// SPDX-License-Identifier: GPL-2.0
/*
* ST Microelectronics
* Flexible Static Memory Controller (FSMC)
* Driver for NAND portions
*
* Copyright © 2010 ST Microelectronics
* Vipin Kumar <vipin.kumar@st.com>
* Ashish Priyadarshi
*
* Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8)
* Copyright © 2007 STMicroelectronics Pvt. Ltd.
* Copyright © 2009 Alessandro Rubini
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dmaengine.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/resource.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/mtd/partitions.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/amba/bus.h>
#include <mtd/mtd-abi.h>
/* fsmc controller registers for NOR flash */
#define CTRL 0x0
/* ctrl register definitions */
#define BANK_ENABLE BIT(0)
#define MUXED BIT(1)
#define NOR_DEV (2 << 2)
#define WIDTH_16 BIT(4)
#define RSTPWRDWN BIT(6)
#define WPROT BIT(7)
#define WRT_ENABLE BIT(12)
#define WAIT_ENB BIT(13)
#define CTRL_TIM 0x4
/* ctrl_tim register definitions */
#define FSMC_NOR_BANK_SZ 0x8
#define FSMC_NOR_REG_SIZE 0x40
#define FSMC_NOR_REG(base, bank, reg) ((base) + \
(FSMC_NOR_BANK_SZ * (bank)) + \
(reg))
/* fsmc controller registers for NAND flash */
#define FSMC_PC 0x00
/* pc register definitions */
#define FSMC_RESET BIT(0)
#define FSMC_WAITON BIT(1)
#define FSMC_ENABLE BIT(2)
#define FSMC_DEVTYPE_NAND BIT(3)
#define FSMC_DEVWID_16 BIT(4)
#define FSMC_ECCEN BIT(6)
#define FSMC_ECCPLEN_256 BIT(7)
#define FSMC_TCLR_SHIFT (9)
#define FSMC_TCLR_MASK (0xF)
#define FSMC_TAR_SHIFT (13)
#define FSMC_TAR_MASK (0xF)
#define STS 0x04
/* sts register definitions */
#define FSMC_CODE_RDY BIT(15)
#define COMM 0x08
/* comm register definitions */
#define FSMC_TSET_SHIFT 0
#define FSMC_TSET_MASK 0xFF
#define FSMC_TWAIT_SHIFT 8
#define FSMC_TWAIT_MASK 0xFF
#define FSMC_THOLD_SHIFT 16
#define FSMC_THOLD_MASK 0xFF
#define FSMC_THIZ_SHIFT 24
#define FSMC_THIZ_MASK 0xFF
#define ATTRIB 0x0C
#define IOATA 0x10
#define ECC1 0x14
#define ECC2 0x18
#define ECC3 0x1C
#define FSMC_NAND_BANK_SZ 0x20
#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ)
struct fsmc_nand_timings {
u8 tclr;
u8 tar;
u8 thiz;
u8 thold;
u8 twait;
u8 tset;
};
enum access_mode {
USE_DMA_ACCESS = 1,
USE_WORD_ACCESS,
};
/**
* struct fsmc_nand_data - structure for FSMC NAND device state
*
* @base: Inherit from the nand_controller struct
* @pid: Part ID on the AMBA PrimeCell format
* @nand: Chip related info for a NAND flash.
*
* @bank: Bank number for probed device.
* @dev: Parent device
* @mode: Access mode
* @clk: Clock structure for FSMC.
*
* @read_dma_chan: DMA channel for read access
* @write_dma_chan: DMA channel for write access to NAND
* @dma_access_complete: Completion structure
*
* @dev_timings: NAND timings
*
* @data_pa: NAND Physical port for Data.
* @data_va: NAND port for Data.
* @cmd_va: NAND port for Command.
* @addr_va: NAND port for Address.
* @regs_va: Registers base address for a given bank.
