// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ9477 switch driver main logic
*
* Copyright (C) 2017-2019 Microchip Technology Inc.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/if_bridge.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "ksz9477_reg.h"
#include "ksz_common.h"
/* Used with variable features to indicate capabilities. */
#define GBIT_SUPPORT BIT(0)
#define NEW_XMII BIT(1)
#define IS_9893 BIT(2)
static const struct {
int index;
char string[ETH_GSTRING_LEN];
} ksz9477_mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
{ 0x00, "rx_hi" },
{ 0x01, "rx_undersize" },
{ 0x02, "rx_fragments" },
{ 0x03, "rx_oversize" },
{ 0x04, "rx_jabbers" },
{ 0x05, "rx_symbol_err" },
{ 0x06, "rx_crc_err" },
{ 0x07, "rx_align_err" },
{ 0x08, "rx_mac_ctrl" },
{ 0x09, "rx_pause" },
{ 0x0A, "rx_bcast" },
{ 0x0B, "rx_mcast" },
{ 0x0C, "rx_ucast" },
{ 0x0D, "rx_64_or_less" },
{ 0x0E, "rx_65_127" },
{ 0x0F, "rx_128_255" },
{ 0x10, "rx_256_511" },
{ 0x11, "rx_512_1023" },
{ 0x12, "rx_1024_1522" },
{ 0x13, "rx_1523_2000" },
{ 0x14, "rx_2001" },
{ 0x15, "tx_hi" },
{ 0x16, "tx_late_col" },
{ 0x17, "tx_pause" },
{ 0x18, "tx_bcast" },
{ 0x19, "tx_mcast" },
{ 0x1A, "tx_ucast" },
{ 0x1B, "tx_deferred" },
{ 0x1C, "tx_total_col" },
{ 0x1D, "tx_exc_col" },
{ 0x1E, "tx_single_col" },
{ 0x1F, "tx_mult_col" },
{ 0x80, "rx_total" },
{ 0x81, "tx_total" },
{ 0x82, "rx_discards" },
{ 0x83, "tx_discards" },
};
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(dev->regmap[0], addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(dev->regmap[0], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static void ksz9477_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
{
regmap_update_bits(dev->regmap[2], addr, bits, set ? bits : 0);
}
static void ksz9477_port_cfg32(struct ksz_device *dev, int port, int offset,
u32 bits, bool set)
{
regmap_update_bits(dev->regmap[2], PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int ksz9477_wait_vlan_ctrl_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[0], REG_SW_VLAN_CTRL,
val, !(val & VLAN_START), 10, 1000);
}
static int ksz9477_get_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read vlan table\n");
goto exit;
}
ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static int ksz9477_set_vlan_table(struct ksz_device *dev, u16 vid,
u32 *vlan_table)
{
int ret;
mutex_lock(&dev->vlan_mutex);
ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
/* wait to be cleared */
ret = ksz9477_wait_vlan_ctrl_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to write vlan table\n");
goto exit;
}
ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
/* update vlan cache table */
dev->vlan_cache[vid].table[0] = vlan_table[0];
dev->vlan_cache[vid].table[1] = vlan_table[1];
dev->vlan_cache[vid].table[2] = vlan_table[2];
exit:
mutex_unlock(&dev->vlan_mutex);
return ret;
}
static void ksz9477_read_table(struct ksz_device *dev, u32 *table)
{
ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
}
static void ksz9477_write_table(struct ksz_device *dev, u32 *table)
{
ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
}
static int ksz9477_wait_alu_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[2], REG_SW_ALU_CTRL__4,
val, !(val & ALU_START), 10, 1000);
}
static int ksz9477_wait_alu_sta_ready(struct ksz_device *dev)
{
unsigned int val;
return regmap_read_poll_timeout(dev->regmap[2],
REG_SW_ALU_STAT_CTRL__4,
val, !(val & ALU_STAT_START),
10, 1000);
}
static int ksz9477_reset_switch(struct ksz_device *dev)
{
u8 data8;
u32 data32;
/* reset switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
/* turn off SPI DO Edge select */
regmap_update_bits(dev->regmap[0], REG_SW_GLOBAL_SERIAL_CTRL_0,
SPI_AUTO_EDGE_DETECTION, 0);
/* default configuration */
ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
/* disable interrupts */
ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
/* set broadcast storm protection 10% rate */
regmap_update_bits(dev->regmap[1], REG_SW_MAC_CTRL_2,
BROADCAST_STORM_RATE,
(BROADCAST_STORM_VALUE *
BROADCAST_STORM_PROT_RATE) / 100);
if (dev->synclko_125)
ksz_write8(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
SW_ENABLE_REFCLKO | SW_REFCLKO_IS_125MHZ);
return 0;
}
static void ksz9477_r_mib_cnt(struct ksz_device *dev, int port, u16 addr,
u64 *cnt)
{
