/*
* Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01
*
* The data sheet for this device can be found at:
* http://www.marvell.com/products/pcconn/88ALP01.jsp
*
* Copyright © 2006 Red Hat, Inc.
* Copyright © 2006 David Woodhouse <dwmw2@infradead.org>
*/
#define DEBUG
#include <linux/device.h>
#undef DEBUG
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/rslib.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <asm/io.h>
#define CAFE_NAND_CTRL1 0x00
#define CAFE_NAND_CTRL2 0x04
#define CAFE_NAND_CTRL3 0x08
#define CAFE_NAND_STATUS 0x0c
#define CAFE_NAND_IRQ 0x10
#define CAFE_NAND_IRQ_MASK 0x14
#define CAFE_NAND_DATA_LEN 0x18
#define CAFE_NAND_ADDR1 0x1c
#define CAFE_NAND_ADDR2 0x20
#define CAFE_NAND_TIMING1 0x24
#define CAFE_NAND_TIMING2 0x28
#define CAFE_NAND_TIMING3 0x2c
#define CAFE_NAND_NONMEM 0x30
#define CAFE_NAND_ECC_RESULT 0x3C
#define CAFE_NAND_DMA_CTRL 0x40
#define CAFE_NAND_DMA_ADDR0 0x44
#define CAFE_NAND_DMA_ADDR1 0x48
#define CAFE_NAND_ECC_SYN01 0x50
#define CAFE_NAND_ECC_SYN23 0x54
#define CAFE_NAND_ECC_SYN45 0x58
#define CAFE_NAND_ECC_SYN67 0x5c
#define CAFE_NAND_READ_DATA 0x1000
#define CAFE_NAND_WRITE_DATA 0x2000
#define CAFE_GLOBAL_CTRL 0x3004
#define CAFE_GLOBAL_IRQ 0x3008
#define CAFE_GLOBAL_IRQ_MASK 0x300c
#define CAFE_NAND_RESET 0x3034
/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */
#define CTRL1_CHIPSELECT (1<<19)
struct cafe_priv {
struct nand_chip nand;
struct mtd_partition *parts;
struct pci_dev *pdev;
void __iomem *mmio;
struct rs_control *rs;
uint32_t ctl1;
uint32_t ctl2;
int datalen;
int nr_data;
int data_pos;
int page_addr;
dma_addr_t dmaaddr;
unsigned char *dmabuf;
};
static int usedma = 1;
module_param(usedma, int, 0644);
static int skipbbt = 0;
module_param(skipbbt, int, 0644);
static int debug = 0;
module_param(debug, int, 0644);
static int regdebug = 0;
module_param(regdebug, int, 0644);
static int checkecc = 1;
module_param(checkecc, int, 0644);
static unsigned int numtimings;
static int timing[3];
module_param_array(timing, int, &numtimings, 0644);
#ifdef CONFIG_MTD_PARTITIONS
static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL };
#endif
/* Hrm. Why isn't this already conditional on something in the struct device? */
#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0)
/* Make it easier to switch to PIO if we need to */
#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr)
#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr)
static int cafe_device_ready(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
int result = !!(cafe_readl(cafe, NAND_STATUS) | 0x40000000);
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n",
result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ),
cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK));
return result;
}
static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(cafe->dmabuf + cafe->datalen, buf, len);
else
memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len);
cafe->datalen += len;
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n",
len, cafe->datalen);
}
static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct cafe_priv *cafe = mtd->priv;
if (usedma)
memcpy(buf, cafe->dmabuf + cafe->datalen, len);
else
memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len);
cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n",
len, cafe->datalen);
cafe->datalen += len;
}
static uint8_t cafe_read_byte(struct mtd_info *mtd)
{
struct cafe_priv *cafe = mtd->priv;
uint8_t d;
cafe_read_buf(mtd, &d, 1);
cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d);
return d;
}
static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct cafe_priv *cafe = mtd->priv;
int adrbytes = 0;
uint32_t ctl1;
uint32_t doneint = 0x80000000;
cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n",
command, column, page_addr);
if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) {
/* Second half of a command we already calculated */
cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2);
ctl1 = cafe->ctl1;
cafe->ctl2 &= ~(1<<30);
cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n",
cafe->ctl1, cafe->nr_data);
goto do_command;
}
/* Reset ECC engine */
cafe_writel(cafe, 0, NAND_CTRL2);
/* Emulate NAND_CMD_READOOB on large-page chips */
if (mtd->writesize > 512 &&
command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
/* FIXME: Do we need to send read command before sending data
for small-page chips, to position the buffer correctly? */
if (column != -1) {
cafe_writel(cafe, column, NAND_ADDR1);
adrbytes = 2;
if (page_addr != -1)
