/*******************************************************************************
*
* Intel Ethernet Controller XL710 Family Linux Driver
* Copyright(c) 2013 - 2016 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
******************************************************************************/
#ifndef _I40E_TXRX_H_
#define _I40E_TXRX_H_
/* Interrupt Throttling and Rate Limiting Goodies */
#define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
#define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
#define I40E_ITR_100K 0x0005
#define I40E_ITR_50K 0x000A
#define I40E_ITR_20K 0x0019
#define I40E_ITR_18K 0x001B
#define I40E_ITR_8K 0x003E
#define I40E_ITR_4K 0x007A
#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
#define I40E_ITR_RX_DEF I40E_ITR_20K
#define I40E_ITR_TX_DEF I40E_ITR_20K
#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
#define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
#define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
#define I40E_DEFAULT_IRQ_WORK 256
#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
* the value of the rate limit is non-zero
*/
#define INTRL_ENA BIT(6)
#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
/**
* i40e_intrl_usec_to_reg - convert interrupt rate limit to register
* @intrl: interrupt rate limit to convert
*
* This function converts a decimal interrupt rate limit to the appropriate
* register format expected by the firmware when setting interrupt rate limit.
*/
static inline u16 i40e_intrl_usec_to_reg(int intrl)
{
if (intrl >> 2)
return ((intrl >> 2) | INTRL_ENA);
else
return 0;
}
#define I40E_INTRL_8K 125 /* 8000 ints/sec */
#define I40E_INTRL_62K 16 /* 62500 ints/sec */
#define I40E_INTRL_83K 12 /* 83333 ints/sec */
#define I40E_QUEUE_END_OF_LIST 0x7FF
/* this enum matches hardware bits and is meant to be used by DYN_CTLN
* registers and QINT registers or more generally anywhere in the manual
* mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
* register but instead is a special value meaning "don't update" ITR0/1/2.
*/
enum i40e_dyn_idx_t {
I40E_IDX_ITR0 = 0,
I40E_IDX_ITR1 = 1,
I40E_IDX_ITR2 = 2,
I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
};
/* these are indexes into ITRN registers */
#define I40E_RX_ITR I40E_IDX_ITR0
#define I40E_TX_ITR I40E_IDX_ITR1
#define I40E_PE_ITR I40E_IDX_ITR2
/* Supported RSS offloads */
#define I40E_DEFAULT_RSS_HENA ( \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
#define i40e_pf_get_default_rss_hena(pf) \
(((pf)->hw_features & I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
/* Supported Rx Buffer Sizes (a multiple of 128) */
#define I40E_RXBUFFER_256 256
#define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
#define I40E_RXBUFFER_2048 2048
#define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
* reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
* this adds up to 512 bytes of extra data meaning the smallest allocation
* we could have is 1K.
* i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
* i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
*/
#define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
#define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
#define i40e_rx_desc i40e_32byte_rx_desc
#define I40E_RX_DMA_ATTR \
(DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
/* Attempt to maximize the headroom available for incoming frames. We
* use a 2K buffer for receives and need 1536/1534 to store the data for
* the frame. This leaves us with 512 bytes of room. From that we need
* to deduct the space needed for the shared info and the padding needed
* to IP align the frame.
*
* Note: For cache line sizes 256 or larger this value is going to end
* up negative. In these cases we should fall back to the legacy
* receive path.
*/
#if (PAGE_SIZE < 8192)
#define I40E_2K_TOO_SMALL_WITH_PADDING \
((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
static inline int i40e_compute_pad(int rx_buf_len)
{
int page_size, pad_size;
page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
return pad_size;
}
static inline int i40e_skb_pad(void)
{
int rx_buf_len;
/* If a 2K buffer cannot handle a standard Ethernet frame then
* optimize padding for a 3K buffer instead of a 1.5K buffer.
*
* For a 3K buffer we need to add enough padding to allow for
* tailroom due to NET_IP_ALIGN possibly shifting us out of
* cache-line alignment.