struct ksz_port *p = &dev->ports[port];
unsigned int val;
u32 data;
int ret;
/* retain the flush/freeze bit */
data = p->freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
data |= MIB_COUNTER_READ;
data |= (addr << MIB_COUNTER_INDEX_S);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
ret = regmap_read_poll_timeout(dev->regmap[2],
PORT_CTRL_ADDR(port, REG_PORT_MIB_CTRL_STAT__4),
val, !(val & MIB_COUNTER_READ), 10, 1000);
/* failed to read MIB. get out of loop */
if (ret) {
dev_dbg(dev->dev, "Failed to get MIB\n");
return;
}
/* count resets upon read */
ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
*cnt += data;
}
static void ksz9477_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
addr = ksz9477_mib_names[addr].index;
ksz9477_r_mib_cnt(dev, port, addr, cnt);
}
static void ksz9477_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
u32 val = freeze ? MIB_COUNTER_FLUSH_FREEZE : 0;
struct ksz_port *p = &dev->ports[port];
/* enable/disable the port for flush/freeze function */
mutex_lock(&p->mib.cnt_mutex);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, val);
/* used by MIB counter reading code to know freeze is enabled */
p->freeze = freeze;
mutex_unlock(&p->mib.cnt_mutex);
}
static void ksz9477_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
/* flush all enabled port MIB counters */
mutex_lock(&mib->cnt_mutex);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
MIB_COUNTER_FLUSH_FREEZE);
ksz_write8(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FLUSH);
ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, 0);
mutex_unlock(&mib->cnt_mutex);
mib->cnt_ptr = 0;
memset(mib->counters, 0, dev->mib_cnt * sizeof(u64));
}
static enum dsa_tag_protocol ksz9477_get_tag_protocol(struct dsa_switch *ds,
int port,
enum dsa_tag_protocol mp)
{
enum dsa_tag_protocol proto = DSA_TAG_PROTO_KSZ9477;
struct ksz_device *dev = ds->priv;
if (dev->features & IS_9893)
proto = DSA_TAG_PROTO_KSZ9893;
return proto;
}
static int ksz9477_phy_read16(struct dsa_switch *ds, int addr, int reg)
{
struct ksz_device *dev = ds->priv;
u16 val = 0xffff;
/* No real PHY after this. Simulate the PHY.
* A fixed PHY can be setup in the device tree, but this function is
* still called for that port during initialization.
* For RGMII PHY there is no way to access it so the fixed PHY should
* be used. For SGMII PHY the supporting code will be added later.
*/
if (addr >= dev->phy_port_cnt) {
struct ksz_port *p = &dev->ports[addr];
switch (reg) {
case MII_BMCR:
val = 0x1140;
break;
case MII_BMSR:
val = 0x796d;
break;
case MII_PHYSID1:
val = 0x0022;
break;
case MII_PHYSID2:
val = 0x1631;
break;
case MII_ADVERTISE:
val = 0x05e1;
break;
case MII_LPA:
val = 0xc5e1;
break;
case MII_CTRL1000:
val = 0x0700;
break;
case MII_STAT1000:
if (p->phydev.speed == SPEED_1000)
val = 0x3800;
else
val = 0;
break;
}
} else {
ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
}
return val;
}
static int ksz9477_phy_write16(struct dsa_switch *ds, int addr, int reg,
u16 val)
{
struct ksz_device *dev = ds->priv;
/* No real PHY after this. */
if (addr >= dev->phy_port_cnt)
return 0;
/* No gigabit support. Do not write to this register. */
if (!(dev->features & GBIT_SUPPORT) && reg == MII_CTRL1000)
return 0;
ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
return 0;
}
static void ksz9477_get_strings(struct dsa_switch *ds, int port,
u32 stringset, uint8_t *buf)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
memcpy(buf + i * ETH_GSTRING_LEN, ksz9477_mib_names[i].string,
ETH_GSTRING_LEN);
}
}
static void ksz9477_cfg_port_member(struct ksz_device *dev, int port,
u8 member)
{
ksz_pwrite32(dev, port, REG_PORT_VLAN_MEMBERSHIP__4, member);
dev->ports[port].member = member;
}
static void ksz9477_port_stp_state_set(struct dsa_switch *ds, int port,
u8 state)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p = &dev->ports[port];
u8 data;
int member = -1;
int forward = dev->member;
ksz_pread8(dev, port, P_STP_CTRL, &data);
data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
switch (state) {
case BR_STATE_DISABLED:
data |= PORT_LEARN_DISABLE;
if (port != dev->cpu_port)
member = 0;
break;
case BR_STATE_LISTENING:
data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
if (port != dev->cpu_port &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
