// SPDX-License-Identifier: GPL-2.0-or-later
/*
* USB RedRat3 IR Transceiver rc-core driver
*
* Copyright (c) 2011 by Jarod Wilson <jarod@redhat.com>
* based heavily on the work of Stephen Cox, with additional
* help from RedRat Ltd.
*
* This driver began life based on an old version of the first-generation
* lirc_mceusb driver from the lirc 0.7.2 distribution. It was then
* significantly rewritten by Stephen Cox with the aid of RedRat Ltd's
* Chris Dodge.
*
* The driver was then ported to rc-core and significantly rewritten again,
* by Jarod, using the in-kernel mceusb driver as a guide, after an initial
* port effort was started by Stephen.
*
* TODO LIST:
* - fix lirc not showing repeats properly
* --
*
* The RedRat3 is a USB transceiver with both send & receive,
* with 2 separate sensors available for receive to enable
* both good long range reception for general use, and good
* short range reception when required for learning a signal.
*
* http://www.redrat.co.uk/
*
* It uses its own little protocol to communicate, the required
* parts of which are embedded within this driver.
* --
*/
#include <asm/unaligned.h>
#include <linux/device.h>
#include <linux/leds.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/usb.h>
#include <linux/usb/input.h>
#include <media/rc-core.h>
/* Driver Information */
#define DRIVER_AUTHOR "Jarod Wilson <jarod@redhat.com>"
#define DRIVER_AUTHOR2 "The Dweller, Stephen Cox"
#define DRIVER_DESC "RedRat3 USB IR Transceiver Driver"
#define DRIVER_NAME "redrat3"
/* bulk data transfer types */
#define RR3_ERROR 0x01
#define RR3_MOD_SIGNAL_IN 0x20
#define RR3_MOD_SIGNAL_OUT 0x21
/* Get the RR firmware version */
#define RR3_FW_VERSION 0xb1
#define RR3_FW_VERSION_LEN 64
/* Send encoded signal bulk-sent earlier*/
#define RR3_TX_SEND_SIGNAL 0xb3
#define RR3_SET_IR_PARAM 0xb7
#define RR3_GET_IR_PARAM 0xb8
/* Blink the red LED on the device */
#define RR3_BLINK_LED 0xb9
/* Read serial number of device */
#define RR3_READ_SER_NO 0xba
#define RR3_SER_NO_LEN 4
/* Start capture with the RC receiver */
#define RR3_RC_DET_ENABLE 0xbb
/* Stop capture with the RC receiver */
#define RR3_RC_DET_DISABLE 0xbc
/* Start capture with the wideband receiver */
#define RR3_MODSIG_CAPTURE 0xb2
/* Return the status of RC detector capture */
#define RR3_RC_DET_STATUS 0xbd
/* Reset redrat */
#define RR3_RESET 0xa0
/* Max number of lengths in the signal. */
#define RR3_IR_IO_MAX_LENGTHS 0x01
/* Periods to measure mod. freq. */
#define RR3_IR_IO_PERIODS_MF 0x02
/* Size of memory for main signal data */
#define RR3_IR_IO_SIG_MEM_SIZE 0x03
/* Delta value when measuring lengths */
#define RR3_IR_IO_LENGTH_FUZZ 0x04
/* Timeout for end of signal detection */
#define RR3_IR_IO_SIG_TIMEOUT 0x05
/* Minimum value for pause recognition. */
#define RR3_IR_IO_MIN_PAUSE 0x06
/* Clock freq. of EZ-USB chip */
#define RR3_CLK 24000000
/* Clock periods per timer count */
#define RR3_CLK_PER_COUNT 12
/* (RR3_CLK / RR3_CLK_PER_COUNT) */
#define RR3_CLK_CONV_FACTOR 2000000
/* USB bulk-in wideband IR data endpoint address */
#define RR3_WIDE_IN_EP_ADDR 0x81
/* USB bulk-in narrowband IR data endpoint address */
#define RR3_NARROW_IN_EP_ADDR 0x82
/* Size of the fixed-length portion of the signal */
#define RR3_DRIVER_MAXLENS 255
#define RR3_MAX_SIG_SIZE 512
#define RR3_TIME_UNIT 50
#define RR3_END_OF_SIGNAL 0x7f
#define RR3_TX_TRAILER_LEN 2
#define RR3_RX_MIN_TIMEOUT 5
#define RR3_RX_MAX_TIMEOUT 2000
/* The 8051's CPUCS Register address */
#define RR3_CPUCS_REG_ADDR 0x7f92
#define USB_RR3USB_VENDOR_ID 0x112a
#define USB_RR3USB_PRODUCT_ID 0x0001
#define USB_RR3IIUSB_PRODUCT_ID 0x0005
/*
* The redrat3 encodes an IR signal as set of different lengths and a set
* of indices into those lengths. This sets how much two lengths must
* differ before they are considered distinct, the value is specified
* in microseconds.
