_struct *work)
{
	struct efx_vf *vf = container_of(work, struct efx_vf, req);
	struct efx_nic *efx = vf->efx;
	struct efx_buffer buf;

	if (!efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE)) {
		efx_sriov_reset_vf(vf, &buf);
		efx_nic_free_buffer(efx, &buf);
	}
}

static void efx_sriov_handle_no_channel(struct efx_nic *efx)
{
	netif_err(efx, drv, efx->net_dev,
		  "ERROR: IOV requires MSI-X and 1 additional interrupt"
		  "vector. IOV disabled\n");
	efx->vf_count = 0;
}

static int efx_sriov_probe_channel(struct efx_channel *channel)
{
	channel->efx->vfdi_channel = channel;
	return 0;
}

static void
efx_sriov_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
{
	snprintf(buf, len, "%s-iov", channel->efx->name);
}

static const struct efx_channel_type efx_sriov_channel_type = {
	.handle_no_channel	= efx_sriov_handle_no_channel,
	.pre_probe		= efx_sriov_probe_channel,
	.post_remove		= efx_channel_dummy_op_void,
	.get_name		= efx_sriov_get_channel_name,
	/* no copy operation; channel must not be reallocated */
	.keep_eventq		= true,
};

void efx_sriov_probe(struct efx_nic *efx)
{
	unsigned count;

	if (!max_vfs)
		return;

	if (efx_sriov_cmd(efx, false, &efx->vi_scale, &count))
		return;
	if (count > 0 && count > max_vfs)
		count = max_vfs;

	/* efx_nic_dimension_resources() will reduce vf_count as appopriate */
	efx->vf_count = count;

	efx->extra_channel_type[EFX_EXTRA_CHANNEL_IOV] = &efx_sriov_channel_type;
}

/* Copy the list of individual addresses into the vfdi_status.peers
 * array and auxillary pages, protected by %local_lock. Drop that lock
 * and then broadcast the address list to every VF.
 */
static void efx_sriov_peer_work(struct work_struct *data)
{
	struct efx_nic *efx = container_of(data, struct efx_nic, peer_work);
	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;
	struct efx_vf *vf;
	struct efx_local_addr *local_addr;
	struct vfdi_endpoint *peer;
	struct efx_endpoint_page *epp;
	struct list_head pages;
	unsigned int peer_space;
	unsigned int peer_count;
	unsigned int pos;

	mutex_lock(&efx->local_lock);

	/* Move the existing peer pages off %local_page_list */
	INIT_LIST_HEAD(&pages);
	list_splice_tail_init(&efx->local_page_list, &pages);

	/* Populate the VF addresses starting from entry 1 (entry 0 is
	 * the PF address)
	 */
	peer = vfdi_status->peers + 1;
	peer_space = ARRAY_SIZE(vfdi_status->peers) - 1;
	peer_count = 1;
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		mutex_lock(&vf->status_lock);
		if (vf->rx_filtering && !is_zero_ether_addr(vf->addr.mac_addr)) {
			*peer++ = vf->addr;
			++peer_count;
			--peer_space;
			BUG_ON(peer_space == 0);
		}
		mutex_unlock(&vf->status_lock);
	}

	/* Fill the remaining addresses */
	list_for_each_entry(local_addr, &efx->local_addr_list, link) {
		memcpy(peer->mac_addr, local_addr->addr, ETH_ALEN);
		peer->tci = 0;
		++peer;
		++peer_count;
		if (--peer_space == 0) {
			if (list_empty(&pages)) {
				epp = kmalloc(sizeof(*epp), GFP_KERNEL);
				if (!epp)
					break;
				epp->ptr = dma_alloc_coherent(
					&efx->pci_dev->dev, EFX_PAGE_SIZE,
					&epp->addr, GFP_KERNEL);
				if (!epp->ptr) {
					kfree(epp);
					break;
				}
			} else {
				epp = list_first_entry(
					&pages, struct efx_endpoint_page, link);
				list_del(&epp->link);
			}

			list_add_tail(&epp->link, &efx->local_page_list);
			peer = (struct vfdi_endpoint *)epp->ptr;
			peer_space = EFX_PAGE_SIZE / sizeof(struct vfdi_endpoint);
		}
	}
	vfdi_status->peer_count = peer_count;
	mutex_unlock(&efx->local_lock);