case BR_STATE_LEARNING:
data |= PORT_RX_ENABLE;
break;
case BR_STATE_FORWARDING:
data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
/* This function is also used internally. */
if (port == dev->cpu_port)
break;
member = dev->host_mask | p->vid_member;
mutex_lock(&dev->dev_mutex);
/* Port is a member of a bridge. */
if (dev->br_member & (1 << port)) {
dev->member |= (1 << port);
member = dev->member;
}
mutex_unlock(&dev->dev_mutex);
break;
case BR_STATE_BLOCKING:
data |= PORT_LEARN_DISABLE;
if (port != dev->cpu_port &&
p->stp_state == BR_STATE_DISABLED)
member = dev->host_mask | p->vid_member;
break;
default:
dev_err(ds->dev, "invalid STP state: %d\n", state);
return;
}
ksz_pwrite8(dev, port, P_STP_CTRL, data);
p->stp_state = state;
mutex_lock(&dev->dev_mutex);
if (data & PORT_RX_ENABLE)
dev->rx_ports |= (1 << port);
else
dev->rx_ports &= ~(1 << port);
if (data & PORT_TX_ENABLE)
dev->tx_ports |= (1 << port);
else
dev->tx_ports &= ~(1 << port);
/* Port membership may share register with STP state. */
if (member >= 0 && member != p->member)
ksz9477_cfg_port_member(dev, port, (u8)member);
/* Check if forwarding needs to be updated. */
if (state != BR_STATE_FORWARDING) {
if (dev->br_member & (1 << port))
dev->member &= ~(1 << port);
}
/* When topology has changed the function ksz_update_port_member
* should be called to modify port forwarding behavior.
*/
if (forward != dev->member)
ksz_update_port_member(dev, port);
mutex_unlock(&dev->dev_mutex);
}
static void ksz9477_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 data;
regmap_update_bits(dev->regmap[0], REG_SW_LUE_CTRL_2,
SW_FLUSH_OPTION_M << SW_FLUSH_OPTION_S,
SW_FLUSH_OPTION_DYN_MAC << SW_FLUSH_OPTION_S);
if (port < dev->mib_port_cnt) {
/* flush individual port */
ksz_pread8(dev, port, P_STP_CTRL, &data);
if (!(data & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, port, P_STP_CTRL,
data | PORT_LEARN_DISABLE);
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
ksz_pwrite8(dev, port, P_STP_CTRL, data);
} else {
/* flush all */
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_STP_TABLE, true);
}
}
static int ksz9477_port_vlan_filtering(struct dsa_switch *ds, int port,
bool flag)
{
struct ksz_device *dev = ds->priv;
if (flag) {
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, true);
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
} else {
ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
PORT_VLAN_LOOKUP_VID_0, false);
}
return 0;
}
static void ksz9477_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
u32 vlan_table[3];
u16 vid;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return;
}
vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
if (untagged)
vlan_table[1] |= BIT(port);
else
vlan_table[1] &= ~BIT(port);
vlan_table[1] &= ~(BIT(dev->cpu_port));
vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return;
}
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
}
}
static int ksz9477_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct ksz_device *dev = ds->priv;
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
u32 vlan_table[3];
u16 vid;
u16 pvid;
ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
pvid = pvid & 0xFFF;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
if (ksz9477_get_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to get vlan table\n");
return -ETIMEDOUT;
}
vlan_table[2] &= ~BIT(port);
if (pvid == vid)
pvid = 1;
if (untagged)
vlan_table[1] &= ~BIT(port);
if (ksz9477_set_vlan_table(dev, vid, vlan_table)) {
dev_dbg(dev->dev, "Failed to set vlan table\n");
return -ETIMEDOUT;
}
}
ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
return 0;
}
static int ksz9477_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* find any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
/* read ALU entry */
ksz9477_read_table(dev, alu_table);
/* update ALU entry */
alu_table[0] = ALU_V_STATIC_VALID;
alu_table[1] |= BIT(port);
if (vid)
alu_table[1] |= ALU_V_USE_FID;
alu_table[2] = (vid << ALU_V_FID_S);
alu_table[2] |= ((addr[0] << 8) | addr[1]);
alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
alu_table[3] |= ((addr[4] << 8) | addr[5]);
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz9477_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct ksz_device *dev = ds->priv;
