// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2019 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include <uapi/misc/habanalabs.h>
#include "habanalabs.h"
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/genalloc.h>
static int cb_map_mem(struct hl_ctx *ctx, struct hl_cb *cb)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
struct hl_vm_va_block *va_block, *tmp;
dma_addr_t bus_addr;
u64 virt_addr;
u32 page_size = prop->pmmu.page_size;
s32 offset;
int rc;
if (!hdev->supports_cb_mapping) {
dev_err_ratelimited(hdev->dev,
"Cannot map CB because no VA range is allocated for CB mapping\n");
return -EINVAL;
}
if (!hdev->mmu_enable) {
dev_err_ratelimited(hdev->dev,
"Cannot map CB because MMU is disabled\n");
return -EINVAL;
}
INIT_LIST_HEAD(&cb->va_block_list);
for (bus_addr = cb->bus_address;
bus_addr < cb->bus_address + cb->size;
bus_addr += page_size) {
virt_addr = (u64) gen_pool_alloc(ctx->cb_va_pool, page_size);
if (!virt_addr) {
dev_err(hdev->dev,
"Failed to allocate device virtual address for CB\n");
rc = -ENOMEM;
goto err_va_pool_free;
}
va_block = kzalloc(sizeof(*va_block), GFP_KERNEL);
if (!va_block) {
rc = -ENOMEM;
gen_pool_free(ctx->cb_va_pool, virt_addr, page_size);
goto err_va_pool_free;
}
va_block->start = virt_addr;
va_block->end = virt_addr + page_size;
va_block->size = page_size;
list_add_tail(&va_block->node, &cb->va_block_list);
}
mutex_lock(&ctx->mmu_lock);
bus_addr = cb->bus_address;
offset = 0;
list_for_each_entry(va_block, &cb->va_block_list, node) {
rc = hl_mmu_map(ctx, va_block->start, bus_addr, va_block->size,
list_is_last(&va_block->node,
&cb->va_block_list));
if (rc) {
dev_err(hdev->dev, "Failed to map VA %#llx to CB\n",
va_block->start);
goto err_va_umap;
}
bus_addr += va_block->size;
offset += va_block->size;
}
hdev->asic_funcs->mmu_invalidate_cache(hdev, false, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
cb->is_mmu_mapped = true;
return 0;
err_va_umap:
list_for_each_entry(va_block, &cb->va_block_list, node) {
if (offset <= 0)
break;
hl_mmu_unmap(ctx, va_block->start, va_block->size,
offset <= va_block->size);
offset -= va_block->size;
}
hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
err_va_pool_free:
list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) {
gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size);
list_del(&va_block->node);
kfree(va_block);
}
return rc;
}
static void cb_unmap_mem(struct hl_ctx *ctx, struct hl_cb *cb)
{
struct hl_device *hdev = ctx->hdev;
struct hl_vm_va_block *va_block, *tmp;
mutex_lock(&ctx->mmu_lock);
list_for_each_entry(va_block, &cb->va_block_list, node)
if (hl_mmu_unmap(ctx, va_block->start, va_block->size,
list_is_last(&va_block->node,
&cb->va_block_list)))
dev_warn_ratelimited(hdev->dev,
"Failed to unmap CB's va 0x%llx\n",
va_block->start);
hdev->asic_funcs->mmu_invalidate_cache(hdev, true, VM_TYPE_USERPTR);
mutex_unlock(&ctx->mmu_lock);
list_for_each_entry_safe(va_block, tmp, &cb->va_block_list, node) {
gen_pool_free(ctx->cb_va_pool, va_block->start, va_block->size);
list_del(&va_block->node);
kfree(va_block);
}
}
static void cb_fini(struct hl_device *hdev, struct hl_cb *cb)
{
if (cb->is_internal)
gen_pool_free(hdev->internal_cb_pool,
(uintptr_t)cb->kernel_address, cb->size);
else
hdev->asic_funcs->asic_dma_free_coherent(hdev, cb->size,
cb->kernel_address, cb->bus_address);
kfree(cb);
}
static void cb_do_release(struct hl_device *hdev, struct hl_cb *cb)
{
if (cb->is_pool) {
spin_lock(&hdev->cb_pool_lock);
list_add(&cb->pool_list, &hdev->cb_pool);
spin_unlock(&hdev->cb_pool_lock);
} else {
cb_fini(hdev, cb);
}
}
static void cb_release(struct kref *ref)
{
struct hl_device *hdev;
struct hl_cb *cb;
cb = container_of(ref, struct hl_cb, refcount);
hdev = cb->hdev;
hl_debugfs_remove_cb(cb);
if (cb->is_mmu_mapped)
cb_unmap_mem(cb->ctx, cb);
hl_ctx_put(cb->ctx);
cb_do_release(hdev, cb);
}
static struct hl_cb *hl_cb_alloc(struct hl_device *hdev, u32 cb_size,
int ctx_id, bool internal_cb)
{
struct hl_cb *cb;
u32 cb_offset;
void *p;
/*
* We use of GFP_ATOMIC here because this function can be called from
* the latency-sensitive code path for command submission. Due to H/W
* limitations in some of the ASICs, the kernel must copy the user CB
* that is designated for an external queue and actually enqueue
* the kernel's copy. Hence, we must never sleep in this code section
* and must use GFP_ATOMIC for all memory allocations.