* Default 5, value 0 to 127.
*/
static int length_fuzz = 5;
module_param(length_fuzz, uint, 0644);
MODULE_PARM_DESC(length_fuzz, "Length Fuzz (0-127)");
/*
* When receiving a continuous ir stream (for example when a user is
* holding a button down on a remote), this specifies the minimum size
* of a space when the redrat3 sends a irdata packet to the host. Specified
* in milliseconds. Default value 18ms.
* The value can be between 2 and 30 inclusive.
*/
static int minimum_pause = 18;
module_param(minimum_pause, uint, 0644);
MODULE_PARM_DESC(minimum_pause, "Minimum Pause in ms (2-30)");
/*
* The carrier frequency is measured during the first pulse of the IR
* signal. The larger the number of periods used To measure, the more
* accurate the result is likely to be, however some signals have short
* initial pulses, so in some case it may be necessary to reduce this value.
* Default 8, value 1 to 255.
*/
static int periods_measure_carrier = 8;
module_param(periods_measure_carrier, uint, 0644);
MODULE_PARM_DESC(periods_measure_carrier, "Number of Periods to Measure Carrier (1-255)");
struct redrat3_header {
__be16 length;
__be16 transfer_type;
} __packed;
/* sending and receiving irdata */
struct redrat3_irdata {
struct redrat3_header header;
__be32 pause;
__be16 mod_freq_count;
__be16 num_periods;
__u8 max_lengths;
__u8 no_lengths;
__be16 max_sig_size;
__be16 sig_size;
__u8 no_repeats;
__be16 lens[RR3_DRIVER_MAXLENS]; /* not aligned */
__u8 sigdata[RR3_MAX_SIG_SIZE];
} __packed;
/* firmware errors */
struct redrat3_error {
struct redrat3_header header;
__be16 fw_error;
} __packed;
/* table of devices that work with this driver */
static const struct usb_device_id redrat3_dev_table[] = {
/* Original version of the RedRat3 */
{USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3USB_PRODUCT_ID)},
/* Second Version/release of the RedRat3 - RetRat3-II */
{USB_DEVICE(USB_RR3USB_VENDOR_ID, USB_RR3IIUSB_PRODUCT_ID)},
{} /* Terminating entry */
};
/* Structure to hold all of our device specific stuff */
struct redrat3_dev {
/* core device bits */
struct rc_dev *rc;
struct device *dev;
/* led control */
struct led_classdev led;
atomic_t flash;
struct usb_ctrlrequest flash_control;
struct urb *flash_urb;
u8 flash_in_buf;
/* learning */
bool wideband;
struct usb_ctrlrequest learn_control;
struct urb *learn_urb;
u8 learn_buf;
/* save off the usb device pointer */
struct usb_device *udev;
/* the receive endpoint */
struct usb_endpoint_descriptor *ep_narrow;
/* the buffer to receive data */
void *bulk_in_buf;
/* urb used to read ir data */
struct urb *narrow_urb;
struct urb *wide_urb;
/* the send endpoint */
struct usb_endpoint_descriptor *ep_out;
/* usb dma */
dma_addr_t dma_in;
/* Is the device currently transmitting?*/
bool transmitting;
/* store for current packet */
struct redrat3_irdata irdata;
u16 bytes_read;
u32 carrier;
char name[64];
char phys[64];
};
static void redrat3_dump_fw_error(struct redrat3_dev *rr3, int code)
{
if (!rr3->transmitting && (code != 0x40))
dev_info(rr3->dev, "fw error code 0x%02x: ", code);
switch (code) {
case 0x00:
pr_cont("No Error\n");
break;
/* Codes 0x20 through 0x2f are IR Firmware Errors */
case 0x20:
pr_cont("Initial signal pulse not long enough to measure carrier frequency\n");
break;
case 0x21:
pr_cont("Not enough length values allocated for signal\n");
break;
case 0x22:
pr_cont("Not enough memory allocated for signal data\n");
break;
case 0x23:
pr_cont("Too many signal repeats\n");
break;
case 0x28:
pr_cont("Insufficient memory available for IR signal data memory allocation\n");
break;
case 0x29:
pr_cont("Insufficient memory available for IrDa signal data memory allocation\n");
break;