*/
struct fsmc_nand_data {
struct nand_controller base;
u32 pid;
struct nand_chip nand;
unsigned int bank;
struct device *dev;
enum access_mode mode;
struct clk *clk;
/* DMA related objects */
struct dma_chan *read_dma_chan;
struct dma_chan *write_dma_chan;
struct completion dma_access_complete;
struct fsmc_nand_timings *dev_timings;
dma_addr_t data_pa;
void __iomem *data_va;
void __iomem *cmd_va;
void __iomem *addr_va;
void __iomem *regs_va;
};
static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * 16) + 2;
oobregion->length = 3;
return 0;
}
static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * 16) + 8;
if (section < chip->ecc.steps - 1)
oobregion->length = 8;
else
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
.ecc = fsmc_ecc1_ooblayout_ecc,
.free = fsmc_ecc1_ooblayout_free,
};
/*
* ECC placement definitions in oobfree type format.
* There are 13 bytes of ecc for every 512 byte block and it has to be read
* consecutively and immediately after the 512 byte data block for hardware to
* generate the error bit offsets in 512 byte data.
*/
static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->length = chip->ecc.bytes;
if (!section && mtd->writesize <= 512)
oobregion->offset = 0;
else
oobregion->offset = (section * 16) + 2;
return 0;
}
static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section >= chip->ecc.steps)
return -ERANGE;
oobregion->offset = (section * 16) + 15;
if (section < chip->ecc.steps - 1)
oobregion->length = 3;
else
oobregion->length = mtd->oobsize - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
.ecc = fsmc_ecc4_ooblayout_ecc,
.free = fsmc_ecc4_ooblayout_free,
};
static inline struct fsmc_nand_data *nand_to_fsmc(struct nand_chip *chip)
{
return container_of(chip, struct fsmc_nand_data, nand);
}
/*
* fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
*
* This routine initializes timing parameters related to NAND memory access in
* FSMC registers
*/
static void fsmc_nand_setup(struct fsmc_nand_data *host,
struct fsmc_nand_timings *tims)
{
u32 value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
u32 tclr, tar, thiz, thold, twait, tset;
tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
if (host->nand.options & NAND_BUSWIDTH_16)
value |= FSMC_DEVWID_16;
writel_relaxed(value | tclr | tar, host->regs_va + FSMC_PC);
writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM);
writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB);
}
static int fsmc_calc_timings(struct fsmc_nand_data *host,
const struct nand_sdr_timings *sdrt,
struct fsmc_nand_timings *tims)
{
unsigned long hclk = clk_get_rate(host->clk);
unsigned long hclkn = NSEC_PER_SEC / hclk;
u32 thiz, thold, twait, tset;
if (sdrt->tRC_min < 30000)
return -EOPNOTSUPP;
tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1;
if (tims->tar > FSMC_TAR_MASK)
tims->tar = FSMC_TAR_MASK;
tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1;
if (tims->tclr > FSMC_TCLR_MASK)
tims->tclr = FSMC_TCLR_MASK;
thiz = sdrt->tCS_min - sdrt->tWP_min;
tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn);
thold = sdrt->tDH_min;
if (thold < sdrt->tCH_min)
thold = sdrt->tCH_min;
if (thold < sdrt->tCLH_min)
thold = sdrt->tCLH_min;
if (thold < sdrt->tWH_min)
thold = sdrt->tWH_min;
if (thold < sdrt->tALH_min)
thold = sdrt->tALH_min;
if (thold < sdrt->tREH_min)
thold = sdrt->tREH_min;
tims->thold = DIV_ROUND_UP(thold / 1000, hclkn);
if (tims->thold == 0)
tims->thold = 1;
else if (tims->thold > FSMC_THOLD_MASK)
tims->thold = FSMC_THOLD_MASK;
twait = max(sdrt->tRP_min, sdrt->tWP_min);
tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1;
if (tims->twait == 0)
tims->twait = 1;
else if (tims->twait > FSMC_TWAIT_MASK)
tims->twait = FSMC_TWAIT_MASK;
tset = max(sdrt->tCS_min - sdrt->tWP_min,
sdrt->tCEA_max - sdrt->tREA_max);
tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1;
if (tims->tset == 0)
tims->tset = 1;
else if (tims->tset > FSMC_TSET_MASK)
tims->tset = FSMC_TSET_MASK;
return 0;
}
static int fsmc_setup_data_interface(struct nand_chip *nand, int csline,
const struct nand_data_interface *conf)
{
struct fsmc_nand_data *host = nand_to_fsmc(nand);
struct fsmc_nand_timings tims;
const struct nand_sdr_timings *sdrt;
int ret;
sdrt = nand_get_sdr_timings(conf);
if (IS_ERR(sdrt))
return PTR_ERR(sdrt);