*/
if (ctx_id == HL_KERNEL_ASID_ID)
cb = kzalloc(sizeof(*cb), GFP_ATOMIC);
else
cb = kzalloc(sizeof(*cb), GFP_KERNEL);
if (!cb)
return NULL;
if (internal_cb) {
p = (void *) gen_pool_alloc(hdev->internal_cb_pool, cb_size);
if (!p) {
kfree(cb);
return NULL;
}
cb_offset = p - hdev->internal_cb_pool_virt_addr;
cb->is_internal = true;
cb->bus_address = hdev->internal_cb_va_base + cb_offset;
} else if (ctx_id == HL_KERNEL_ASID_ID) {
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
&cb->bus_address, GFP_ATOMIC);
} else {
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, cb_size,
&cb->bus_address,
GFP_USER | __GFP_ZERO);
}
if (!p) {
dev_err(hdev->dev,
"failed to allocate %d of dma memory for CB\n",
cb_size);
kfree(cb);
return NULL;
}
cb->kernel_address = p;
cb->size = cb_size;
return cb;
}
int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
bool map_cb, u64 *handle)
{
struct hl_cb *cb;
bool alloc_new_cb = true;
int rc, ctx_id = ctx->asid;
/*
* Can't use generic function to check this because of special case
* where we create a CB as part of the reset process
*/
if ((hdev->disabled) || ((atomic_read(&hdev->in_reset)) &&
(ctx_id != HL_KERNEL_ASID_ID))) {
dev_warn_ratelimited(hdev->dev,
"Device is disabled or in reset. Can't create new CBs\n");
rc = -EBUSY;
goto out_err;
}
if (cb_size > SZ_2M) {
dev_err(hdev->dev, "CB size %d must be less than %d\n",
cb_size, SZ_2M);
rc = -EINVAL;
goto out_err;
}
if (!internal_cb) {
/* Minimum allocation must be PAGE SIZE */
if (cb_size < PAGE_SIZE)
cb_size = PAGE_SIZE;
if (ctx_id == HL_KERNEL_ASID_ID &&
cb_size <= hdev->asic_prop.cb_pool_cb_size) {
spin_lock(&hdev->cb_pool_lock);
if (!list_empty(&hdev->cb_pool)) {
cb = list_first_entry(&hdev->cb_pool,
typeof(*cb), pool_list);
list_del(&cb->pool_list);
spin_unlock(&hdev->cb_pool_lock);
alloc_new_cb = false;
} else {
spin_unlock(&hdev->cb_pool_lock);
dev_dbg(hdev->dev, "CB pool is empty\n");
}
}
}
if (alloc_new_cb) {
cb = hl_cb_alloc(hdev, cb_size, ctx_id, internal_cb);
if (!cb) {
rc = -ENOMEM;
goto out_err;
}
}
cb->hdev = hdev;
cb->ctx = ctx;
hl_ctx_get(hdev, cb->ctx);
if (map_cb) {
if (ctx_id == HL_KERNEL_ASID_ID) {
dev_err(hdev->dev,
"CB mapping is not supported for kernel context\n");
rc = -EINVAL;
goto release_cb;
}
rc = cb_map_mem(ctx, cb);
if (rc)
goto release_cb;
}
spin_lock(&mgr->cb_lock);
rc = idr_alloc(&mgr->cb_handles, cb, 1, 0, GFP_ATOMIC);
spin_unlock(&mgr->cb_lock);
if (rc < 0) {
dev_err(hdev->dev, "Failed to allocate IDR for a new CB\n");
goto unmap_mem;
}
cb->id = (u64) rc;
kref_init(&cb->refcount);
spin_lock_init(&cb->lock);
/*
* idr is 32-bit so we can safely OR it with a mask that is above
* 32 bit
*/
*handle = cb->id | HL_MMAP_TYPE_CB;
*handle <<= PAGE_SHIFT;
hl_debugfs_add_cb(cb);
return 0;
unmap_mem:
if (cb->is_mmu_mapped)
cb_unmap_mem(cb->ctx, cb);
release_cb:
hl_ctx_put(cb->ctx);
cb_do_release(hdev, cb);
out_err:
*handle = 0;
return rc;
}
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle)
{
struct hl_cb *cb;