/* Codes 0x30 through 0x3f are USB Firmware Errors */
case 0x30:
pr_cont("Insufficient memory available for bulk transfer structure\n");
break;
/*
* Other error codes... These are primarily errors that can occur in
* the control messages sent to the redrat
*/
case 0x40:
if (!rr3->transmitting)
pr_cont("Signal capture has been terminated\n");
break;
case 0x41:
pr_cont("Attempt to set/get and unknown signal I/O algorithm parameter\n");
break;
case 0x42:
pr_cont("Signal capture already started\n");
break;
default:
pr_cont("Unknown Error\n");
break;
}
}
static u32 redrat3_val_to_mod_freq(struct redrat3_irdata *irdata)
{
u32 mod_freq = 0;
u16 mod_freq_count = be16_to_cpu(irdata->mod_freq_count);
if (mod_freq_count != 0)
mod_freq = (RR3_CLK * be16_to_cpu(irdata->num_periods)) /
(mod_freq_count * RR3_CLK_PER_COUNT);
return mod_freq;
}
/* this function scales down the figures for the same result... */
static u32 redrat3_len_to_us(u32 length)
{
u32 biglen = length * 1000;
u32 divisor = (RR3_CLK_CONV_FACTOR) / 1000;
u32 result = (u32) (biglen / divisor);
/* don't allow zero lengths to go back, breaks lirc */
return result ? result : 1;
}
/*
* convert us back into redrat3 lengths
*
* length * 1000 length * 1000000
* ------------- = ---------------- = micro
* rr3clk / 1000 rr3clk
* 6 * 2 4 * 3 micro * rr3clk micro * rr3clk / 1000
* ----- = 4 ----- = 6 -------------- = len ---------------------
* 3 2 1000000 1000
*/
static u32 redrat3_us_to_len(u32 microsec)
{
u32 result;
u32 divisor;
microsec = (microsec > IR_MAX_DURATION) ? IR_MAX_DURATION : microsec;
divisor = (RR3_CLK_CONV_FACTOR / 1000);
result = (u32)(microsec * divisor) / 1000;
/* don't allow zero lengths to go back, breaks lirc */
return result ? result : 1;
}
static void redrat3_process_ir_data(struct redrat3_dev *rr3)
{
struct ir_raw_event rawir = {};
struct device *dev;
unsigned int i, sig_size, offset, val;
u32 mod_freq;
dev = rr3->dev;
mod_freq = redrat3_val_to_mod_freq(&rr3->irdata);
dev_dbg(dev, "Got mod_freq of %u\n", mod_freq);
if (mod_freq && rr3->wideband) {
struct ir_raw_event ev = {
.carrier_report = 1,
.carrier = mod_freq
};
ir_raw_event_store(rr3->rc, &ev);
}
/* process each rr3 encoded byte into an int */
sig_size = be16_to_cpu(rr3->irdata.sig_size);
for (i = 0; i < sig_size; i++) {
offset = rr3->irdata.sigdata[i];
val = get_unaligned_be16(&rr3->irdata.lens[offset]);
/* we should always get pulse/space/pulse/space samples */
if (i % 2)
rawir.pulse = false;
else
rawir.pulse = true;
rawir.duration = redrat3_len_to_us(val);
/* cap the value to IR_MAX_DURATION */
rawir.duration = (rawir.duration > IR_MAX_DURATION) ?
IR_MAX_DURATION : rawir.duration;
dev_dbg(dev, "storing %s with duration %d (i: %d)\n",
rawir.pulse ? "pulse" : "space", rawir.duration, i);
ir_raw_event_store_with_filter(rr3->rc, &rawir);
}
/* add a trailing space */
rawir.pulse = false;
rawir.timeout = true;
rawir.duration = rr3->rc->timeout;
dev_dbg(dev, "storing trailing timeout with duration %d\n",
rawir.duration);
ir_raw_event_store_with_filter(rr3->rc, &rawir);
dev_dbg(dev, "calling ir_raw_event_handle\n");
ir_raw_event_handle(rr3->rc);
}
/* Util fn to send rr3 cmds */
static int redrat3_send_cmd(int cmd, struct redrat3_dev *rr3)
{
struct usb_device *udev;
u8 *data;
int res;
data = kzalloc(sizeof(u8), GFP_KERNEL);
if (!data)
return -ENOMEM;
udev = rr3->udev;
res = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0), cmd,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0x0000, 0x0000, data, sizeof(u8), 10000);
if (res < 0) {
dev_err(rr3->dev, "%s: Error sending rr3 cmd res %d, data %d",
__func__, res, *data);
res = -EIO;
} else
res = data[0];
kfree(data);
return res;
}
/* Enables the long range detector and starts async receive */