u32 alu_table[4];
u32 data;
int ret = 0;
mutex_lock(&dev->alu_mutex);
/* read any entry with mac & vid */
data = vid << ALU_FID_INDEX_S;
data |= ((addr[0] << 8) | addr[1]);
ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
data = ((addr[2] << 24) | (addr[3] << 16));
data |= ((addr[4] << 8) | addr[5]);
ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
/* start read operation */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU\n");
goto exit;
}
ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
if (alu_table[0] & ALU_V_STATIC_VALID) {
ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
/* clear forwarding port */
alu_table[2] &= ~BIT(port);
/* if there is no port to forward, clear table */
if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
} else {
alu_table[0] = 0;
alu_table[1] = 0;
alu_table[2] = 0;
alu_table[3] = 0;
}
ksz9477_write_table(dev, alu_table);
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
/* wait to be finished */
ret = ksz9477_wait_alu_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to write ALU\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void ksz9477_convert_alu(struct alu_struct *alu, u32 *alu_table)
{
alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
ALU_V_PRIO_AGE_CNT_M;
alu->mstp = alu_table[0] & ALU_V_MSTP_M;
alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
alu->mac[1] = alu_table[2] & 0xFF;
alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
alu->mac[5] = alu_table[3] & 0xFF;
}
static int ksz9477_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
u32 ksz_data;
u32 alu_table[4];
struct alu_struct alu;
int timeout;
mutex_lock(&dev->alu_mutex);
/* start ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
do {
timeout = 1000;
do {
ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
break;
usleep_range(1, 10);
} while (timeout-- > 0);
if (!timeout) {
dev_dbg(dev->dev, "Failed to search ALU\n");
ret = -ETIMEDOUT;
goto exit;
}
/* read ALU table */
ksz9477_read_table(dev, alu_table);
ksz9477_convert_alu(&alu, alu_table);
if (alu.port_forward & BIT(port)) {
ret = cb(alu.mac, alu.fid, alu.is_static, data);
if (ret)
goto exit;
}
} while (ksz_data & ALU_START);
exit:
/* stop ALU search */
ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
mutex_unlock(&dev->alu_mutex);
return ret;
}
static void ksz9477_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (ksz9477_wait_alu_sta_ready(dev)) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
} else {
/* found empty one */
break;
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
/* add entry */
static_table[0] = ALU_V_STATIC_VALID;
static_table[1] |= BIT(port);
if (mdb->vid)
static_table[1] |= ALU_V_USE_FID;
static_table[2] = (mdb->vid << ALU_V_FID_S);
static_table[2] |= mac_hi;
static_table[3] = mac_lo;
ksz9477_write_table(dev, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
if (ksz9477_wait_alu_sta_ready(dev))
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
}
static int ksz9477_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct ksz_device *dev = ds->priv;
u32 static_table[4];
u32 data;
int index;
int ret = 0;
u32 mac_hi, mac_lo;
mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
mutex_lock(&dev->alu_mutex);
for (index = 0; index < dev->num_statics; index++) {
/* find empty slot first */
data = (index << ALU_STAT_INDEX_S) |
ALU_STAT_READ | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev);
if (ret) {
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
goto exit;
}
/* read ALU static table */
ksz9477_read_table(dev, static_table);
if (static_table[0] & ALU_V_STATIC_VALID) {
/* check this has same vid & mac address */
if (((static_table[2] >> ALU_V_FID_S) == mdb->vid) &&
((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
static_table[3] == mac_lo) {
/* found matching one */
break;
}
}
}
/* no available entry */
if (index == dev->num_statics)
goto exit;
/* clear port */
static_table[1] &= ~BIT(port);
if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
/* delete entry */
static_table[0] = 0;
static_table[1] = 0;
static_table[2] = 0;
static_table[3] = 0;
}
ksz9477_write_table(dev, static_table);
data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
/* wait to be finished */
ret = ksz9477_wait_alu_sta_ready(dev);
if (ret)
dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
exit:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz9477_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
{
struct ksz_device *dev = ds->priv;
if (ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
return 0;
}
static void ksz9477_port_mirror_del(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
struct ksz_device *dev = ds->priv;
u8 data;
if (mirror->ingress)
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
else
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static bool ksz9477_get_gbit(struct ksz_device *dev, u8 data)
{
bool gbit;
if (dev->features & NEW_XMII)
gbit = !(data & PORT_MII_NOT_1GBIT);
else
gbit = !!(data & PORT_MII_1000MBIT_S1);
return gbit;
}
static void ksz9477_set_gbit(struct ksz_device *dev, bool gbit, u8 *data)
{
if (dev->features & NEW_XMII) {
if (gbit)
*data &= ~PORT_MII_NOT_1GBIT;
else
*data |= PORT_MII_NOT_1GBIT;
} else {
if (gbit)
*data |= PORT_MII_1000MBIT_S1;
else
*data &= ~PORT_MII_1000MBIT_S1;
}
}
static int ksz9477_get_xmii(struct ksz_device *dev, u8 data)
{
int mode;
if (dev->features & NEW_XMII) {
switch (data & PORT_MII_SEL_M) {
case PORT_MII_SEL:
mode = 0;
break;
case PORT_RMII_SEL:
mode = 1;
break;
case PORT_GMII_SEL:
mode = 2;
break;
default:
mode = 3;
}
} else {
switch (data & PORT_MII_SEL_M) {
case PORT_MII_SEL_S1:
mode = 0;
break;
case PORT_RMII_SEL_S1:
mode = 1;
break;
case PORT_GMII_SEL_S1:
mode = 2;
break;
default:
mode = 3;
}
}
return mode;
}
static void ksz9477_set_xmii(struct ksz_device *dev, int mode, u8 *data)
{
u8 xmii;
if (dev->features & NEW_XMII) {
switch (mode) {
case 0:
xmii = PORT_MII_SEL;
break;
case 1:
xmii = PORT_RMII_SEL;
break;
case 2:
xmii = PORT_GMII_SEL;
break;
default:
xmii = PORT_RGMII_SEL;
break;
}
} else {
switch (mode) {
case 0:
xmii = PORT_MII_SEL_S1;
break;
case 1:
xmii = PORT_RMII_SEL_S1;
break;
case 2:
xmii = PORT_GMII_SEL_S1;
break;
default:
xmii = PORT_RGMII_SEL_S1;
break;
}
}
*data &= ~PORT_MII_SEL_M;
*data |= xmii;
}
static phy_interface_t ksz9477_get_interface(struct ksz_device *dev, int port)
{
phy_interface_t interface;
bool gbit;
int mode;
u8 data8;
if (port < dev->phy_port_cnt)
return PHY_INTERFACE_MODE_NA;
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
gbit = ksz9477_get_gbit(dev, data8);
mode = ksz9477_get_xmii(dev, data8);
switch (mode) {
case 2:
interface = PHY_INTERFACE_MODE_GMII;
if (gbit)
break;
/* fall through */
case 0:
interface = PHY_INTERFACE_MODE_MII;
break;
case 1:
interface = PHY_INTERFACE_MODE_RMII;
break;
default:
interface = PHY_INTERFACE_MODE_RGMII;
if (data8 & PORT_RGMII_ID_EG_ENABLE)
interface = PHY_INTERFACE_MODE_RGMII_TXID;
if (data8 & PORT_RGMII_ID_IG_ENABLE) {
interface = PHY_INTERFACE_MODE_RGMII_RXID;
if (data8 & PORT_RGMII_ID_EG_ENABLE)
interface = PHY_INTERFACE_MODE_RGMII_ID;
}
break;
}
return interface;
}
static void ksz9477_port_mmd_write(struct ksz_device *dev, int port,
u8 dev_addr, u16 reg_addr, u16 val)
{
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
MMD_SETUP(PORT_MMD_OP_INDEX, dev_addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, reg_addr);
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_SETUP,
MMD_SETUP(PORT_MMD_OP_DATA_NO_INCR, dev_addr));
ksz_pwrite16(dev, port, REG_PORT_PHY_MMD_INDEX_DATA, val);
}
static void ksz9477_phy_errata_setup(struct ksz_device *dev, int port)
{
/* Apply PHY settings to address errata listed in
* KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565
* Silicon Errata and Data Sheet Clarification documents:
*
* Register settings are needed to improve PHY receive performance
*/
ksz9477_port_mmd_write(dev, port, 0x01, 0x6f, 0xdd0b);
ksz9477_port_mmd_write(dev, port, 0x01, 0x8f, 0x6032);
ksz9477_port_mmd_write(dev, port, 0x01, 0x9d, 0x248c);
ksz9477_port_mmd_write(dev, port, 0x01, 0x75, 0x0060);
ksz9477_port_mmd_write(dev, port, 0x01, 0xd3, 0x7777);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x06, 0x3008);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x08, 0x2001);
/* Transmit waveform amplitude can be improved
* (1000BASE-T, 100BASE-TX, 10BASE-Te)
*/
ksz9477_port_mmd_write(dev, port, 0x1c, 0x04, 0x00d0);
/* Energy Efficient Ethernet (EEE) feature select must
* be manually disabled (except on KSZ8565 which is 100Mbit)
*/
if (dev->features & GBIT_SUPPORT)