	/* Free any now unused endpoint pages */
	while (!list_empty(&pages)) {
		epp = list_first_entry(
			&pages, struct efx_endpoint_page, link);
		list_del(&epp->link);
		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
				  epp->ptr, epp->addr);
		kfree(epp);
	}

	/* Finally, push the pages */
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		mutex_lock(&vf->status_lock);
		if (vf->status_addr)
			__efx_sriov_push_vf_status(vf);
		mutex_unlock(&vf->status_lock);
	}
}

static void efx_sriov_free_local(struct efx_nic *efx)
{
	struct efx_local_addr *local_addr;
	struct efx_endpoint_page *epp;

	while (!list_empty(&efx->local_addr_list)) {
		local_addr = list_first_entry(&efx->local_addr_list,
					      struct efx_local_addr, link);
		list_del(&local_addr->link);
		kfree(local_addr);
	}

	while (!list_empty(&efx->local_page_list)) {
		epp = list_first_entry(&efx->local_page_list,
				       struct efx_endpoint_page, link);
		list_del(&epp->link);
		dma_free_coherent(&efx->pci_dev->dev, EFX_PAGE_SIZE,
				  epp->ptr, epp->addr);
		kfree(epp);
	}
}

static int efx_sriov_vf_alloc(struct efx_nic *efx)
{
	unsigned index;
	struct efx_vf *vf;

	efx->vf = kzalloc(sizeof(struct efx_vf) * efx->vf_count, GFP_KERNEL);
	if (!efx->vf)
		return -ENOMEM;

	for (index = 0; index < efx->vf_count; ++index) {
		vf = efx->vf + index;

		vf->efx = efx;
		vf->index = index;
		vf->rx_filter_id = -1;
		vf->tx_filter_mode = VF_TX_FILTER_AUTO;
		vf->tx_filter_id = -1;
		INIT_WORK(&vf->req, efx_sriov_vfdi);
		INIT_WORK(&vf->reset_work, efx_sriov_reset_vf_work);
		init_waitqueue_head(&vf->flush_waitq);
		mutex_init(&vf->status_lock);
		mutex_init(&vf->txq_lock);
	}

	return 0;
}

static void efx_sriov_vfs_fini(struct efx_nic *efx)
{
	struct efx_vf *vf;
	unsigned int pos;

	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;

		efx_nic_free_buffer(efx, &vf->buf);
		kfree(vf->peer_page_addrs);
		vf->peer_page_addrs = NULL;
		vf->peer_page_count = 0;

		vf->evq0_count = 0;
	}
}

static int efx_sriov_vfs_init(struct efx_nic *efx)
{
	struct pci_dev *pci_dev = efx->pci_dev;
	unsigned index, devfn, sriov, buftbl_base;
	u16 offset, stride;
	struct efx_vf *vf;
	int rc;

	sriov = pci_find_ext_capability(pci_dev, PCI_EXT_CAP_ID_SRIOV);
	if (!sriov)
		return -ENOENT;

	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_OFFSET, &offset);
	pci_read_config_word(pci_dev, sriov + PCI_SRIOV_VF_STRIDE, &stride);

	buftbl_base = efx->vf_buftbl_base;
	devfn = pci_dev->devfn + offset;
	for (index = 0; index < efx->vf_count; ++index) {
		vf = efx->vf + index;

		/* Reserve buffer entries */
		vf->buftbl_base = buftbl_base;
		buftbl_base += EFX_VF_BUFTBL_PER_VI * efx_vf_size(efx);

		vf->pci_rid = devfn;
		snprintf(vf->pci_name, sizeof(vf->pci_name),
			 "%04x:%02x:%02x.%d",
			 pci_domain_nr(pci_dev->bus), pci_dev->bus->number,
			 PCI_SLOT(devfn), PCI_FUNC(devfn));

		rc = efx_nic_alloc_buffer(efx, &vf->buf, EFX_PAGE_SIZE);
		if (rc)
			goto fail;

		devfn += stride;
	}

	return 0;

fail:
	efx_sriov_vfs_fini(efx);
	return rc;
}

int efx_sriov_init(struct efx_nic *efx)
{
	struct net_device *net_dev = efx->net_dev;
	struct vfdi_status *vfdi_status;
	int rc;