static int redrat3_enable_detector(struct redrat3_dev *rr3)
{
struct device *dev = rr3->dev;
u8 ret;
ret = redrat3_send_cmd(RR3_RC_DET_ENABLE, rr3);
if (ret != 0)
dev_dbg(dev, "%s: unexpected ret of %d\n",
__func__, ret);
ret = redrat3_send_cmd(RR3_RC_DET_STATUS, rr3);
if (ret != 1) {
dev_err(dev, "%s: detector status: %d, should be 1\n",
__func__, ret);
return -EIO;
}
ret = usb_submit_urb(rr3->narrow_urb, GFP_KERNEL);
if (ret) {
dev_err(rr3->dev, "narrow band urb failed: %d", ret);
return ret;
}
ret = usb_submit_urb(rr3->wide_urb, GFP_KERNEL);
if (ret)
dev_err(rr3->dev, "wide band urb failed: %d", ret);
return ret;
}
static inline void redrat3_delete(struct redrat3_dev *rr3,
struct usb_device *udev)
{
usb_kill_urb(rr3->narrow_urb);
usb_kill_urb(rr3->wide_urb);
usb_kill_urb(rr3->flash_urb);
usb_kill_urb(rr3->learn_urb);
usb_free_urb(rr3->narrow_urb);
usb_free_urb(rr3->wide_urb);
usb_free_urb(rr3->flash_urb);
usb_free_urb(rr3->learn_urb);
usb_free_coherent(udev, le16_to_cpu(rr3->ep_narrow->wMaxPacketSize),
rr3->bulk_in_buf, rr3->dma_in);
kfree(rr3);
}
static u32 redrat3_get_timeout(struct redrat3_dev *rr3)
{
__be32 *tmp;
u32 timeout = MS_TO_US(150); /* a sane default, if things go haywire */
int len, ret, pipe;
len = sizeof(*tmp);
tmp = kzalloc(len, GFP_KERNEL);
if (!tmp)
return timeout;
pipe = usb_rcvctrlpipe(rr3->udev, 0);
ret = usb_control_msg(rr3->udev, pipe, RR3_GET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
RR3_IR_IO_SIG_TIMEOUT, 0, tmp, len, 5000);
if (ret != len)
dev_warn(rr3->dev, "Failed to read timeout from hardware\n");
else {
timeout = redrat3_len_to_us(be32_to_cpup(tmp));
dev_dbg(rr3->dev, "Got timeout of %d ms\n", timeout / 1000);
}
kfree(tmp);
return timeout;
}
static int redrat3_set_timeout(struct rc_dev *rc_dev, unsigned int timeoutus)
{
struct redrat3_dev *rr3 = rc_dev->priv;
struct usb_device *udev = rr3->udev;
struct device *dev = rr3->dev;
__be32 *timeout;
int ret;
timeout = kmalloc(sizeof(*timeout), GFP_KERNEL);
if (!timeout)
return -ENOMEM;
*timeout = cpu_to_be32(redrat3_us_to_len(timeoutus));
ret = usb_control_msg(udev, usb_sndctrlpipe(udev, 0), RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_SIG_TIMEOUT, 0, timeout, sizeof(*timeout),
25000);
dev_dbg(dev, "set ir parm timeout %d ret 0x%02x\n",
be32_to_cpu(*timeout), ret);
if (ret == sizeof(*timeout))
ret = 0;
else if (ret >= 0)
ret = -EIO;
kfree(timeout);
return ret;
}
static void redrat3_reset(struct redrat3_dev *rr3)
{
struct usb_device *udev = rr3->udev;
struct device *dev = rr3->dev;
int rc, rxpipe, txpipe;
u8 *val;
size_t const len = sizeof(*val);
rxpipe = usb_rcvctrlpipe(udev, 0);
txpipe = usb_sndctrlpipe(udev, 0);
val = kmalloc(len, GFP_KERNEL);
if (!val)
return;
*val = 0x01;
rc = usb_control_msg(udev, rxpipe, RR3_RESET,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
RR3_CPUCS_REG_ADDR, 0, val, len, 25000);
dev_dbg(dev, "reset returned 0x%02x\n", rc);
*val = length_fuzz;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_LENGTH_FUZZ, 0, val, len, 25000);
dev_dbg(dev, "set ir parm len fuzz %d rc 0x%02x\n", *val, rc);
*val = (65536 - (minimum_pause * 2000)) / 256;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_MIN_PAUSE, 0, val, len, 25000);
dev_dbg(dev, "set ir parm min pause %d rc 0x%02x\n", *val, rc);
*val = periods_measure_carrier;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_PERIODS_MF, 0, val, len, 25000);
dev_dbg(dev, "set ir parm periods measure carrier %d rc 0x%02x", *val,
rc);
*val = RR3_DRIVER_MAXLENS;
rc = usb_control_msg(udev, txpipe, RR3_SET_IR_PARAM,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_OUT,
RR3_IR_IO_MAX_LENGTHS, 0, val, len, 25000);