u32 handle;
int rc = 0;
/*
* handle was given to user to do mmap, I need to shift it back to
* how the idr module gave it to me
*/
cb_handle >>= PAGE_SHIFT;
handle = (u32) cb_handle;
spin_lock(&mgr->cb_lock);
cb = idr_find(&mgr->cb_handles, handle);
if (cb) {
idr_remove(&mgr->cb_handles, handle);
spin_unlock(&mgr->cb_lock);
kref_put(&cb->refcount, cb_release);
} else {
spin_unlock(&mgr->cb_lock);
dev_err(hdev->dev,
"CB destroy failed, no match to handle 0x%x\n", handle);
rc = -EINVAL;
}
return rc;
}
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data)
{
union hl_cb_args *args = data;
struct hl_device *hdev = hpriv->hdev;
u64 handle = 0;
int rc;
if (hl_device_disabled_or_in_reset(hdev)) {
dev_warn_ratelimited(hdev->dev,
"Device is %s. Can't execute CB IOCTL\n",
atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
return -EBUSY;
}
switch (args->in.op) {
case HL_CB_OP_CREATE:
if (args->in.cb_size > HL_MAX_CB_SIZE) {
dev_err(hdev->dev,
"User requested CB size %d must be less than %d\n",
args->in.cb_size, HL_MAX_CB_SIZE);
rc = -EINVAL;
} else {
rc = hl_cb_create(hdev, &hpriv->cb_mgr, hpriv->ctx,
args->in.cb_size, false,
!!(args->in.flags & HL_CB_FLAGS_MAP),
&handle);
}
memset(args, 0, sizeof(*args));
args->out.cb_handle = handle;
break;
case HL_CB_OP_DESTROY:
rc = hl_cb_destroy(hdev, &hpriv->cb_mgr,
args->in.cb_handle);
break;
default:
rc = -ENOTTY;
break;
}
return rc;
}
static void cb_vm_close(struct vm_area_struct *vma)
{
struct hl_cb *cb = (struct hl_cb *) vma->vm_private_data;
long new_mmap_size;
new_mmap_size = cb->mmap_size - (vma->vm_end - vma->vm_start);
if (new_mmap_size > 0) {
cb->mmap_size = new_mmap_size;
return;
}
spin_lock(&cb->lock);
cb->mmap = false;
spin_unlock(&cb->lock);
hl_cb_put(cb);
vma->vm_private_data = NULL;
}
static const struct vm_operations_struct cb_vm_ops = {
.close = cb_vm_close
};
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_cb *cb;
u32 handle, user_cb_size;
int rc;
/* We use the page offset to hold the idr and thus we need to clear
* it before doing the mmap itself
*/
handle = vma->vm_pgoff;
vma->vm_pgoff = 0;
/* reference was taken here */
cb = hl_cb_get(hdev, &hpriv->cb_mgr, handle);
if (!cb) {
dev_err(hdev->dev,
"CB mmap failed, no match to handle 0x%x\n", handle);
return -EINVAL;
}
/* Validation check */
user_cb_size = vma->vm_end - vma->vm_start;
if (user_cb_size != ALIGN(cb->size, PAGE_SIZE)) {
dev_err(hdev->dev,
"CB mmap failed, mmap size 0x%lx != 0x%x cb size\n",
vma->vm_end - vma->vm_start, cb->size);
rc = -EINVAL;
goto put_cb;
}
if (!access_ok((void __user *) (uintptr_t) vma->vm_start,
user_cb_size)) {
dev_err(hdev->dev,
"user pointer is invalid - 0x%lx\n",
vma->vm_start);
rc = -EINVAL;
goto put_cb;
}
spin_lock(&cb->lock);
if (cb->mmap) {
dev_err(hdev->dev,
"CB mmap failed, CB already mmaped to user\n");
rc = -EINVAL;
goto release_lock;
}
cb->mmap = true;
spin_unlock(&cb->lock);
vma->vm_ops = &cb_vm_ops;
/*
* Note: We're transferring the cb reference to
* vma->vm_private_data here.