	/* Ensure there's room for vf_channel */
	BUILD_BUG_ON(EFX_MAX_CHANNELS + 1 >= EFX_VI_BASE);
	/* Ensure that VI_BASE is aligned on VI_SCALE */
	BUILD_BUG_ON(EFX_VI_BASE & ((1 << EFX_VI_SCALE_MAX) - 1));

	if (efx->vf_count == 0)
		return 0;

	rc = efx_sriov_cmd(efx, true, NULL, NULL);
	if (rc)
		goto fail_cmd;

	rc = efx_nic_alloc_buffer(efx, &efx->vfdi_status, sizeof(*vfdi_status));
	if (rc)
		goto fail_status;
	vfdi_status = efx->vfdi_status.addr;
	memset(vfdi_status, 0, sizeof(*vfdi_status));
	vfdi_status->version = 1;
	vfdi_status->length = sizeof(*vfdi_status);
	vfdi_status->max_tx_channels = vf_max_tx_channels;
	vfdi_status->vi_scale = efx->vi_scale;
	vfdi_status->rss_rxq_count = efx->rss_spread;
	vfdi_status->peer_count = 1 + efx->vf_count;
	vfdi_status->timer_quantum_ns = efx->timer_quantum_ns;

	rc = efx_sriov_vf_alloc(efx);
	if (rc)
		goto fail_alloc;

	mutex_init(&efx->local_lock);
	INIT_WORK(&efx->peer_work, efx_sriov_peer_work);
	INIT_LIST_HEAD(&efx->local_addr_list);
	INIT_LIST_HEAD(&efx->local_page_list);

	rc = efx_sriov_vfs_init(efx);
	if (rc)
		goto fail_vfs;

	rtnl_lock();
	memcpy(vfdi_status->peers[0].mac_addr,
	       net_dev->dev_addr, ETH_ALEN);
	efx->vf_init_count = efx->vf_count;
	rtnl_unlock();

	efx_sriov_usrev(efx, true);

	/* At this point we must be ready to accept VFDI requests */

	rc = pci_enable_sriov(efx->pci_dev, efx->vf_count);
	if (rc)
		goto fail_pci;

	netif_info(efx, probe, net_dev,
		   "enabled SR-IOV for %d VFs, %d VI per VF\n",
		   efx->vf_count, efx_vf_size(efx));
	return 0;

fail_pci:
	efx_sriov_usrev(efx, false);
	rtnl_lock();
	efx->vf_init_count = 0;
	rtnl_unlock();
	efx_sriov_vfs_fini(efx);
fail_vfs:
	cancel_work_sync(&efx->peer_work);
	efx_sriov_free_local(efx);
	kfree(efx->vf);
fail_alloc:
	efx_nic_free_buffer(efx, &efx->vfdi_status);
fail_status:
	efx_sriov_cmd(efx, false, NULL, NULL);
fail_cmd:
	return rc;
}

void efx_sriov_fini(struct efx_nic *efx)
{
	struct efx_vf *vf;
	unsigned int pos;

	if (efx->vf_init_count == 0)
		return;

	/* Disable all interfaces to reconfiguration */
	BUG_ON(efx->vfdi_channel->enabled);
	efx_sriov_usrev(efx, false);
	rtnl_lock();
	efx->vf_init_count = 0;
	rtnl_unlock();

	/* Flush all reconfiguration work */
	for (pos = 0; pos < efx->vf_count; ++pos) {
		vf = efx->vf + pos;
		cancel_work_sync(&vf->req);
		cancel_work_sync(&vf->reset_work);
	}
	cancel_work_sync(&efx->peer_work);

	pci_disable_sriov(efx->pci_dev);