goto write_adr2;
} else if (page_addr != -1) {
cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1);
page_addr >>= 16;
write_adr2:
cafe_writel(cafe, page_addr, NAND_ADDR2);
adrbytes += 2;
if (mtd->size > mtd->writesize << 16)
adrbytes++;
}
cafe->data_pos = cafe->datalen = 0;
/* Set command valid bit, mask in the chip select bit */
ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT);
/* Set RD or WR bits as appropriate */
if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) {
ctl1 |= (1<<26); /* rd */
/* Always 5 bytes, for now */
cafe->datalen = 4;
/* And one address cycle -- even for STATUS, since the controller doesn't work without */
adrbytes = 1;
} else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) {
ctl1 |= 1<<26; /* rd */
/* For now, assume just read to end of page */
cafe->datalen = mtd->writesize + mtd->oobsize - column;
} else if (command == NAND_CMD_SEQIN)
ctl1 |= 1<<25; /* wr */
/* Set number of address bytes */
if (adrbytes)
ctl1 |= ((adrbytes-1)|8) << 27;
if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) {
/* Ignore the first command of a pair; the hardware
deals with them both at once, later */
cafe->ctl1 = ctl1;
cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n",
cafe->ctl1, cafe->datalen);
return;
}
/* RNDOUT and READ0 commands need a following byte */
if (command == NAND_CMD_RNDOUT)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2);
else if (command == NAND_CMD_READ0 && mtd->writesize > 512)
cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2);
do_command:
cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n",
cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2));
/* NB: The datasheet lies -- we really should be subtracting 1 here */
cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN);
cafe_writel(cafe, 0x90000000, NAND_IRQ);
if (usedma && (ctl1 & (3<<25))) {
uint32_t dmactl = 0xc0000000 + cafe->datalen;
/* If WR or RD bits set, set up DMA */
if (ctl1 & (1<<26)) {
/* It's a read */
dmactl |= (1<<29);
/* ... so it's done when the DMA is done, not just
the command. */
doneint = 0x10000000;
}
cafe_writel(cafe, dmactl, NAND_DMA_CTRL);
}
cafe->datalen = 0;
if (unlikely(regdebug)) {
int i;
printk("About to write command %08x to register 0\n", ctl1);
for (i=4; i< 0x5c; i+=4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
}
cafe_writel(cafe, ctl1, NAND_CTRL1);
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
if (1) {
int c;
uint32_t irqs;
for (c = 500000; c != 0; c--) {
irqs = cafe_readl(cafe, NAND_IRQ);
if (irqs & doneint)
break;
udelay(1);
if (!(c % 100000))
cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs);
cpu_relax();
}
cafe_writel(cafe, doneint, NAND_IRQ);
cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n",
command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ));
}
WARN_ON(cafe->ctl2 & (1<<30));
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
case NAND_CMD_DEPLETE1:
case NAND_CMD_RNDOUT:
case NAND_CMD_STATUS_ERROR:
case NAND_CMD_STATUS_ERROR0:
case NAND_CMD_STATUS_ERROR1:
case NAND_CMD_STATUS_ERROR2:
case NAND_CMD_STATUS_ERROR3:
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
return;
}
nand_wait_ready(mtd);
cafe_writel(cafe, cafe->ctl2, NAND_CTRL2);
}
static void cafe_select_chip(struct mtd_info *mtd, int chipnr)
{
struct cafe_priv *cafe = mtd->priv;
cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr);
/* Mask the appropriate bit into the stored value of ctl1
which will be used by cafe_nand_cmdfunc() */
if (chipnr)
cafe->ctl1 |= CTRL1_CHIPSELECT;
else
cafe->ctl1 &= ~CTRL1_CHIPSELECT;
}
static irqreturn_t cafe_nand_interrupt(int irq, void *id)
{
struct mtd_info *mtd = id;
struct cafe_priv *cafe = mtd->priv;
uint32_t irqs = cafe_readl(cafe, NAND_IRQ);
cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ);
if (!irqs)
return IRQ_NONE;
cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ));
return IRQ_HANDLED;
}
static void cafe_nand_bug(struct mtd_info *mtd)
{
BUG();
}
static int cafe_nand_write_oob(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
int status = 0;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
/* Don't use -- use nand_read_oob_std for now */
static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
return 1;
}
/**
* cafe_nand_read_page_syndrome - {REPLACABLE] hardware ecc syndrom based page read
* @mtd: mtd info structure
* @chip: nand chip info structure
* @buf: buffer to store read data
*
* The hw generator calculates the error syndrome automatically. Therefor
* we need a special oob layout and handling.