*/
vma->vm_private_data = cb;
rc = hdev->asic_funcs->cb_mmap(hdev, vma, cb->kernel_address,
cb->bus_address, cb->size);
if (rc) {
spin_lock(&cb->lock);
cb->mmap = false;
goto release_lock;
}
cb->mmap_size = cb->size;
return 0;
release_lock:
spin_unlock(&cb->lock);
put_cb:
hl_cb_put(cb);
return rc;
}
struct hl_cb *hl_cb_get(struct hl_device *hdev, struct hl_cb_mgr *mgr,
u32 handle)
{
struct hl_cb *cb;
spin_lock(&mgr->cb_lock);
cb = idr_find(&mgr->cb_handles, handle);
if (!cb) {
spin_unlock(&mgr->cb_lock);
dev_warn(hdev->dev,
"CB get failed, no match to handle 0x%x\n", handle);
return NULL;
}
kref_get(&cb->refcount);
spin_unlock(&mgr->cb_lock);
return cb;
}
void hl_cb_put(struct hl_cb *cb)
{
kref_put(&cb->refcount, cb_release);
}
void hl_cb_mgr_init(struct hl_cb_mgr *mgr)
{
spin_lock_init(&mgr->cb_lock);
idr_init(&mgr->cb_handles);
}
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr)
{
struct hl_cb *cb;
struct idr *idp;
u32 id;
idp = &mgr->cb_handles;
idr_for_each_entry(idp, cb, id) {
if (kref_put(&cb->refcount, cb_release) != 1)
dev_err(hdev->dev,
"CB %d for CTX ID %d is still alive\n",
id, cb->ctx->asid);
}
idr_destroy(&mgr->cb_handles);
}
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
bool internal_cb)
{
u64 cb_handle;
struct hl_cb *cb;
int rc;
rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr, hdev->kernel_ctx, cb_size,
internal_cb, false, &cb_handle);
if (rc) {
dev_err(hdev->dev,
"Failed to allocate CB for the kernel driver %d\n", rc);
return NULL;
}
cb_handle >>= PAGE_SHIFT;
cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr, (u32) cb_handle);
/* hl_cb_get should never fail here so use kernel WARN */
WARN(!cb, "Kernel CB handle invalid 0x%x\n", (u32) cb_handle);
if (!cb)
goto destroy_cb;
return cb;
destroy_cb:
hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb_handle << PAGE_SHIFT);
return NULL;
}
int hl_cb_pool_init(struct hl_device *hdev)
{
struct hl_cb *cb;
int i;
INIT_LIST_HEAD(&hdev->cb_pool);
spin_lock_init(&hdev->cb_pool_lock);
for (i = 0 ; i < hdev->asic_prop.cb_pool_cb_cnt ; i++) {
cb = hl_cb_alloc(hdev, hdev->asic_prop.cb_pool_cb_size,
HL_KERNEL_ASID_ID, false);
if (cb) {
cb->is_pool = true;
list_add(&cb->pool_list, &hdev->cb_pool);
} else {
hl_cb_pool_fini(hdev);
return -ENOMEM;
}
}
return 0;
}
int hl_cb_pool_fini(struct hl_device *hdev)
{
struct hl_cb *cb, *tmp;
list_for_each_entry_safe(cb, tmp, &hdev->cb_pool, pool_list) {
list_del(&cb->pool_list);
cb_fini(hdev, cb);
}
return 0;
}
int hl_cb_va_pool_init(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
struct asic_fixed_properties *prop = &hdev->asic_prop;
int rc;
if (!hdev->supports_cb_mapping)
return 0;
ctx->cb_va_pool = gen_pool_create(__ffs(prop->pmmu.page_size), -1);
if (!ctx->cb_va_pool) {
dev_err(hdev->dev,
"Failed to create VA gen pool for CB mapping\n");
return -ENOMEM;
}
rc = gen_pool_add(ctx->cb_va_pool, prop->cb_va_start_addr,
prop->cb_va_end_addr - prop->cb_va_start_addr, -1);
if (rc) {
dev_err(hdev->dev,
"Failed to add memory to VA gen pool for CB mapping\n");
goto err_pool_destroy;
}
return 0;
err_pool_destroy:
gen_pool_destroy(ctx->cb_va_pool);
return rc;
}
void hl_cb_va_pool_fini(struct hl_ctx *ctx)
{
struct hl_device *hdev = ctx->hdev;
if (!hdev->supports_cb_mapping)
return;
gen_pool_destroy(ctx->cb_va_pool);
}