	/* Tear down back-end state */
	efx_sriov_vfs_fini(efx);
	efx_sriov_free_local(efx);
	kfree(efx->vf);
	efx_nic_free_buffer(efx, &efx->vfdi_status);
	efx_sriov_cmd(efx, false, NULL, NULL);
}

void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_vf *vf;
	unsigned qid, seq, type, data;

	qid = EFX_QWORD_FIELD(*event, FSF_CZ_USER_QID);

	/* USR_EV_REG_VALUE is dword0, so access the VFDI_EV fields directly */
	BUILD_BUG_ON(FSF_CZ_USER_EV_REG_VALUE_LBN != 0);
	seq = EFX_QWORD_FIELD(*event, VFDI_EV_SEQ);
	type = EFX_QWORD_FIELD(*event, VFDI_EV_TYPE);
	data = EFX_QWORD_FIELD(*event, VFDI_EV_DATA);

	netif_vdbg(efx, hw, efx->net_dev,
		   "USR_EV event from qid %d seq 0x%x type %d data 0x%x\n",
		   qid, seq, type, data);

	if (map_vi_index(efx, qid, &vf, NULL))
		return;
	if (vf->busy)
		goto error;

	if (type == VFDI_EV_TYPE_REQ_WORD0) {
		/* Resynchronise */
		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
		vf->req_seqno = seq + 1;
		vf->req_addr = 0;
	} else if (seq != (vf->req_seqno++ & 0xff) || type != vf->req_type)
		goto error;

	switch (vf->req_type) {
	case VFDI_EV_TYPE_REQ_WORD0:
	case VFDI_EV_TYPE_REQ_WORD1:
	case VFDI_EV_TYPE_REQ_WORD2:
		vf->req_addr |= (u64)data << (vf->req_type << 4);
		++vf->req_type;
		return;

	case VFDI_EV_TYPE_REQ_WORD3:
		vf->req_addr |= (u64)data << 48;
		vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
		vf->busy = true;
		queue_work(vfdi_workqueue, &vf->req);
		return;
	}

error:
	if (net_ratelimit())
		netif_err(efx, hw, efx->net_dev,
			  "ERROR: Screaming VFDI request from %s\n",
			  vf->pci_name);
	/* Reset the request and sequence number */
	vf->req_type = VFDI_EV_TYPE_REQ_WORD0;
	vf->req_seqno = seq + 1;
}

void efx_sriov_flr(struct efx_nic *efx, unsigned vf_i)
{
	struct efx_vf *vf;

	if (vf_i > efx->vf_init_count)
		return;
	vf = efx->vf + vf_i;
	netif_info(efx, hw, efx->net_dev,
		   "FLR on VF %s\n", vf->pci_name);

	vf->status_addr = 0;
	efx_vfdi_remove_all_filters(vf);
	efx_vfdi_flush_clear(vf);

	vf->evq0_count = 0;
}

void efx_sriov_mac_address_changed(struct efx_nic *efx)
{
	struct vfdi_status *vfdi_status = efx->vfdi_status.addr;

	if (!efx->vf_init_count)
		return;
	memcpy(vfdi_status->peers[0].mac_addr,
	       efx->net_dev->dev_addr, ETH_ALEN);
	queue_work(vfdi_workqueue, &efx->peer_work);
}

void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_vf *vf;
	unsigned queue, qid;

	queue = EFX_QWORD_FIELD(*event,  FSF_AZ_DRIVER_EV_SUBDATA);
	if (map_vi_index(efx, queue, &vf, &qid))
		return;
	/* Ignore flush completions triggered by an FLR */
	if (!test_bit(qid, vf->txq_mask))
		return;

	__clear_bit(qid, vf->txq_mask);
	--vf->txq_count;

	if (efx_vfdi_flush_wake(vf))
		wake_up(&vf->flush_waitq);
}

void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
{
	struct efx_vf *vf;
	unsigned ev_failed, queue, qid;

	queue = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
	ev_failed = EFX_QWORD_FIELD(*event,
				    FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
	if (map_vi_index(efx, queue, &vf, &qid))
		return;
	if (!test_bit(qid, vf->rxq_mask))
		return;

	if (ev_failed) {
		set_bit(qid, vf->rxq_retry_mask);
		atomic_inc(&vf->rxq_retry_count);
	} else {
		__clear_bit(qid, vf->rxq_mask);
		--vf->rxq_count;
	}
	if (efx_vfdi_flush_wake(vf))
		wake_up(&vf->flush_waitq);
}