ret = fsmc_calc_timings(host, sdrt, &tims);
if (ret)
return ret;
if (csline == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
fsmc_nand_setup(host, &tims);
return 0;
}
/*
* fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
*/
static void fsmc_enable_hwecc(struct nand_chip *chip, int mode)
{
struct fsmc_nand_data *host = nand_to_fsmc(chip);
writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCPLEN_256,
host->regs_va + FSMC_PC);
writel_relaxed(readl(host->regs_va + FSMC_PC) & ~FSMC_ECCEN,
host->regs_va + FSMC_PC);
writel_relaxed(readl(host->regs_va + FSMC_PC) | FSMC_ECCEN,
host->regs_va + FSMC_PC);
}
/*
* fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
* FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
* max of 8-bits)
*/
static int fsmc_read_hwecc_ecc4(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct fsmc_nand_data *host = nand_to_fsmc(chip);
u32 ecc_tmp;
unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
do {
if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY)
break;
cond_resched();
} while (!time_after_eq(jiffies, deadline));
if (time_after_eq(jiffies, deadline)) {
dev_err(host->dev, "calculate ecc timed out\n");
return -ETIMEDOUT;
}
ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = ecc_tmp;
ecc[1] = ecc_tmp >> 8;
ecc[2] = ecc_tmp >> 16;
ecc[3] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + ECC2);
ecc[4] = ecc_tmp;
ecc[5] = ecc_tmp >> 8;
ecc[6] = ecc_tmp >> 16;
ecc[7] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + ECC3);
ecc[8] = ecc_tmp;
ecc[9] = ecc_tmp >> 8;
ecc[10] = ecc_tmp >> 16;
ecc[11] = ecc_tmp >> 24;
ecc_tmp = readl_relaxed(host->regs_va + STS);
ecc[12] = ecc_tmp >> 16;
return 0;
}
/*
* fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
* FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit)
*/
static int fsmc_read_hwecc_ecc1(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct fsmc_nand_data *host = nand_to_fsmc(chip);
u32 ecc_tmp;
ecc_tmp = readl_relaxed(host->regs_va + ECC1);
ecc[0] = ecc_tmp;
ecc[1] = ecc_tmp >> 8;
ecc[2] = ecc_tmp >> 16;
return 0;
}
/* Count the number of 0's in buff upto a max of max_bits */
static int count_written_bits(u8 *buff, int size, int max_bits)
{
int k, written_bits = 0;
for (k = 0; k < size; k++) {
written_bits += hweight8(~buff[k]);
if (written_bits > max_bits)
break;
}
return written_bits;
}
static void dma_complete(void *param)
{
struct fsmc_nand_data *host = param;
complete(&host->dma_access_complete);
}
static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
enum dma_data_direction direction)
{
struct dma_chan *chan;
struct dma_device *dma_dev;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dst, dma_src, dma_addr;
dma_cookie_t cookie;
unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
int ret;
unsigned long time_left;
if (direction == DMA_TO_DEVICE)
chan = host->write_dma_chan;
else if (direction == DMA_FROM_DEVICE)
chan = host->read_dma_chan;
else
return -EINVAL;
dma_dev = chan->device;
dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
if (direction == DMA_TO_DEVICE) {
dma_src = dma_addr;
dma_dst = host->data_pa;
} else {
dma_src = host->data_pa;
dma_dst = dma_addr;
}
tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
len, flags);
if (!tx) {
dev_err(host->dev, "device_prep_dma_memcpy error\n");
ret = -EIO;
goto unmap_dma;
}
tx->callback = dma_complete;
tx->callback_param = host;
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(host->dev, "dma_submit_error %d\n", cookie);
goto unmap_dma;
}
dma_async_issue_pending(chan);
time_left =
wait_for_completion_timeout(&host->dma_access_complete,
msecs_to_jiffies(3000));
if (time_left == 0) {
dmaengine_terminate_all(chan);
dev_err(host->dev, "wait_for_completion_timeout\n");
ret = -ETIMEDOUT;
goto unmap_dma;
}
ret = 0;
unmap_dma:
dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
return ret;
}
/*
* fsmc_write_buf - write buffer to chip
* @host: FSMC NAND controller
* @buf: data buffer
* @len: number of bytes to write
*/
static void fsmc_write_buf(struct fsmc_nand_data *host, const u8 *buf,
int len)
{
int i;
if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
IS_ALIGNED(len, sizeof(u32))) {
u32 *p = (u32 *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
writel_relaxed(p[i], host->data_va);
} else {
for (i = 0; i < len; i++)