dev_dbg(dev, "set ir parm max lens %d rc 0x%02x\n", *val, rc);
kfree(val);
}
static void redrat3_get_firmware_rev(struct redrat3_dev *rr3)
{
int rc;
char *buffer;
buffer = kcalloc(RR3_FW_VERSION_LEN + 1, sizeof(*buffer), GFP_KERNEL);
if (!buffer)
return;
rc = usb_control_msg(rr3->udev, usb_rcvctrlpipe(rr3->udev, 0),
RR3_FW_VERSION,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0, 0, buffer, RR3_FW_VERSION_LEN, 5000);
if (rc >= 0)
dev_info(rr3->dev, "Firmware rev: %s", buffer);
else
dev_err(rr3->dev, "Problem fetching firmware ID\n");
kfree(buffer);
}
static void redrat3_read_packet_start(struct redrat3_dev *rr3, unsigned len)
{
struct redrat3_header *header = rr3->bulk_in_buf;
unsigned pktlen, pkttype;
/* grab the Length and type of transfer */
pktlen = be16_to_cpu(header->length);
pkttype = be16_to_cpu(header->transfer_type);
if (pktlen > sizeof(rr3->irdata)) {
dev_warn(rr3->dev, "packet length %u too large\n", pktlen);
return;
}
switch (pkttype) {
case RR3_ERROR:
if (len >= sizeof(struct redrat3_error)) {
struct redrat3_error *error = rr3->bulk_in_buf;
unsigned fw_error = be16_to_cpu(error->fw_error);
redrat3_dump_fw_error(rr3, fw_error);
}
break;
case RR3_MOD_SIGNAL_IN:
memcpy(&rr3->irdata, rr3->bulk_in_buf, len);
rr3->bytes_read = len;
dev_dbg(rr3->dev, "bytes_read %d, pktlen %d\n",
rr3->bytes_read, pktlen);
break;
default:
dev_dbg(rr3->dev, "ignoring packet with type 0x%02x, len of %d, 0x%02x\n",
pkttype, len, pktlen);
break;
}
}
static void redrat3_read_packet_continue(struct redrat3_dev *rr3, unsigned len)
{
void *irdata = &rr3->irdata;
if (len + rr3->bytes_read > sizeof(rr3->irdata)) {
dev_warn(rr3->dev, "too much data for packet\n");
rr3->bytes_read = 0;
return;
}
memcpy(irdata + rr3->bytes_read, rr3->bulk_in_buf, len);
rr3->bytes_read += len;
dev_dbg(rr3->dev, "bytes_read %d, pktlen %d\n", rr3->bytes_read,
be16_to_cpu(rr3->irdata.header.length));
}
/* gather IR data from incoming urb, process it when we have enough */
static int redrat3_get_ir_data(struct redrat3_dev *rr3, unsigned len)
{
struct device *dev = rr3->dev;
unsigned pkttype;
int ret = 0;
if (rr3->bytes_read == 0 && len >= sizeof(struct redrat3_header)) {
redrat3_read_packet_start(rr3, len);
} else if (rr3->bytes_read != 0) {
redrat3_read_packet_continue(rr3, len);
} else if (rr3->bytes_read == 0) {
dev_err(dev, "error: no packet data read\n");
ret = -ENODATA;
goto out;
}
if (rr3->bytes_read < be16_to_cpu(rr3->irdata.header.length) +
sizeof(struct redrat3_header))
/* we're still accumulating data */
return 0;
/* if we get here, we've got IR data to decode */
pkttype = be16_to_cpu(rr3->irdata.header.transfer_type);
if (pkttype == RR3_MOD_SIGNAL_IN)
redrat3_process_ir_data(rr3);
else
dev_dbg(dev, "discarding non-signal data packet (type 0x%02x)\n",
pkttype);
out:
rr3->bytes_read = 0;
return ret;
}
/* callback function from USB when async USB request has completed */
static void redrat3_handle_async(struct urb *urb)
{
struct redrat3_dev *rr3 = urb->context;
int ret;
switch (urb->status) {
case 0:
ret = redrat3_get_ir_data(rr3, urb->actual_length);
if (!ret && rr3->wideband && !rr3->learn_urb->hcpriv) {
ret = usb_submit_urb(rr3->learn_urb, GFP_ATOMIC);
if (ret)
dev_err(rr3->dev, "Failed to submit learning urb: %d",
ret);
}
if (!ret) {
/* no error, prepare to read more */
ret = usb_submit_urb(urb, GFP_ATOMIC);
if (ret)
dev_err(rr3->dev, "Failed to resubmit urb: %d",
ret);
}
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_warn(rr3->dev, "Error: urb status = %d\n", urb->status);
rr3->bytes_read = 0;
break;
}
}
static u16 mod_freq_to_val(unsigned int mod_freq)
{
int mult = 6000000;
/* Clk used in mod. freq. generation is CLK24/4. */
return 65536 - (mult / mod_freq);
}