/* Called from napi. Schedule the reset work item */
void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq)
{
	struct efx_vf *vf;
	unsigned int rel;

	if (map_vi_index(efx, dmaq, &vf, &rel))
		return;

	if (net_ratelimit())
		netif_err(efx, hw, efx->net_dev,
			  "VF %d DMA Q %d reports descriptor fetch error.\n",
			  vf->index, rel);
	queue_work(vfdi_workqueue, &vf->reset_work);
}

/* Reset all VFs */
void efx_sriov_reset(struct efx_nic *efx)
{
	unsigned int vf_i;
	struct efx_buffer buf;
	struct efx_vf *vf;

	ASSERT_RTNL();

	if (efx->vf_init_count == 0)
		return;

	efx_sriov_usrev(efx, true);
	(void)efx_sriov_cmd(efx, true, NULL, NULL);

	if (efx_nic_alloc_buffer(efx, &buf, EFX_PAGE_SIZE))
		return;

	for (vf_i = 0; vf_i < efx->vf_init_count; ++vf_i) {
		vf = efx->vf + vf_i;
		efx_sriov_reset_vf(vf, &buf);
	}

	efx_nic_free_buffer(efx, &buf);
}

int efx_init_sriov(void)
{
	/* A single threaded workqueue is sufficient. efx_sriov_vfdi() and
	 * efx_sriov_peer_work() spend almost all their time sleeping for
	 * MCDI to complete anyway
	 */
	vfdi_workqueue = create_singlethread_workqueue("sfc_vfdi");
	if (!vfdi_workqueue)
		return -ENOMEM;

	return 0;
}

void efx_fini_sriov(void)
{
	destroy_workqueue(vfdi_workqueue);
}

int efx_sriov_set_vf_mac(struct net_device *net_dev, int vf_i, u8 *mac)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->status_lock);
	memcpy(vf->addr.mac_addr, mac, ETH_ALEN);
	__efx_sriov_update_vf_addr(vf);
	mutex_unlock(&vf->status_lock);

	return 0;
}

int efx_sriov_set_vf_vlan(struct net_device *net_dev, int vf_i,
			  u16 vlan, u8 qos)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	u16 tci;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->status_lock);
	tci = (vlan & VLAN_VID_MASK) | ((qos & 0x7) << VLAN_PRIO_SHIFT);
	vf->addr.tci = htons(tci);
	__efx_sriov_update_vf_addr(vf);
	mutex_unlock(&vf->status_lock);

	return 0;
}

int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf_i,
			      bool spoofchk)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	int rc;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	mutex_lock(&vf->txq_lock);
	if (vf->txq_count == 0) {
		vf->tx_filter_mode =
			spoofchk ? VF_TX_FILTER_ON : VF_TX_FILTER_OFF;
		rc = 0;
	} else {
		/* This cannot be changed while TX queues are running */
		rc = -EBUSY;
	}
	mutex_unlock(&vf->txq_lock);
	return rc;
}

int efx_sriov_get_vf_config(struct net_device *net_dev, int vf_i,
			    struct ifla_vf_info *ivi)
{
	struct efx_nic *efx = netdev_priv(net_dev);
	struct efx_vf *vf;
	u16 tci;

	if (vf_i >= efx->vf_init_count)
		return -EINVAL;
	vf = efx->vf + vf_i;

	ivi->vf = vf_i;
	memcpy(ivi->mac, vf->addr.mac_addr, ETH_ALEN);
	ivi->tx_rate = 0;
	tci = ntohs(vf->addr.tci);
	ivi->vlan = tci & VLAN_VID_MASK;
	ivi->qos = (tci >> VLAN_PRIO_SHIFT) & 0x7;
	ivi->spoofchk = vf->tx_filter_mode == VF_TX_FILTER_ON;

	return 0;
}