writeb_relaxed(buf[i], host->data_va);
}
}
/*
* fsmc_read_buf - read chip data into buffer
* @host: FSMC NAND controller
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void fsmc_read_buf(struct fsmc_nand_data *host, u8 *buf, int len)
{
int i;
if (IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
IS_ALIGNED(len, sizeof(u32))) {
u32 *p = (u32 *)buf;
len = len >> 2;
for (i = 0; i < len; i++)
p[i] = readl_relaxed(host->data_va);
} else {
for (i = 0; i < len; i++)
buf[i] = readb_relaxed(host->data_va);
}
}
/*
* fsmc_read_buf_dma - read chip data into buffer
* @host: FSMC NAND controller
* @buf: buffer to store date
* @len: number of bytes to read
*/
static void fsmc_read_buf_dma(struct fsmc_nand_data *host, u8 *buf,
int len)
{
dma_xfer(host, buf, len, DMA_FROM_DEVICE);
}
/*
* fsmc_write_buf_dma - write buffer to chip
* @host: FSMC NAND controller
* @buf: data buffer
* @len: number of bytes to write
*/
static void fsmc_write_buf_dma(struct fsmc_nand_data *host, const u8 *buf,
int len)
{
dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
}
/*
* fsmc_exec_op - hook called by the core to execute NAND operations
*
* This controller is simple enough and thus does not need to use the parser
* provided by the core, instead, handle every situation here.
*/
static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op,
bool check_only)
{
struct fsmc_nand_data *host = nand_to_fsmc(chip);
const struct nand_op_instr *instr = NULL;
int ret = 0;
unsigned int op_id;
int i;
pr_debug("Executing operation [%d instructions]:\n", op->ninstrs);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
nand_op_trace(" ", instr);
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb_relaxed(instr->ctx.addr.addrs[i],
host->addr_va);
break;
case NAND_OP_DATA_IN_INSTR:
if (host->mode == USE_DMA_ACCESS)
fsmc_read_buf_dma(host, instr->ctx.data.buf.in,
instr->ctx.data.len);
else
fsmc_read_buf(host, instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
if (host->mode == USE_DMA_ACCESS)
fsmc_write_buf_dma(host,
instr->ctx.data.buf.out,
instr->ctx.data.len);
else
fsmc_write_buf(host, instr->ctx.data.buf.out,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = nand_soft_waitrdy(chip,
instr->ctx.waitrdy.timeout_ms);
break;
}
}
return ret;
}
/*
* fsmc_read_page_hwecc
* @chip: nand chip info structure
* @buf: buffer to store read data
* @oob_required: caller expects OOB data read to chip->oob_poi
* @page: page number to read
*
* This routine is needed for fsmc version 8 as reading from NAND chip has to be
* performed in a strict sequence as follows:
* data(512 byte) -> ecc(13 byte)
* After this read, fsmc hardware generates and reports error data bits(up to a
* max of 8 bits)
*/
static int fsmc_read_page_hwecc(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int i, j, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
u8 *p = buf;
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc_code = chip->ecc.code_buf;
int off, len, ret, group = 0;
/*
* ecc_oob is intentionally taken as u16. In 16bit devices, we
* end up reading 14 bytes (7 words) from oob. The local array is
* to maintain word alignment
*/
u16 ecc_oob[7];
u8 *oob = (u8 *)&ecc_oob[0];
unsigned int max_bitflips = 0;
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
nand_read_page_op(chip, page, s * eccsize, NULL, 0);
chip->ecc.hwctl(chip, NAND_ECC_READ);
ret = nand_read_data_op(chip, p, eccsize, false);
if (ret)
return ret;
for (j = 0; j < eccbytes;) {
struct mtd_oob_region oobregion;
ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
if (ret)
return ret;
off = oobregion.offset;
len = oobregion.length;
/*
* length is intentionally kept a higher multiple of 2
* to read at least 13 bytes even in case of 16 bit NAND
* devices
*/
if (chip->options & NAND_BUSWIDTH_16)
len = roundup(len, 2);
nand_read_oob_op(chip, page, off, oob + j, len);
j += len;
}
memcpy(&ecc_code[i], oob, chip->ecc.bytes);
chip->ecc.calculate(chip, p, &ecc_calc[i]);
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
/*
* fsmc_bch8_correct_data
* @mtd: mtd info structure
* @dat: buffer of read data
* @read_ecc: ecc read from device spare area
* @calc_ecc: ecc calculated from read data
*
* calc_ecc is a 104 bit information containing maximum of 8 error
* offset information of 13 bits each in 512 bytes of read data.