*/
if (I40E_2K_TOO_SMALL_WITH_PADDING)
rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
else
rx_buf_len = I40E_RXBUFFER_1536;
/* if needed make room for NET_IP_ALIGN */
rx_buf_len -= NET_IP_ALIGN;
return i40e_compute_pad(rx_buf_len);
}
#define I40E_SKB_PAD i40e_skb_pad()
#else
#define I40E_2K_TOO_SMALL_WITH_PADDING false
#define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
#endif
/**
* i40e_test_staterr - tests bits in Rx descriptor status and error fields
* @rx_desc: pointer to receive descriptor (in le64 format)
* @stat_err_bits: value to mask
*
* This function does some fast chicanery in order to return the
* value of the mask which is really only used for boolean tests.
* The status_error_len doesn't need to be shifted because it begins
* at offset zero.
*/
static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
const u64 stat_err_bits)
{
return !!(rx_desc->wb.qword1.status_error_len &
cpu_to_le64(stat_err_bits));
}
/* How many Rx Buffers do we bundle into one write to the hardware ? */
#define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
#define I40E_RX_INCREMENT(r, i) \
do { \
(i)++; \
if ((i) == (r)->count) \
i = 0; \
r->next_to_clean = i; \
} while (0)
#define I40E_RX_NEXT_DESC(r, i, n) \
do { \
(i)++; \
if ((i) == (r)->count) \
i = 0; \
(n) = I40E_RX_DESC((r), (i)); \
} while (0)
#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
do { \
I40E_RX_NEXT_DESC((r), (i), (n)); \
prefetch((n)); \
} while (0)
#define I40E_MAX_BUFFER_TXD 8
#define I40E_MIN_TX_LEN 17
/* The size limit for a transmit buffer in a descriptor is (16K - 1).
* In order to align with the read requests we will align the value to
* the nearest 4K which represents our maximum read request size.
*/
#define I40E_MAX_READ_REQ_SIZE 4096
#define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
#define I40E_MAX_DATA_PER_TXD_ALIGNED \
(I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
/**
* i40e_txd_use_count - estimate the number of descriptors needed for Tx
* @size: transmit request size in bytes
*
* Due to hardware alignment restrictions (4K alignment), we need to
* assume that we can have no more than 12K of data per descriptor, even
* though each descriptor can take up to 16K - 1 bytes of aligned memory.
* Thus, we need to divide by 12K. But division is slow! Instead,
* we decompose the operation into shifts and one relatively cheap
* multiply operation.
*
* To divide by 12K, we first divide by 4K, then divide by 3:
* To divide by 4K, shift right by 12 bits
* To divide by 3, multiply by 85, then divide by 256
* (Divide by 256 is done by shifting right by 8 bits)
* Finally, we add one to round up. Because 256 isn't an exact multiple of
* 3, we'll underestimate near each multiple of 12K. This is actually more
* accurate as we have 4K - 1 of wiggle room that we can fit into the last
* segment. For our purposes this is accurate out to 1M which is orders of
* magnitude greater than our largest possible GSO size.