static int redrat3_set_tx_carrier(struct rc_dev *rcdev, u32 carrier)
{
struct redrat3_dev *rr3 = rcdev->priv;
struct device *dev = rr3->dev;
dev_dbg(dev, "Setting modulation frequency to %u", carrier);
if (carrier == 0)
return -EINVAL;
rr3->carrier = carrier;
return 0;
}
static int redrat3_transmit_ir(struct rc_dev *rcdev, unsigned *txbuf,
unsigned count)
{
struct redrat3_dev *rr3 = rcdev->priv;
struct device *dev = rr3->dev;
struct redrat3_irdata *irdata = NULL;
int ret, ret_len;
int lencheck, cur_sample_len, pipe;
int *sample_lens = NULL;
u8 curlencheck = 0;
unsigned i, sendbuf_len;
if (rr3->transmitting) {
dev_warn(dev, "%s: transmitter already in use\n", __func__);
return -EAGAIN;
}
if (count > RR3_MAX_SIG_SIZE - RR3_TX_TRAILER_LEN)
return -EINVAL;
/* rr3 will disable rc detector on transmit */
rr3->transmitting = true;
sample_lens = kcalloc(RR3_DRIVER_MAXLENS,
sizeof(*sample_lens),
GFP_KERNEL);
if (!sample_lens)
return -ENOMEM;
irdata = kzalloc(sizeof(*irdata), GFP_KERNEL);
if (!irdata) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < count; i++) {
cur_sample_len = redrat3_us_to_len(txbuf[i]);
if (cur_sample_len > 0xffff) {
dev_warn(dev, "transmit period of %uus truncated to %uus\n",
txbuf[i], redrat3_len_to_us(0xffff));
cur_sample_len = 0xffff;
}
for (lencheck = 0; lencheck < curlencheck; lencheck++) {
if (sample_lens[lencheck] == cur_sample_len)
break;
}
if (lencheck == curlencheck) {
dev_dbg(dev, "txbuf[%d]=%u, pos %d, enc %u\n",
i, txbuf[i], curlencheck, cur_sample_len);
if (curlencheck < RR3_DRIVER_MAXLENS) {
/* now convert the value to a proper
* rr3 value.. */
sample_lens[curlencheck] = cur_sample_len;
put_unaligned_be16(cur_sample_len,
&irdata->lens[curlencheck]);
curlencheck++;
} else {
ret = -EINVAL;
goto out;
}
}
irdata->sigdata[i] = lencheck;
}
irdata->sigdata[count] = RR3_END_OF_SIGNAL;
irdata->sigdata[count + 1] = RR3_END_OF_SIGNAL;
sendbuf_len = offsetof(struct redrat3_irdata,
sigdata[count + RR3_TX_TRAILER_LEN]);
/* fill in our packet header */
irdata->header.length = cpu_to_be16(sendbuf_len -
sizeof(struct redrat3_header));
irdata->header.transfer_type = cpu_to_be16(RR3_MOD_SIGNAL_OUT);
irdata->pause = cpu_to_be32(redrat3_len_to_us(100));
irdata->mod_freq_count = cpu_to_be16(mod_freq_to_val(rr3->carrier));
irdata->no_lengths = curlencheck;
irdata->sig_size = cpu_to_be16(count + RR3_TX_TRAILER_LEN);
pipe = usb_sndbulkpipe(rr3->udev, rr3->ep_out->bEndpointAddress);
ret = usb_bulk_msg(rr3->udev, pipe, irdata,
sendbuf_len, &ret_len, 10000);
dev_dbg(dev, "sent %d bytes, (ret %d)\n", ret_len, ret);
/* now tell the hardware to transmit what we sent it */
pipe = usb_rcvctrlpipe(rr3->udev, 0);
ret = usb_control_msg(rr3->udev, pipe, RR3_TX_SEND_SIGNAL,
USB_TYPE_VENDOR | USB_RECIP_DEVICE | USB_DIR_IN,
0, 0, irdata, 2, 10000);
if (ret < 0)
dev_err(dev, "Error: control msg send failed, rc %d\n", ret);
else
ret = count;
out:
kfree(irdata);
kfree(sample_lens);
rr3->transmitting = false;
/* rr3 re-enables rc detector because it was enabled before */
return ret;
}
static void redrat3_brightness_set(struct led_classdev *led_dev, enum
led_brightness brightness)
{
struct redrat3_dev *rr3 = container_of(led_dev, struct redrat3_dev,
led);
if (brightness != LED_OFF && atomic_cmpxchg(&rr3->flash, 0, 1) == 0) {
int ret = usb_submit_urb(rr3->flash_urb, GFP_ATOMIC);
if (ret != 0) {
dev_dbg(rr3->dev, "%s: unexpected ret of %d\n",
__func__, ret);
atomic_set(&rr3->flash, 0);
}
}
}
static int redrat3_wideband_receiver(struct rc_dev *rcdev, int enable)
{
struct redrat3_dev *rr3 = rcdev->priv;
int ret = 0;
rr3->wideband = enable != 0;
if (enable) {
ret = usb_submit_urb(rr3->learn_urb, GFP_KERNEL);
if (ret)
dev_err(rr3->dev, "Failed to submit learning urb: %d",