*/
static int fsmc_bch8_correct_data(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
struct fsmc_nand_data *host = nand_to_fsmc(chip);
u32 err_idx[8];
u32 num_err, i;
u32 ecc1, ecc2, ecc3, ecc4;
num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF;
/* no bit flipping */
if (likely(num_err == 0))
return 0;
/* too many errors */
if (unlikely(num_err > 8)) {
/*
* This is a temporary erase check. A newly erased page read
* would result in an ecc error because the oob data is also
* erased to FF and the calculated ecc for an FF data is not
* FF..FF.
* This is a workaround to skip performing correction in case
* data is FF..FF
*
* Logic:
* For every page, each bit written as 0 is counted until these
* number of bits are greater than 8 (the maximum correction
* capability of FSMC for each 512 + 13 bytes)
*/
int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
int bits_data = count_written_bits(dat, chip->ecc.size, 8);
if ((bits_ecc + bits_data) <= 8) {
if (bits_data)
memset(dat, 0xff, chip->ecc.size);
return bits_data;
}
return -EBADMSG;
}
/*
* ------------------- calc_ecc[] bit wise -----------|--13 bits--|
* |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
*
* calc_ecc is a 104 bit information containing maximum of 8 error
* offset information of 13 bits each. calc_ecc is copied into a
* u64 array and error offset indexes are populated in err_idx
* array
*/
ecc1 = readl_relaxed(host->regs_va + ECC1);
ecc2 = readl_relaxed(host->regs_va + ECC2);
ecc3 = readl_relaxed(host->regs_va + ECC3);
ecc4 = readl_relaxed(host->regs_va + STS);
err_idx[0] = (ecc1 >> 0) & 0x1FFF;
err_idx[1] = (ecc1 >> 13) & 0x1FFF;
err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
err_idx[3] = (ecc2 >> 7) & 0x1FFF;
err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
err_idx[5] = (ecc3 >> 1) & 0x1FFF;
err_idx[6] = (ecc3 >> 14) & 0x1FFF;
err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
i = 0;
while (num_err--) {
err_idx[i] ^= 3;
if (err_idx[i] < chip->ecc.size * 8) {
int err = err_idx[i];
dat[err >> 3] ^= BIT(err & 7);
i++;
}
}
return i;
}
static bool filter(struct dma_chan *chan, void *slave)
{
chan->private = slave;
return true;
}
static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
struct fsmc_nand_data *host,
struct nand_chip *nand)
{
struct device_node *np = pdev->dev.of_node;
u32 val;
int ret;
nand->options = 0;
if (!of_property_read_u32(np, "bank-width", &val)) {
if (val == 2) {
nand->options |= NAND_BUSWIDTH_16;
} else if (val != 1) {
dev_err(&pdev->dev, "invalid bank-width %u\n", val);
return -EINVAL;
}
}
if (of_get_property(np, "nand-skip-bbtscan", NULL))
nand->options |= NAND_SKIP_BBTSCAN;
host->dev_timings = devm_kzalloc(&pdev->dev,
sizeof(*host->dev_timings),
GFP_KERNEL);
if (!host->dev_timings)
return -ENOMEM;
ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings,
sizeof(*host->dev_timings));
if (ret)
host->dev_timings = NULL;
/* Set default NAND bank to 0 */
host->bank = 0;
if (!of_property_read_u32(np, "bank", &val)) {
if (val > 3) {
dev_err(&pdev->dev, "invalid bank %u\n", val);
return -EINVAL;
}
host->bank = val;
}
return 0;
}
static int fsmc_nand_attach_chip(struct nand_chip *nand)