ksz9477_port_mmd_write(dev, port, 0x07, 0x3c, 0x0000);
/* Register settings are required to meet data sheet
* supply current specifications
*/
ksz9477_port_mmd_write(dev, port, 0x1c, 0x13, 0x6eff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x14, 0xe6ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x15, 0x6eff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x16, 0xe6ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x17, 0x00ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x18, 0x43ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x19, 0xc3ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1a, 0x6fff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1b, 0x07ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1c, 0x0fff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1d, 0xe7ff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x1e, 0xefff);
ksz9477_port_mmd_write(dev, port, 0x1c, 0x20, 0xeeee);
}
static void ksz9477_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
u8 data8;
u8 member;
u16 data16;
struct ksz_port *p = &dev->ports[port];
/* enable tag tail for host port */
if (cpu_port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
true);
ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
/* set back pressure */
ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
false);
ksz9477_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
MTI_PVID_REPLACE, false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
if (port < dev->phy_port_cnt) {
/* do not force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
false);
if (dev->phy_errata_9477)
ksz9477_phy_errata_setup(dev, port);
} else {
/* force flow control */
ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL,
true);
/* configure MAC to 1G & RGMII mode */
ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
switch (dev->interface) {
case PHY_INTERFACE_MODE_MII:
ksz9477_set_xmii(dev, 0, &data8);
ksz9477_set_gbit(dev, false, &data8);
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_RMII:
ksz9477_set_xmii(dev, 1, &data8);
ksz9477_set_gbit(dev, false, &data8);
p->phydev.speed = SPEED_100;
break;
case PHY_INTERFACE_MODE_GMII:
ksz9477_set_xmii(dev, 2, &data8);
ksz9477_set_gbit(dev, true, &data8);
p->phydev.speed = SPEED_1000;
break;
default:
ksz9477_set_xmii(dev, 3, &data8);
ksz9477_set_gbit(dev, true, &data8);
data8 &= ~PORT_RGMII_ID_IG_ENABLE;
data8 &= ~PORT_RGMII_ID_EG_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_RXID)
data8 |= PORT_RGMII_ID_IG_ENABLE;
if (dev->interface == PHY_INTERFACE_MODE_RGMII_ID ||
dev->interface == PHY_INTERFACE_MODE_RGMII_TXID)
data8 |= PORT_RGMII_ID_EG_ENABLE;
p->phydev.speed = SPEED_1000;
break;
}
ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
p->phydev.duplex = 1;
}
mutex_lock(&dev->dev_mutex);
if (cpu_port) {
member = dev->port_mask;
dev->on_ports = dev->host_mask;
dev->live_ports = dev->host_mask;
} else {
member = dev->host_mask | p->vid_member;
dev->on_ports |= (1 << port);
/* Link was detected before port is enabled. */
if (p->phydev.link)
dev->live_ports |= (1 << port);
}
mutex_unlock(&dev->dev_mutex);
ksz9477_cfg_port_member(dev, port, member);
/* clear pending interrupts */
if (port < dev->phy_port_cnt)
ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
}
static void ksz9477_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
int i;
ds->num_ports = dev->port_cnt;
for (i = 0; i < dev->port_cnt; i++) {
if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
phy_interface_t interface;
dev->cpu_port = i;
dev->host_mask = (1 << dev->cpu_port);
dev->port_mask |= dev->host_mask;
/* Read from XMII register to determine host port
* interface. If set specifically in device tree
* note the difference to help debugging.
*/
interface = ksz9477_get_interface(dev, i);
if (!dev->interface)
dev->interface = interface;
if (interface && interface != dev->interface)
dev_info(dev->dev,
"use %s instead of %s\n",
phy_modes(dev->interface),
phy_modes(interface));
/* enable cpu port */
ksz9477_port_setup(dev, i, true);
p = &dev->ports[dev->cpu_port];
p->vid_member = dev->port_mask;
p->on = 1;
}
}
dev->member = dev->host_mask;
for (i = 0; i < dev->mib_port_cnt; i++) {
if (i == dev->cpu_port)
continue;
p = &dev->ports[i];
/* Initialize to non-zero so that ksz_cfg_port_member() will
* be called.
