#
# Misc strange devices
#
menuconfig MISC_DEVICES
bool "Misc devices"
default y
---help---
Say Y here to get to see options for device drivers from various
different categories. This option alone does not add any kernel code.
If you say N, all options in this submenu will be skipped and disabled.
if MISC_DEVICES
config ATMEL_PWM
tristate "Atmel AT32/AT91 PWM support"
depends on AVR32 || ARCH_AT91SAM9263 || ARCH_AT91SAM9RL || ARCH_AT91CAP9
help
This option enables device driver support for the PWM channels
on certain Atmel prcoessors. Pulse Width Modulation is used for
purposes including software controlled power-efficent backlights
on LCD displays, motor control, and waveform generation.
config ATMEL_TCLIB
bool "Atmel AT32/AT91 Timer/Counter Library"
depends on (AVR32 || ARCH_AT91)
help
Select this if you want a library to allocate the Timer/Counter
blocks found on many Atmel processors. This facilitates using
these blocks by different drivers despite processor differences.
config ATMEL_TCB_CLKSRC
bool "TC Block Clocksource"
depends on ATMEL_TCLIB && GENERIC_TIME
default y
help
Select this to get a high precision clocksource based on a
TC block with a 5+ MHz base clock rate. Two timer channels
are combined to make a single 32-bit timer.
When GENERIC_CLOCKEVENTS is defined, the third timer channel
may be used as a clock event device supporting oneshot mode
(delays of up to two seconds) based on the 32 KiHz clock.
config ATMEL_TCB_CLKSRC_BLOCK
int
depends on ATMEL_TCB_CLKSRC
prompt "TC Block" if ARCH_AT91RM9200 || ARCH_AT91SAM9260 || CPU_AT32AP700X
default 0
range 0 1
help
Some chips provide more than one TC block, so you have the
choice of which one to use for the clock framework. The other
TC can be used for other purposes, such as PWM generation and
interval timing.
config IBM_ASM
tristate "Device driver for IBM RSA service processor"
depends on X86 && PCI && INPUT && EXPERIMENTAL
---help---
This option enables device driver support for in-band access to the
IBM RSA (Condor) service processor in eServer xSeries systems.
The ibmasm device driver allows user space application to access
ASM (Advanced Systems Management) functions on the service
processor. The driver is meant to be used in conjunction with
a user space API.
The ibmasm driver also enables the OS to use the UART on the
service processor board as a regular serial port. To make use of
this feature serial driver support (CONFIG_SERIAL_8250) must be
enabled.
WARNING: This software may not be supported or function
correctly on your IBM server. Please consult the IBM ServerProven
website <http://www.pc.ibm.com/ww/eserver/xseries/serverproven> for
information on the specific driver level and support statement
for your IBM server.
config PHANTOM
tristate "Sensable PHANToM (PCI)"
depends on PCI
help
Say Y here if you want to build a driver for Sensable PHANToM device.
This driver is only for PCI PHANToMs.
If you choose to build module, its name will be phantom. If unsure,
say N here.
config SGI_IOC4
tristate "SGI IOC4 Base IO support"
depends on PCI
---help---
This option enables basic support for the IOC4 chip on certain
SGI IO controller cards (IO9, IO10, and PCI-RT). This option
does not enable any specific functions on such a card, but provides
necessary infrastructure for other drivers to utilize.
If you have an SGI Altix with an IOC4-based card say Y.
Otherwise say N.
config TIFM_CORE
tristate "TI Flash Media interface support (EXPERIMENTAL)"
depends on EXPERIMENTAL && PCI
help
If you want support for Texas Instruments(R) Flash Media adapters
you should select this option and then also choose an appropriate
host adapter, such as 'TI Flash Media PCI74xx/PCI76xx host adapter
support', if you have a TI PCI74xx compatible card reader, for
example.
You will also have to select some flash card format drivers. MMC/SD
cards are supported via 'MMC/SD Card support: TI Flash Media MMC/SD
Interface support (MMC_TIFM_SD)'.