{
struct mtd_info *mtd = nand_to_mtd(nand);
struct fsmc_nand_data *host = nand_to_fsmc(nand);
if (AMBA_REV_BITS(host->pid) >= 8) {
switch (mtd->oobsize) {
case 16:
case 64:
case 128:
case 224:
case 256:
break;
default:
dev_warn(host->dev,
"No oob scheme defined for oobsize %d\n",
mtd->oobsize);
return -EINVAL;
}
mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
return 0;
}
switch (nand->ecc.mode) {
case NAND_ECC_HW:
dev_info(host->dev, "Using 1-bit HW ECC scheme\n");
nand->ecc.calculate = fsmc_read_hwecc_ecc1;
nand->ecc.correct = nand_correct_data;
nand->ecc.bytes = 3;
nand->ecc.strength = 1;
nand->ecc.options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
break;
case NAND_ECC_SOFT:
if (nand->ecc.algo == NAND_ECC_BCH) {
dev_info(host->dev,
"Using 4-bit SW BCH ECC scheme\n");
break;
}
case NAND_ECC_ON_DIE:
break;
default:
dev_err(host->dev, "Unsupported ECC mode!\n");
return -ENOTSUPP;
}
/*
* Don't set layout for BCH4 SW ECC. This will be
* generated later in nand_bch_init() later.
*/
if (nand->ecc.mode == NAND_ECC_HW) {
switch (mtd->oobsize) {
case 16:
case 64:
case 128:
mtd_set_ooblayout(mtd,
&fsmc_ecc1_ooblayout_ops);
break;
default:
dev_warn(host->dev,
"No oob scheme defined for oobsize %d\n",
mtd->oobsize);
return -EINVAL;
}
}
return 0;
}
static const struct nand_controller_ops fsmc_nand_controller_ops = {
.attach_chip = fsmc_nand_attach_chip,
.exec_op = fsmc_exec_op,
.setup_data_interface = fsmc_setup_data_interface,
};
/**
* fsmc_nand_disable() - Disables the NAND bank
* @host: The instance to disable
*/
static void fsmc_nand_disable(struct fsmc_nand_data *host)
{
u32 val;
val = readl(host->regs_va + FSMC_PC);
val &= ~FSMC_ENABLE;
writel(val, host->regs_va + FSMC_PC);
}
/*
* fsmc_nand_probe - Probe function
* @pdev: platform device structure
*/
static int __init fsmc_nand_probe(struct platform_device *pdev)
{
struct fsmc_nand_data *host;
struct mtd_info *mtd;
struct nand_chip *nand;
struct resource *res;
void __iomem *base;
dma_cap_mask_t mask;
int ret = 0;
u32 pid;
int i;
/* Allocate memory for the device structure (and zero it) */
host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
nand = &host->nand;
ret = fsmc_nand_probe_config_dt(pdev, host, nand);
if (ret)
return ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
host->data_va = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->data_va))
return PTR_ERR(host->data_va);
host->data_pa = (dma_addr_t)res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
host->addr_va = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->addr_va))
return PTR_ERR(host->addr_va);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(host->cmd_va))
return PTR_ERR(host->cmd_va);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
host->regs_va = base + FSMC_NOR_REG_SIZE +
(host->bank * FSMC_NAND_BANK_SZ);
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk)) {
dev_err(&pdev->dev, "failed to fetch block clock\n");
return PTR_ERR(host->clk);
}
ret = clk_prepare_enable(host->clk);
if (ret)
return ret;
/*
* This device ID is actually a common AMBA ID as used on the
* AMBA PrimeCell bus. However it is not a PrimeCell.