*
* This would then be implemented as:
* return (((size >> 12) * 85) >> 8) + 1;
*
* Since multiplication and division are commutative, we can reorder
* operations into:
* return ((size * 85) >> 20) + 1;
*/
static inline unsigned int i40e_txd_use_count(unsigned int size)
{
return ((size * 85) >> 20) + 1;
}
/* Tx Descriptors needed, worst case */
#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
#define I40E_MIN_DESC_PENDING 4
#define I40E_TX_FLAGS_HW_VLAN BIT(1)
#define I40E_TX_FLAGS_SW_VLAN BIT(2)
#define I40E_TX_FLAGS_TSO BIT(3)
#define I40E_TX_FLAGS_IPV4 BIT(4)
#define I40E_TX_FLAGS_IPV6 BIT(5)
#define I40E_TX_FLAGS_FCCRC BIT(6)
#define I40E_TX_FLAGS_FSO BIT(7)
#define I40E_TX_FLAGS_TSYN BIT(8)
#define I40E_TX_FLAGS_FD_SB BIT(9)
#define I40E_TX_FLAGS_UDP_TUNNEL BIT(10)
#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
#define I40E_TX_FLAGS_VLAN_SHIFT 16
struct i40e_tx_buffer {
struct i40e_tx_desc *next_to_watch;
union {
struct sk_buff *skb;
void *raw_buf;
};
unsigned int bytecount;
unsigned short gso_segs;
DEFINE_DMA_UNMAP_ADDR(dma);
DEFINE_DMA_UNMAP_LEN(len);
u32 tx_flags;
};
struct i40e_rx_buffer {
dma_addr_t dma;
struct page *page;
#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
__u32 page_offset;
#else
__u16 page_offset;
#endif
__u16 pagecnt_bias;
};
struct i40e_queue_stats {
u64 packets;
u64 bytes;
};
struct i40e_tx_queue_stats {
u64 restart_queue;
u64 tx_busy;
u64 tx_done_old;
u64 tx_linearize;
u64 tx_force_wb;
};
struct i40e_rx_queue_stats {
u64 non_eop_descs;
u64 alloc_page_failed;
u64 alloc_buff_failed;
u64 page_reuse_count;
u64 realloc_count;
};
enum i40e_ring_state_t {
__I40E_TX_FDIR_INIT_DONE,
__I40E_TX_XPS_INIT_DONE,
};
/* some useful defines for virtchannel interface, which
* is the only remaining user of header split
*/
#define I40E_RX_DTYPE_NO_SPLIT 0
#define I40E_RX_DTYPE_HEADER_SPLIT 1
#define I40E_RX_DTYPE_SPLIT_ALWAYS 2
#define I40E_RX_SPLIT_L2 0x1
#define I40E_RX_SPLIT_IP 0x2
#define I40E_RX_SPLIT_TCP_UDP 0x4
#define I40E_RX_SPLIT_SCTP 0x8
/* struct that defines a descriptor ring, associated with a VSI */
struct i40e_ring {
struct i40e_ring *next; /* pointer to next ring in q_vector */
void *desc; /* Descriptor ring memory */
struct device *dev; /* Used for DMA mapping */
struct net_device *netdev; /* netdev ring maps to */
struct bpf_prog *xdp_prog;
union {
struct i40e_tx_buffer *tx_bi;
struct i40e_rx_buffer *rx_bi;
};
unsigned long state;
u16 queue_index; /* Queue number of ring */
u8 dcb_tc; /* Traffic class of ring */
u8 __iomem *tail;
/* high bit set means dynamic, use accessor routines to read/write.
* hardware only supports 2us resolution for the ITR registers.
* these values always store the USER setting, and must be converted
* before programming to a register.
*/
u16 rx_itr_setting;
u16 tx_itr_setting;
u16 count; /* Number of descriptors */
u16 reg_idx; /* HW register index of the ring */
u16 rx_buf_len;
/* used in interrupt processing */
u16 next_to_use;
u16 next_to_clean;
u8 atr_sample_rate;
u8 atr_count;
bool ring_active; /* is ring online or not */
bool arm_wb; /* do something to arm write back */
u8 packet_stride;
u16 flags;
#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
#define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
#define I40E_TXR_FLAGS_XDP BIT(2)
/* stats structs */
struct i40e_queue_stats stats;
struct u64_stats_sync syncp;
union {
struct i40e_tx_queue_stats tx_stats;
struct i40e_rx_queue_stats rx_stats;
};
unsigned int size; /* length of descriptor ring in bytes */
dma_addr_t dma; /* physical address of ring */
struct i40e_vsi *vsi; /* Backreference to associated VSI */
struct i40e_q_vector *q_vector; /* Backreference to associated vector */
struct rcu_head rcu; /* to avoid race on free */
u16 next_to_alloc;
struct sk_buff *skb; /* When i40e_clean_rx_ring_irq() must
* return before it sees the EOP for
* the current packet, we save that skb
* here and resume receiving this
* packet the next time
* i40e_clean_rx_ring_irq() is called
* for this ring.