*/
p->vid_member = (1 << i);
p->member = dev->port_mask;
ksz9477_port_stp_state_set(ds, i, BR_STATE_DISABLED);
p->on = 1;
if (i < dev->phy_port_cnt)
p->phy = 1;
if (dev->chip_id == 0x00947700 && i == 6) {
p->sgmii = 1;
/* SGMII PHY detection code is not implemented yet. */
p->phy = 0;
}
}
}
static int ksz9477_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
dev->num_vlans, GFP_KERNEL);
if (!dev->vlan_cache)
return -ENOMEM;
ret = ksz9477_reset_switch(dev);
if (ret) {
dev_err(ds->dev, "failed to reset switch\n");
return ret;
}
/* Required for port partitioning. */
ksz9477_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY,
true);
/* Do not work correctly with tail tagging. */
ksz_cfg(dev, REG_SW_MAC_CTRL_0, SW_CHECK_LENGTH, false);
/* accept packet up to 2000bytes */
ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
ksz9477_config_cpu_port(ds);
ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
/* queue based egress rate limit */
ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
/* enable global MIB counter freeze function */
ksz_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
/* start switch */
ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
ksz_init_mib_timer(dev);
return 0;
}
static const struct dsa_switch_ops ksz9477_switch_ops = {
.get_tag_protocol = ksz9477_get_tag_protocol,
.setup = ksz9477_setup,
.phy_read = ksz9477_phy_read16,
.phy_write = ksz9477_phy_write16,
.adjust_link = ksz_adjust_link,
.port_enable = ksz_enable_port,
.port_disable = ksz_disable_port,
.get_strings = ksz9477_get_strings,
.get_ethtool_stats = ksz_get_ethtool_stats,
.get_sset_count = ksz_sset_count,
.port_bridge_join = ksz_port_bridge_join,
.port_bridge_leave = ksz_port_bridge_leave,
.port_stp_state_set = ksz9477_port_stp_state_set,
.port_fast_age = ksz_port_fast_age,
.port_vlan_filtering = ksz9477_port_vlan_filtering,
.port_vlan_prepare = ksz_port_vlan_prepare,
.port_vlan_add = ksz9477_port_vlan_add,
.port_vlan_del = ksz9477_port_vlan_del,
.port_fdb_dump = ksz9477_port_fdb_dump,
.port_fdb_add = ksz9477_port_fdb_add,
.port_fdb_del = ksz9477_port_fdb_del,
.port_mdb_prepare = ksz_port_mdb_prepare,
.port_mdb_add = ksz9477_port_mdb_add,
.port_mdb_del = ksz9477_port_mdb_del,
.port_mirror_add = ksz9477_port_mirror_add,
.port_mirror_del = ksz9477_port_mirror_del,
};
static u32 ksz9477_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
static int ksz9477_switch_detect(struct ksz_device *dev)
{
u8 data8;
u8 id_hi;
u8 id_lo;
u32 id32;
int ret;
/* turn off SPI DO Edge select */
ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
if (ret)
return ret;
data8 &= ~SPI_AUTO_EDGE_DETECTION;
ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
if (ret)
return ret;
/* read chip id */
ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
if (ret)
return ret;
ret = ksz_read8(dev, REG_GLOBAL_OPTIONS, &data8);
if (ret)
return ret;
/* Number of ports can be reduced depending on chip. */
dev->mib_port_cnt = TOTAL_PORT_NUM;
dev->phy_port_cnt = 5;
/* Default capability is gigabit capable. */
dev->features = GBIT_SUPPORT;
id_hi = (u8)(id32 >> 16);
id_lo = (u8)(id32 >> 8);
if ((id_lo & 0xf) == 3) {
/* Chip is from KSZ9893 design. */
dev->features |= IS_9893;
/* Chip does not support gigabit. */
if (data8 & SW_QW_ABLE)
dev->features &= ~GBIT_SUPPORT;
dev->mib_port_cnt = 3;
dev->phy_port_cnt = 2;
} else {
/* Chip uses new XMII register definitions. */
dev->features |= NEW_XMII;
/* Chip does not support gigabit. */
if (!(data8 & SW_GIGABIT_ABLE))