ret);
}
return ret;
}
static void redrat3_learn_complete(struct urb *urb)
{
struct redrat3_dev *rr3 = urb->context;
switch (urb->status) {
case 0:
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_err(rr3->dev, "Error: learn urb status = %d", urb->status);
break;
}
}
static void redrat3_led_complete(struct urb *urb)
{
struct redrat3_dev *rr3 = urb->context;
switch (urb->status) {
case 0:
break;
case -ECONNRESET:
case -ENOENT:
case -ESHUTDOWN:
usb_unlink_urb(urb);
return;
case -EPIPE:
default:
dev_dbg(rr3->dev, "Error: urb status = %d\n", urb->status);
break;
}
rr3->led.brightness = LED_OFF;
atomic_dec(&rr3->flash);
}
static struct rc_dev *redrat3_init_rc_dev(struct redrat3_dev *rr3)
{
struct device *dev = rr3->dev;
struct rc_dev *rc;
int ret;
u16 prod = le16_to_cpu(rr3->udev->descriptor.idProduct);
rc = rc_allocate_device(RC_DRIVER_IR_RAW);
if (!rc)
return NULL;
snprintf(rr3->name, sizeof(rr3->name),
"RedRat3%s Infrared Remote Transceiver",
prod == USB_RR3IIUSB_PRODUCT_ID ? "-II" : "");
usb_make_path(rr3->udev, rr3->phys, sizeof(rr3->phys));
rc->device_name = rr3->name;
rc->input_phys = rr3->phys;
usb_to_input_id(rr3->udev, &rc->input_id);
rc->dev.parent = dev;
rc->priv = rr3;
rc->allowed_protocols = RC_PROTO_BIT_ALL_IR_DECODER;
rc->min_timeout = MS_TO_US(RR3_RX_MIN_TIMEOUT);
rc->max_timeout = MS_TO_US(RR3_RX_MAX_TIMEOUT);
rc->timeout = redrat3_get_timeout(rr3);
rc->s_timeout = redrat3_set_timeout;
rc->tx_ir = redrat3_transmit_ir;
rc->s_tx_carrier = redrat3_set_tx_carrier;
rc->s_carrier_report = redrat3_wideband_receiver;
rc->driver_name = DRIVER_NAME;
rc->rx_resolution = 2;
rc->map_name = RC_MAP_HAUPPAUGE;
ret = rc_register_device(rc);
if (ret < 0) {
dev_err(dev, "remote dev registration failed\n");
goto out;
}
return rc;
out:
rc_free_device(rc);
return NULL;
}
static int redrat3_dev_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct device *dev = &intf->dev;
struct usb_host_interface *uhi;
struct redrat3_dev *rr3;
struct usb_endpoint_descriptor *ep;
struct usb_endpoint_descriptor *ep_narrow = NULL;
struct usb_endpoint_descriptor *ep_wide = NULL;
struct usb_endpoint_descriptor *ep_out = NULL;
u8 addr, attrs;
int pipe, i;
int retval = -ENOMEM;
uhi = intf->cur_altsetting;
/* find our bulk-in and bulk-out endpoints */
for (i = 0; i < uhi->desc.bNumEndpoints; ++i) {
ep = &uhi->endpoint[i].desc;
addr = ep->bEndpointAddress;
attrs = ep->bmAttributes;
if (((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) &&
((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK)) {
dev_dbg(dev, "found bulk-in endpoint at 0x%02x\n",
ep->bEndpointAddress);
/* data comes in on 0x82, 0x81 is for learning */
if (ep->bEndpointAddress == RR3_NARROW_IN_EP_ADDR)
ep_narrow = ep;
if (ep->bEndpointAddress == RR3_WIDE_IN_EP_ADDR)
ep_wide = ep;
}
if ((ep_out == NULL) &&
((addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) &&
((attrs & USB_ENDPOINT_XFERTYPE_MASK) ==
USB_ENDPOINT_XFER_BULK)) {
dev_dbg(dev, "found bulk-out endpoint at 0x%02x\n",
ep->bEndpointAddress);
ep_out = ep;
}
}
if (!ep_narrow || !ep_out || !ep_wide) {
dev_err(dev, "Couldn't find all endpoints\n");
retval = -ENODEV;
goto no_endpoints;
}
/* allocate memory for our device state and initialize it */
rr3 = kzalloc(sizeof(*rr3), GFP_KERNEL);
if (!rr3)
goto no_endpoints;
rr3->dev = &intf->dev;
rr3->ep_narrow = ep_narrow;
rr3->ep_out = ep_out;
rr3->udev = udev;
/* set up bulk-in endpoint */
rr3->narrow_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->narrow_urb)
goto redrat_free;
rr3->wide_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->wide_urb)
goto redrat_free;
rr3->bulk_in_buf = usb_alloc_coherent(udev,
le16_to_cpu(ep_narrow->wMaxPacketSize),