*/
} ____cacheline_internodealigned_in_smp;
static inline bool ring_uses_build_skb(struct i40e_ring *ring)
{
return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
}
static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
{
ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
}
static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
{
ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
}
static inline bool ring_is_xdp(struct i40e_ring *ring)
{
return !!(ring->flags & I40E_TXR_FLAGS_XDP);
}
static inline void set_ring_xdp(struct i40e_ring *ring)
{
ring->flags |= I40E_TXR_FLAGS_XDP;
}
enum i40e_latency_range {
I40E_LOWEST_LATENCY = 0,
I40E_LOW_LATENCY = 1,
I40E_BULK_LATENCY = 2,
};
struct i40e_ring_container {
/* array of pointers to rings */
struct i40e_ring *ring;
unsigned int total_bytes; /* total bytes processed this int */
unsigned int total_packets; /* total packets processed this int */
unsigned long last_itr_update; /* jiffies of last ITR update */
u16 count;
enum i40e_latency_range latency_range;
u16 itr;
};
/* iterator for handling rings in ring container */
#define i40e_for_each_ring(pos, head) \
for (pos = (head).ring; pos != NULL; pos = pos->next)
static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
{
#if (PAGE_SIZE < 8192)
if (ring->rx_buf_len > (PAGE_SIZE / 2))
return 1;
#endif
return 0;
}
#define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
bool i40e_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
void i40e_clean_tx_ring(struct i40e_ring *tx_ring);
void i40e_clean_rx_ring(struct i40e_ring *rx_ring);
int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring);
int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring);
void i40e_free_tx_resources(struct i40e_ring *tx_ring);
void i40e_free_rx_resources(struct i40e_ring *rx_ring);
int i40e_napi_poll(struct napi_struct *napi, int budget);
void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
u32 i40e_get_tx_pending(struct i40e_ring *ring);
int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
bool __i40e_chk_linearize(struct sk_buff *skb);
/**
* i40e_get_head - Retrieve head from head writeback
* @tx_ring: tx ring to fetch head of
*
* Returns value of Tx ring head based on value stored
* in head write-back location
**/
static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
{
void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
return le32_to_cpu(*(volatile __le32 *)head);
}
/**
* i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
* @skb: send buffer
* @tx_ring: ring to send buffer on
*
* Returns number of data descriptors needed for this skb. Returns 0 to indicate
* there is not enough descriptors available in this ring since we need at least
* one descriptor.
**/
static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
{
const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
int count = 0, size = skb_headlen(skb);
for (;;) {
count += i40e_txd_use_count(size);
if (!nr_frags--)
break;
size = skb_frag_size(frag++);
}
return count;
}
/**
* i40e_maybe_stop_tx - 1st level check for Tx stop conditions
* @tx_ring: the ring to be checked
* @size: the size buffer we want to assure is available
*
* Returns 0 if stop is not needed
**/
static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
{
if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
return 0;
return __i40e_maybe_stop_tx(tx_ring, size);
}
/**
* i40e_chk_linearize - Check if there are more than 8 fragments per packet
* @skb: send buffer
* @count: number of buffers used
*
* Note: Our HW can't scatter-gather more than 8 fragments to build
* a packet on the wire and so we need to figure out the cases where we
* need to linearize the skb.
**/
static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
{
/* Both TSO and single send will work if count is less than 8 */
if (likely(count < I40E_MAX_BUFFER_TXD))
return false;
if (skb_is_gso(skb))
return __i40e_chk_linearize(skb);
/* we can support up to 8 data buffers for a single send */
return count != I40E_MAX_BUFFER_TXD;
}
/**
* txring_txq - Find the netdev Tx ring based on the i40e Tx ring
* @ring: Tx ring to find the netdev equivalent of
**/
static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->queue_index);
}
#endif /* _I40E_TXRX_H_ */