dev->features &= ~GBIT_SUPPORT;
}
/* Change chip id to known ones so it can be matched against them. */
id32 = (id_hi << 16) | (id_lo << 8);
dev->chip_id = id32;
return 0;
}
struct ksz_chip_data {
u32 chip_id;
const char *dev_name;
int num_vlans;
int num_alus;
int num_statics;
int cpu_ports;
int port_cnt;
bool phy_errata_9477;
};
static const struct ksz_chip_data ksz9477_switch_chips[] = {
{
.chip_id = 0x00947700,
.dev_name = "KSZ9477",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
.phy_errata_9477 = true,
},
{
.chip_id = 0x00989700,
.dev_name = "KSZ9897",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
.phy_errata_9477 = true,
},
{
.chip_id = 0x00989300,
.dev_name = "KSZ9893",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x07, /* can be configured as cpu port */
.port_cnt = 3, /* total port count */
},
{
.chip_id = 0x00956700,
.dev_name = "KSZ9567",
.num_vlans = 4096,
.num_alus = 4096,
.num_statics = 16,
.cpu_ports = 0x7F, /* can be configured as cpu port */
.port_cnt = 7, /* total physical port count */
},
};
static int ksz9477_switch_init(struct ksz_device *dev)
{
int i;
dev->ds->ops = &ksz9477_switch_ops;
for (i = 0; i < ARRAY_SIZE(ksz9477_switch_chips); i++) {
const struct ksz_chip_data *chip = &ksz9477_switch_chips[i];
if (dev->chip_id == chip->chip_id) {
dev->name = chip->dev_name;
dev->num_vlans = chip->num_vlans;
dev->num_alus = chip->num_alus;
dev->num_statics = chip->num_statics;
dev->port_cnt = chip->port_cnt;
dev->cpu_ports = chip->cpu_ports;
dev->phy_errata_9477 = chip->phy_errata_9477;
break;
}
}
/* no switch found */
if (!dev->port_cnt)
return -ENODEV;
dev->port_mask = (1 << dev->port_cnt) - 1;
dev->reg_mib_cnt = SWITCH_COUNTER_NUM;
dev->mib_cnt = TOTAL_SWITCH_COUNTER_NUM;
i = dev->mib_port_cnt;
dev->ports = devm_kzalloc(dev->dev, sizeof(struct ksz_port) * i,
GFP_KERNEL);
if (!dev->ports)
return -ENOMEM;
for (i = 0; i < dev->mib_port_cnt; i++) {
mutex_init(&dev->ports[i].mib.cnt_mutex);
dev->ports[i].mib.counters =
devm_kzalloc(dev->dev,
sizeof(u64) *
(TOTAL_SWITCH_COUNTER_NUM + 1),
GFP_KERNEL);
if (!dev->ports[i].mib.counters)
return -ENOMEM;
}
/* set the real number of ports */
dev->ds->num_ports = dev->port_cnt;
return 0;
}
static void ksz9477_switch_exit(struct ksz_device *dev)
{
ksz9477_reset_switch(dev);
}
static const struct ksz_dev_ops ksz9477_dev_ops = {
.get_port_addr = ksz9477_get_port_addr,
.cfg_port_member = ksz9477_cfg_port_member,
.flush_dyn_mac_table = ksz9477_flush_dyn_mac_table,
.port_setup = ksz9477_port_setup,
.r_mib_cnt = ksz9477_r_mib_cnt,
.r_mib_pkt = ksz9477_r_mib_pkt,
.freeze_mib = ksz9477_freeze_mib,
.port_init_cnt = ksz9477_port_init_cnt,
.shutdown = ksz9477_reset_switch,
.detect = ksz9477_switch_detect,
.init = ksz9477_switch_init,
.exit = ksz9477_switch_exit,
};
int ksz9477_switch_register(struct ksz_device *dev)
{
int ret, i;
struct phy_device *phydev;
ret = ksz_switch_register(dev, &ksz9477_dev_ops);
if (ret)
return ret;
for (i = 0; i < dev->phy_port_cnt; ++i) {
if (!dsa_is_user_port(dev->ds, i))
continue;
phydev = dsa_to_port(dev->ds, i)->slave->phydev;
/* The MAC actually cannot run in 1000 half-duplex mode. */
phy_remove_link_mode(phydev,
ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
/* PHY does not support gigabit. */
if (!(dev->features & GBIT_SUPPORT))
phy_remove_link_mode(phydev,
ETHTOOL_LINK_MODE_1000baseT_Full_BIT);
}
return ret;
}
EXPORT_SYMBOL(ksz9477_switch_register);
MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ9477 Series Switch DSA Driver");
MODULE_LICENSE("GPL");