GFP_KERNEL, &rr3->dma_in);
if (!rr3->bulk_in_buf)
goto redrat_free;
pipe = usb_rcvbulkpipe(udev, ep_narrow->bEndpointAddress);
usb_fill_bulk_urb(rr3->narrow_urb, udev, pipe, rr3->bulk_in_buf,
le16_to_cpu(ep_narrow->wMaxPacketSize),
redrat3_handle_async, rr3);
rr3->narrow_urb->transfer_dma = rr3->dma_in;
rr3->narrow_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
pipe = usb_rcvbulkpipe(udev, ep_wide->bEndpointAddress);
usb_fill_bulk_urb(rr3->wide_urb, udev, pipe, rr3->bulk_in_buf,
le16_to_cpu(ep_narrow->wMaxPacketSize),
redrat3_handle_async, rr3);
rr3->wide_urb->transfer_dma = rr3->dma_in;
rr3->wide_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
redrat3_reset(rr3);
redrat3_get_firmware_rev(rr3);
/* default.. will get overridden by any sends with a freq defined */
rr3->carrier = 38000;
atomic_set(&rr3->flash, 0);
rr3->flash_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->flash_urb)
goto redrat_free;
/* learn urb */
rr3->learn_urb = usb_alloc_urb(0, GFP_KERNEL);
if (!rr3->learn_urb)
goto redrat_free;
/* setup packet is 'c0 b2 0000 0000 0001' */
rr3->learn_control.bRequestType = 0xc0;
rr3->learn_control.bRequest = RR3_MODSIG_CAPTURE;
rr3->learn_control.wLength = cpu_to_le16(1);
usb_fill_control_urb(rr3->learn_urb, udev, usb_rcvctrlpipe(udev, 0),
(unsigned char *)&rr3->learn_control,
&rr3->learn_buf, sizeof(rr3->learn_buf),
redrat3_learn_complete, rr3);
/* setup packet is 'c0 b9 0000 0000 0001' */
rr3->flash_control.bRequestType = 0xc0;
rr3->flash_control.bRequest = RR3_BLINK_LED;
rr3->flash_control.wLength = cpu_to_le16(1);
usb_fill_control_urb(rr3->flash_urb, udev, usb_rcvctrlpipe(udev, 0),
(unsigned char *)&rr3->flash_control,
&rr3->flash_in_buf, sizeof(rr3->flash_in_buf),
redrat3_led_complete, rr3);
/* led control */
rr3->led.name = "redrat3:red:feedback";
rr3->led.default_trigger = "rc-feedback";
rr3->led.brightness_set = redrat3_brightness_set;
retval = led_classdev_register(&intf->dev, &rr3->led);
if (retval)
goto redrat_free;
rr3->rc = redrat3_init_rc_dev(rr3);
if (!rr3->rc) {
retval = -ENOMEM;
goto led_free;
}
/* might be all we need to do? */
retval = redrat3_enable_detector(rr3);
if (retval < 0)
goto led_free;
/* we can register the device now, as it is ready */
usb_set_intfdata(intf, rr3);
return 0;
led_free:
led_classdev_unregister(&rr3->led);
redrat_free:
redrat3_delete(rr3, rr3->udev);
no_endpoints:
return retval;
}
static void redrat3_dev_disconnect(struct usb_interface *intf)
{
struct usb_device *udev = interface_to_usbdev(intf);
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
usb_set_intfdata(intf, NULL);
rc_unregister_device(rr3->rc);
led_classdev_unregister(&rr3->led);
redrat3_delete(rr3, udev);
}
static int redrat3_dev_suspend(struct usb_interface *intf, pm_message_t message)
{
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
led_classdev_suspend(&rr3->led);
usb_kill_urb(rr3->narrow_urb);
usb_kill_urb(rr3->wide_urb);
usb_kill_urb(rr3->flash_urb);
return 0;
}
static int redrat3_dev_resume(struct usb_interface *intf)
{
struct redrat3_dev *rr3 = usb_get_intfdata(intf);
if (usb_submit_urb(rr3->narrow_urb, GFP_NOIO))
return -EIO;
if (usb_submit_urb(rr3->wide_urb, GFP_NOIO))
return -EIO;
led_classdev_resume(&rr3->led);
return 0;
}
static struct usb_driver redrat3_dev_driver = {
.name = DRIVER_NAME,
.probe = redrat3_dev_probe,
.disconnect = redrat3_dev_disconnect,
.suspend = redrat3_dev_suspend,
.resume = redrat3_dev_resume,
.reset_resume = redrat3_dev_resume,
.id_table = redrat3_dev_table
};
module_usb_driver(redrat3_dev_driver);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_AUTHOR(DRIVER_AUTHOR2);
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(usb, redrat3_dev_table);