To compile this driver as a module, choose M here: the module will
be called tifm_core.
config TIFM_7XX1
tristate "TI Flash Media PCI74xx/PCI76xx host adapter support (EXPERIMENTAL)"
depends on PCI && TIFM_CORE && EXPERIMENTAL
default TIFM_CORE
help
This option enables support for Texas Instruments(R) PCI74xx and
PCI76xx families of Flash Media adapters, found in many laptops.
To make actual use of the device, you will have to select some
flash card format drivers, as outlined in the TIFM_CORE Help.
To compile this driver as a module, choose M here: the module will
be called tifm_7xx1.
config ICS932S401
tristate "Integrated Circuits ICS932S401"
depends on I2C && EXPERIMENTAL
help
If you say yes here you get support for the Integrated Circuits
ICS932S401 clock control chips.
This driver can also be built as a module. If so, the module
will be called ics932s401.
config ATMEL_SSC
tristate "Device driver for Atmel SSC peripheral"
depends on AVR32 || ARCH_AT91
---help---
This option enables device driver support for Atmel Syncronized
Serial Communication peripheral (SSC).
The SSC peripheral supports a wide variety of serial frame based
communications, i.e. I2S, SPI, etc.
If unsure, say N.
config ENCLOSURE_SERVICES
tristate "Enclosure Services"
default n
help
Provides support for intelligent enclosures (bays which
contain storage devices). You also need either a host
driver (SCSI/ATA) which supports enclosures
or a SCSI enclosure device (SES) to use these services.
config SGI_XP
tristate "Support communication between SGI SSIs"
depends on NET
depends on (IA64_GENERIC || IA64_SGI_SN2 || IA64_SGI_UV || X86_64) && SMP
select IA64_UNCACHED_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2
select GENERIC_ALLOCATOR if IA64_GENERIC || IA64_SGI_SN2
select SGI_GRU if (IA64_GENERIC || IA64_SGI_UV || X86_64) && SMP
---help---
An SGI machine can be divided into multiple Single System
Images which act independently of each other and have
hardware based memory protection from the others. Enabling
this feature will allow for direct communication between SSIs
based on a network adapter and DMA messaging.
config HP_ILO
tristate "Channel interface driver for HP iLO/iLO2 processor"
depends on PCI
default n
help
The channel interface driver allows applications to communicate
with iLO/iLO2 management processors present on HP ProLiant
servers. Upon loading, the driver creates /dev/hpilo/dXccbN files,
which can be used to gather data from the management processor,
via read and write system calls.
To compile this driver as a module, choose M here: the
module will be called hpilo.
config SGI_GRU
tristate "SGI GRU driver"
depends on (X86_64 || IA64_SGI_UV || IA64_GENERIC) && SMP
default n
select MMU_NOTIFIER
---help---
The GRU is a hardware resource located in the system chipset. The GRU
contains memory that can be mmapped into the user address space. This memory is
used to communicate with the GRU to perform functions such as load/store,
scatter/gather, bcopy, AMOs, etc. The GRU is directly accessed by user
instructions using user virtual addresses. GRU instructions (ex., bcopy) use
user virtual addresses for operands.
If you are not running on a SGI UV system, say N.
config SGI_GRU_DEBUG
bool "SGI GRU driver debug"
depends on SGI_GRU
default n
---help---
This option enables addition debugging code for the SGI GRU driver. If
you are unsure, say N.
config DELL_LAPTOP
tristate "Dell Laptop Extras (EXPERIMENTAL)"
depends on X86
depends on DCDBAS
depends on EXPERIMENTAL
depends on BACKLIGHT_CLASS_DEVICE
depends on RFKILL
default n
---help---
This driver adds support for rfkill and backlight control to Dell
laptops.
source "drivers/misc/c2port/Kconfig"
source "drivers/misc/eeprom/Kconfig"
endif # MISC_DEVICES