*/
static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct cafe_priv *cafe = mtd->priv;
cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n",
cafe_readl(cafe, NAND_ECC_RESULT),
cafe_readl(cafe, NAND_ECC_SYN01));
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) {
unsigned short syn[8], pat[4];
int pos[4];
u8 *oob = chip->oob_poi;
int i, n;
for (i=0; i<8; i+=2) {
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
syn[i] = cafe->rs->index_of[tmp & 0xfff];
syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
}
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
pat);
for (i = 0; i < n; i++) {
int p = pos[i];
/* The 12-bit symbols are mapped to bytes here */
if (p > 1374) {
/* out of range */
n = -1374;
} else if (p == 0) {
/* high four bits do not correspond to data */
if (pat[i] > 0xff)
n = -2048;
else
buf[0] ^= pat[i];
} else if (p == 1365) {
buf[2047] ^= pat[i] >> 4;
oob[0] ^= pat[i] << 4;
} else if (p > 1365) {
if ((p & 1) == 1) {
oob[3*p/2 - 2048] ^= pat[i] >> 4;
oob[3*p/2 - 2047] ^= pat[i] << 4;
} else {
oob[3*p/2 - 2049] ^= pat[i] >> 8;
oob[3*p/2 - 2048] ^= pat[i];
}
} else if ((p & 1) == 1) {
buf[3*p/2] ^= pat[i] >> 4;
buf[3*p/2 + 1] ^= pat[i] << 4;
} else {
buf[3*p/2 - 1] ^= pat[i] >> 8;
buf[3*p/2] ^= pat[i];
}
}
if (n < 0) {
dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n",
cafe_readl(cafe, NAND_ADDR2) * 2048);
for (i = 0; i < 0x5c; i += 4)
printk("Register %x: %08x\n", i, readl(cafe->mmio + i));
mtd->ecc_stats.failed++;
} else {
dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n);
mtd->ecc_stats.corrected += n;
}
}
return 0;
}
static struct nand_ecclayout cafe_oobinfo_2048 = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
.oobfree = {{14, 50}}
};
/* Ick. The BBT code really ought to be able to work this bit out
for itself from the above, at least for the 2KiB case */
static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' };
static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' };
static uint8_t cafe_bbt_pattern_512[] = { 0xBB };
static uint8_t cafe_mirror_pattern_512[] = { 0xBC };
static struct nand_bbt_descr cafe_bbt_main_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_2048
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 4,
.veroffs = 18,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_2048
};
static struct nand_ecclayout cafe_oobinfo_512 = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13},
.oobfree = {{14, 2}}
};
static struct nand_bbt_descr cafe_bbt_main_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_bbt_pattern_512
};
static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 14,
.len = 1,
.veroffs = 15,
.maxblocks = 4,
.pattern = cafe_mirror_pattern_512
};
static void cafe_nand_write_page_lowlevel(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf)
{
struct cafe_priv *cafe = mtd->priv;
chip->write_buf(mtd, buf, mtd->writesize);
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
/* Set up ECC autogeneration */
cafe->ctl2 |= (1<<30);
}
static int cafe_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, int page, int cached, int raw)
{
int status;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
if (unlikely(raw))
chip->ecc.write_page_raw(mtd, chip, buf);
else
chip->ecc.write_page(mtd, chip, buf);
/*
* Cached progamming disabled for now, Not sure if its worth the
* trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
*/
cached = 0;
if (!cached || !(chip->options & NAND_CACHEPRG)) {
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
/*
* See if operation failed and additional status checks are
* available
*/
if ((status & NAND_STATUS_FAIL) && (chip->errstat))
status = chip->errstat(mtd, chip, FL_WRITING, status,
page);
if (status & NAND_STATUS_FAIL)
return -EIO;
} else {
chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
/* Send command to read back the data */
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
if (chip->verify_buf(mtd, buf, mtd->writesize))
return -EIO;