*/
for (pid = 0, i = 0; i < 4; i++)
pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) &
255) << (i * 8);
host->pid = pid;
dev_info(&pdev->dev,
"FSMC device partno %03x, manufacturer %02x, revision %02x, config %02x\n",
AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
host->dev = &pdev->dev;
if (host->mode == USE_DMA_ACCESS)
init_completion(&host->dma_access_complete);
/* Link all private pointers */
mtd = nand_to_mtd(&host->nand);
nand_set_flash_node(nand, pdev->dev.of_node);
mtd->dev.parent = &pdev->dev;
/*
* Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
* can overwrite this value if the DT provides a different value.
*/
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.hwctl = fsmc_enable_hwecc;
nand->ecc.size = 512;
nand->badblockbits = 7;
if (host->mode == USE_DMA_ACCESS) {
dma_cap_zero(mask);
dma_cap_set(DMA_MEMCPY, mask);
host->read_dma_chan = dma_request_channel(mask, filter, NULL);
if (!host->read_dma_chan) {
dev_err(&pdev->dev, "Unable to get read dma channel\n");
goto disable_clk;
}
host->write_dma_chan = dma_request_channel(mask, filter, NULL);
if (!host->write_dma_chan) {
dev_err(&pdev->dev, "Unable to get write dma channel\n");
goto release_dma_read_chan;
}
}
if (host->dev_timings) {
fsmc_nand_setup(host, host->dev_timings);
nand->options |= NAND_KEEP_TIMINGS;
}
if (AMBA_REV_BITS(host->pid) >= 8) {
nand->ecc.read_page = fsmc_read_page_hwecc;
nand->ecc.calculate = fsmc_read_hwecc_ecc4;
nand->ecc.correct = fsmc_bch8_correct_data;
nand->ecc.bytes = 13;
nand->ecc.strength = 8;
}
nand_controller_init(&host->base);
host->base.ops = &fsmc_nand_controller_ops;
nand->controller = &host->base;
/*
* Scan to find existence of the device
*/
ret = nand_scan(nand, 1);
if (ret)
goto release_dma_write_chan;
mtd->name = "nand";
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto cleanup_nand;
platform_set_drvdata(pdev, host);
dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
return 0;
cleanup_nand:
nand_cleanup(nand);
release_dma_write_chan:
if (host->mode == USE_DMA_ACCESS)
dma_release_channel(host->write_dma_chan);
release_dma_read_chan:
if (host->mode == USE_DMA_ACCESS)
dma_release_channel(host->read_dma_chan);
disable_clk:
fsmc_nand_disable(host);
clk_disable_unprepare(host->clk);
return ret;
}
/*
* Clean up routine
*/
static int fsmc_nand_remove(struct platform_device *pdev)
{
struct fsmc_nand_data *host = platform_get_drvdata(pdev);
if (host) {
nand_release(&host->nand);
fsmc_nand_disable(host);
if (host->mode == USE_DMA_ACCESS) {
dma_release_channel(host->write_dma_chan);
dma_release_channel(host->read_dma_chan);
}
clk_disable_unprepare(host->clk);
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int fsmc_nand_suspend(struct device *dev)
{
struct fsmc_nand_data *host = dev_get_drvdata(dev);
if (host)
clk_disable_unprepare(host->clk);
return 0;
}
static int fsmc_nand_resume(struct device *dev)
{
struct fsmc_nand_data *host = dev_get_drvdata(dev);
if (host) {
clk_prepare_enable(host->clk);
if (host->dev_timings)
fsmc_nand_setup(host, host->dev_timings);
nand_reset(&host->nand, 0);
}
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
static const struct of_device_id fsmc_nand_id_table[] = {
{ .compatible = "st,spear600-fsmc-nand" },
{ .compatible = "stericsson,fsmc-nand" },
{}
};
MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
static struct platform_driver fsmc_nand_driver = {
.remove = fsmc_nand_remove,
.driver = {
.name = "fsmc-nand",
.of_match_table = fsmc_nand_id_table,
.pm = &fsmc_nand_pm_ops,
},
};
module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");