#endif
return 0;
}
static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
{
return 0;
}
/* F_2[X]/(X**6+X+1) */
static unsigned short __devinit gf64_mul(u8 a, u8 b)
{
u8 c;
unsigned int i;
c = 0;
for (i = 0; i < 6; i++) {
if (a & 1)
c ^= b;
a >>= 1;
b <<= 1;
if ((b & 0x40) != 0)
b ^= 0x43;
}
return c;
}
/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */
static u16 __devinit gf4096_mul(u16 a, u16 b)
{
u8 ah, al, bh, bl, ch, cl;
ah = a >> 6;
al = a & 0x3f;
bh = b >> 6;
bl = b & 0x3f;
ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl);
cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl);
return (ch << 6) ^ cl;
}
static int __devinit cafe_mul(int x)
{
if (x == 0)
return 1;
return gf4096_mul(x, 0xe01);
}
static int __devinit cafe_nand_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct mtd_info *mtd;
struct cafe_priv *cafe;
uint32_t ctrl;
int err = 0;
#ifdef CONFIG_MTD_PARTITIONS
struct mtd_partition *parts;
int nr_parts;
#endif
/* Very old versions shared the same PCI ident for all three
functions on the chip. Verify the class too... */
if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH)
return -ENODEV;
err = pci_enable_device(pdev);
if (err)
return err;
pci_set_master(pdev);
mtd = kzalloc(sizeof(*mtd) + sizeof(struct cafe_priv), GFP_KERNEL);
if (!mtd) {
dev_warn(&pdev->dev, "failed to alloc mtd_info\n");
return -ENOMEM;
}
cafe = (void *)(&mtd[1]);
mtd->dev.parent = &pdev->dev;
mtd->priv = cafe;
mtd->owner = THIS_MODULE;
cafe->pdev = pdev;
cafe->mmio = pci_iomap(pdev, 0, 0);
if (!cafe->mmio) {
dev_warn(&pdev->dev, "failed to iomap\n");
err = -ENOMEM;
goto out_free_mtd;
}
cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112 + sizeof(struct nand_buffers),
&cafe->dmaaddr, GFP_KERNEL);
if (!cafe->dmabuf) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.buffers = (void *)cafe->dmabuf + 2112;
cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8);
if (!cafe->rs) {
err = -ENOMEM;
goto out_ior;
}
cafe->nand.cmdfunc = cafe_nand_cmdfunc;
cafe->nand.dev_ready = cafe_device_ready;
cafe->nand.read_byte = cafe_read_byte;
cafe->nand.read_buf = cafe_read_buf;
cafe->nand.write_buf = cafe_write_buf;
cafe->nand.select_chip = cafe_select_chip;
cafe->nand.chip_delay = 0;
/* Enable the following for a flash based bad block table */
cafe->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;
if (skipbbt) {
cafe->nand.options |= NAND_SKIP_BBTSCAN;
cafe->nand.block_bad = cafe_nand_block_bad;
}
if (numtimings && numtimings != 3) {
dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings);
}
if (numtimings == 3) {
cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
timing[0] = cafe_readl(cafe, NAND_TIMING1);
timing[1] = cafe_readl(cafe, NAND_TIMING2);
timing[2] = cafe_readl(cafe, NAND_TIMING3);
if (timing[0] | timing[1] | timing[2]) {
cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n",
timing[0], timing[1], timing[2]);
} else {
dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n");
timing[0] = timing[1] = timing[2] = 0xffffffff;
}
}
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED,
"CAFE NAND", mtd);
if (err) {
dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq);
goto out_free_dma;
}
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Set up DMA address */
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
if (sizeof(cafe->dmaaddr) > 4)
/* Shift in two parts to shut the compiler up */
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
else
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n",
cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n",
cafe_readl(cafe, GLOBAL_CTRL), cafe_readl(cafe, GLOBAL_IRQ_MASK));
/* Scan to find existence of the device */
if (nand_scan_ident(mtd, 2, NULL)) {
err = -ENXIO;
goto out_irq;
}
cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */
if (mtd->writesize == 2048)
cafe->ctl2 |= 1<<29; /* 2KiB page size */
/* Set up ECC according to the type of chip we found */
if (mtd->writesize == 2048) {
cafe->nand.ecc.layout = &cafe_oobinfo_2048;
cafe->nand.bbt_td = &cafe_bbt_main_descr_2048;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048;
} else if (mtd->writesize == 512) {
cafe->nand.ecc.layout = &cafe_oobinfo_512;
cafe->nand.bbt_td = &cafe_bbt_main_descr_512;
cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512;
} else {
printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n",
mtd->writesize);
goto out_irq;
}
cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
cafe->nand.ecc.size = mtd->writesize;
cafe->nand.ecc.bytes = 14;
cafe->nand.ecc.hwctl = (void *)cafe_nand_bug;
cafe->nand.ecc.calculate = (void *)cafe_nand_bug;
cafe->nand.ecc.correct = (void *)cafe_nand_bug;
cafe->nand.write_page = cafe_nand_write_page;
cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel;
cafe->nand.ecc.write_oob = cafe_nand_write_oob;
cafe->nand.ecc.read_page = cafe_nand_read_page;
cafe->nand.ecc.read_oob = cafe_nand_read_oob;
err = nand_scan_tail(mtd);
if (err)
goto out_irq;
pci_set_drvdata(pdev, mtd);
/* We register the whole device first, separate from the partitions */
add_mtd_device(mtd);
#ifdef CONFIG_MTD_PARTITIONS
#ifdef CONFIG_MTD_CMDLINE_PARTS
mtd->name = "cafe_nand";
#endif
nr_parts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
if (nr_parts > 0) {
cafe->parts = parts;
dev_info(&cafe->pdev->dev, "%d partitions found\n", nr_parts);
add_mtd_partitions(mtd, parts, nr_parts);
}
#endif
goto out;
out_irq:
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
out_free_dma:
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
out_ior:
pci_iounmap(pdev, cafe->mmio);
out_free_mtd:
kfree(mtd);
out:
return err;
}
static void __devexit cafe_nand_remove(struct pci_dev *pdev)
{
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct cafe_priv *cafe = mtd->priv;
del_mtd_device(mtd);
/* Disable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK);
free_irq(pdev->irq, mtd);
nand_release(mtd);
free_rs(cafe->rs);
pci_iounmap(pdev, cafe->mmio);
dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr);
kfree(mtd);
}
static const struct pci_device_id cafe_nand_tbl[] = {
{ PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND,
PCI_ANY_ID, PCI_ANY_ID },
{ }
};
MODULE_DEVICE_TABLE(pci, cafe_nand_tbl);
static int cafe_nand_resume(struct pci_dev *pdev)
{
uint32_t ctrl;
struct mtd_info *mtd = pci_get_drvdata(pdev);
struct cafe_priv *cafe = mtd->priv;
/* Start off by resetting the NAND controller completely */
cafe_writel(cafe, 1, NAND_RESET);
cafe_writel(cafe, 0, NAND_RESET);
cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK);
/* Restore timing configuration */
cafe_writel(cafe, timing[0], NAND_TIMING1);
cafe_writel(cafe, timing[1], NAND_TIMING2);
cafe_writel(cafe, timing[2], NAND_TIMING3);
/* Disable master reset, enable NAND clock */
ctrl = cafe_readl(cafe, GLOBAL_CTRL);
ctrl &= 0xffffeff0;
ctrl |= 0x00007000;
cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL);
cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL);
cafe_writel(cafe, 0, NAND_DMA_CTRL);
cafe_writel(cafe, 0x7006, GLOBAL_CTRL);
cafe_writel(cafe, 0x700a, GLOBAL_CTRL);
/* Set up DMA address */
cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0);
if (sizeof(cafe->dmaaddr) > 4)
/* Shift in two parts to shut the compiler up */
cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1);
else
cafe_writel(cafe, 0, NAND_DMA_ADDR1);
/* Enable NAND IRQ in global IRQ mask register */
cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK);
return 0;
}
static struct pci_driver cafe_nand_pci_driver = {
.name = "CAFÉ NAND",
.id_table = cafe_nand_tbl,
.probe = cafe_nand_probe,
.remove = __devexit_p(cafe_nand_remove),
.resume = cafe_nand_resume,
};
static int __init cafe_nand_init(void)
{
return pci_register_driver(&cafe_nand_pci_driver);
}
static void __exit cafe_nand_exit(void)
{
pci_unregister_driver(&cafe_nand_pci_driver);
}
module_init(cafe_nand_init);
module_exit(cafe_nand_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip");