/*
* raid5.c : Multiple Devices driver for Linux
* Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
* Copyright (C) 1999, 2000 Ingo Molnar
*
* RAID-5 management functions.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/raid/raid5.h>
#include <linux/highmem.h>
#include <linux/bitops.h>
#include <linux/kthread.h>
#include <asm/atomic.h>
#include <linux/raid/bitmap.h>
/*
* Stripe cache
*/
#define NR_STRIPES 256
#define STRIPE_SIZE PAGE_SIZE
#define STRIPE_SHIFT (PAGE_SHIFT - 9)
#define STRIPE_SECTORS (STRIPE_SIZE>>9)
#define IO_THRESHOLD 1
#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
#define HASH_MASK (NR_HASH - 1)
#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
/* bio's attached to a stripe+device for I/O are linked together in bi_sector
* order without overlap. There may be several bio's per stripe+device, and
* a bio could span several devices.
* When walking this list for a particular stripe+device, we must never proceed
* beyond a bio that extends past this device, as the next bio might no longer
* be valid.
* This macro is used to determine the 'next' bio in the list, given the sector
* of the current stripe+device
*/
#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
/*
* The following can be used to debug the driver
*/
#define RAID5_DEBUG 0
#define RAID5_PARANOIA 1
#if RAID5_PARANOIA && defined(CONFIG_SMP)
# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
#else
# define CHECK_DEVLOCK()
#endif
#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
#if RAID5_DEBUG
#define inline
#define __inline__
#endif
static void print_raid5_conf (raid5_conf_t *conf);
static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
{
if (atomic_dec_and_test(&sh->count)) {
if (!list_empty(&sh->lru))
BUG();
if (atomic_read(&conf->active_stripes)==0)
BUG();
if (test_bit(STRIPE_HANDLE, &sh->state)) {
if (test_bit(STRIPE_DELAYED, &sh->state))
list_add_tail(&sh->lru, &conf->delayed_list);
else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
conf->seq_write == sh->bm_seq)
list_add_tail(&sh->lru, &conf->bitmap_list);
else {
clear_bit(STRIPE_BIT_DELAY, &sh->state);
list_add_tail(&sh->lru, &conf->handle_list);
}
md_wakeup_thread(conf->mddev->thread);
} else {
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
atomic_dec(&conf->active_stripes);
if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
list_add_tail(&sh->lru, &conf->inactive_list);
wake_up(&conf->wait_for_stripe);
}
}
}
}
static void release_stripe(struct stripe_head *sh)
{
raid5_conf_t *conf = sh->raid_conf;
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
__release_stripe(conf, sh);
spin_unlock_irqrestore(&conf->device_lock, flags);
}
static inline void remove_hash(struct stripe_head *sh)
{
PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
hlist_del_init(&sh->hash);
}
static void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
{
struct hlist_head *hp = stripe_hash(conf, sh->sector);
PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
CHECK_DEVLOCK();
hlist_add_head(&sh->hash, hp);
}
/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh = NULL;
struct list_head *first;
CHECK_DEVLOCK();
if (list_empty(&conf->inactive_list))
goto out;
first = conf->inactive_list.next;
sh = list_entry(first, struct stripe_head, lru);
list_del_init(first);
remove_hash(sh);
atomic_inc(&conf->active_stripes);
out:
return sh;
}
static void shrink_buffers(struct stripe_head *sh, int num)
{
struct page *p;
int i;
for (i=0; i<num ; i++) {
p = sh->dev[i].page;
if (!p)
continue;
sh->dev[i].page = NULL;
put_page(p);
}
}
static int grow_buffers(struct stripe_head *sh, int num)
{
int i;
for (i=0; i<num; i++) {
struct page *page;
if (!(page = alloc_page(GFP_KERNEL))) {
return 1;
}
sh->dev[i].page = page;
}
return 0;
}
static void raid5_build_block (struct stripe_head *sh, int i);
static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
{
raid5_conf_t *conf = sh->raid_conf;
int i;
if (atomic_read(&sh->count) != 0)
BUG();
if (test_bit(STRIPE_HANDLE, &sh->state))
BUG();
CHECK_DEVLOCK();
PRINTK("init_stripe called, stripe %llu\n",
(unsigned long long)sh->sector);
remove_hash(sh);
sh->sector = sector;
sh->pd_idx = pd_idx;
sh->state = 0;
sh->disks = disks;
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->toread || dev->towrite || dev->written ||
test_bit(R5_LOCKED, &dev->flags)) {
printk("sector=%llx i=%d %p %p %p %d\n",
(unsigned long long)sh->sector, i, dev->toread,
dev->towrite, dev->written,
test_bit(R5_LOCKED, &dev->flags));
BUG();
}
dev->flags = 0;
raid5_build_block(sh, i);
}
insert_hash(conf, sh);
}
static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
{
struct stripe_head *sh;
struct hlist_node *hn;
CHECK_DEVLOCK();
PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
if (sh->sector == sector && sh->disks == disks)
return sh;
PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
return NULL;
}
static void unplug_slaves(mddev_t *mddev);
static void raid5_unplug_device(request_queue_t *q);
static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
int pd_idx, int noblock)
{
struct stripe_head *sh;
PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
spin_lock_irq(&conf->device_lock);
do {
wait_event_lock_irq(conf->wait_for_stripe,
conf->quiesce == 0,
conf->device_lock, /* nothing */);
sh = __find_stripe(conf, sector, disks);
if (!sh) {
if (!conf->inactive_blocked)
sh = get_free_stripe(conf);
if (noblock && sh == NULL)
break;
if (!sh) {
conf->inactive_blocked = 1;
wait_event_lock_irq(conf->wait_for_stripe,
!list_empty(&conf->inactive_list) &&
(atomic_read(&conf->active_stripes)
< (conf->max_nr_stripes *3/4)
|| !conf->inactive_blocked),
conf->device_lock,
unplug_slaves(conf->mddev);
);
conf->inactive_blocked = 0;
} else
init_stripe(sh, sector, pd_idx, disks);
} else {
if (atomic_read(&sh->count)) {
if (!list_empty(&sh->lru))
BUG();
} else {
if (!test_bit(STRIPE_HANDLE, &sh->state))
atomic_inc(&conf->active_stripes);
if (!list_empty(&sh->lru))
list_del_init(&sh->lru);
}
}
} while (sh == NULL);
if (sh)
atomic_inc(&sh->count);
spin_unlock_irq(&conf->device_lock);
return sh;
}
static int grow_one_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh;
sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
if (!sh)
return 0;
memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
sh->raid_conf = conf;
spin_lock_init(&sh->lock);
if (grow_buffers(sh, conf->raid_disks)) {
shrink_buffers(sh, conf->raid_disks);
kmem_cache_free(conf->slab_cache, sh);
return 0;
}
sh->disks = conf->raid_disks;
/* we just created an active stripe so... */
atomic_set(&sh->count, 1);
atomic_inc(&conf->active_stripes);
INIT_LIST_HEAD(&sh->lru);
release_stripe(sh);
return 1;
}
static int grow_stripes(raid5_conf_t *conf, int num)
{
kmem_cache_t *sc;
int devs = conf->raid_disks;
sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
conf->active_name = 0;
sc = kmem_cache_create(conf->cache_name[conf->active_name],
sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
0, 0, NULL, NULL);
if (!sc)
return 1;
conf->slab_cache = sc;
conf->pool_size = devs;
while (num--) {
if (!grow_one_stripe(conf))
return 1;
}
return 0;
}
#ifdef CONFIG_MD_RAID5_RESHAPE
static int resize_stripes(raid5_conf_t *conf, int newsize)
{
/* Make all the stripes able to hold 'newsize' devices.
* New slots in each stripe get 'page' set to a new page.
*
* This happens in stages:
* 1/ create a new kmem_cache and allocate the required number of
* stripe_heads.
* 2/ gather all the old stripe_heads and tranfer the pages across
* to the new stripe_heads. This will have the side effect of
* freezing the array as once all stripe_heads have been collected,
* no IO will be possible. Old stripe heads are freed once their
* pages have been transferred over, and the old kmem_cache is
* freed when all stripes are done.
* 3/ reallocate conf->disks to be suitable bigger. If this fails,
* we simple return a failre status - no need to clean anything up.
* 4/ allocate new pages for the new slots in the new stripe_heads.
* If this fails, we don't bother trying the shrink the
* stripe_heads down again, we just leave them as they are.
* As each stripe_head is processed the new one is released into
* active service.
*
* Once step2 is started, we cannot afford to wait for a write,
* so we use GFP_NOIO allocations.
*/
struct stripe_head *osh, *nsh;
LIST_HEAD(newstripes);
struct disk_info *ndisks;
int err = 0;
kmem_cache_t *sc;
int i;
if (newsize <= conf->pool_size)
return 0; /* never bother to shrink */
/* Step 1 */
sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
0, 0, NULL, NULL);
if (!sc)
return -ENOMEM;
for (i = conf->max_nr_stripes; i; i--) {
nsh = kmem_cache_alloc(sc, GFP_KERNEL);
if (!nsh)
break;
memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
nsh->raid_conf = conf;
spin_lock_init(&nsh->lock);
list_add(&nsh->lru, &newstripes);
}
if (i) {
/* didn't get enough, give up */
while (!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del(&nsh->lru);
kmem_cache_free(sc, nsh);
}
kmem_cache_destroy(sc);
return -ENOMEM;
}
/* Step 2 - Must use GFP_NOIO now.
* OK, we have enough stripes, start collecting inactive
* stripes and copying them over
*/
list_for_each_entry(nsh, &newstripes, lru) {
spin_lock_irq(&conf->device_lock);
wait_event_lock_irq(conf->wait_for_stripe,
!list_empty(&conf->inactive_list),
conf->device_lock,
unplug_slaves(conf->mddev);
);
osh = get_free_stripe(conf);
spin_unlock_irq(&conf->device_lock);
atomic_set(&nsh->count, 1);
for(i=0; i<conf->pool_size; i++)
nsh->dev[i].page = osh->dev[i].page;
for( ; i<newsize; i++)
nsh->dev[i].page = NULL;
kmem_cache_free(conf->slab_cache, osh);
}
kmem_cache_destroy(conf->slab_cache);
/* Step 3.
* At this point, we are holding all the stripes so the array
* is completely stalled, so now is a good time to resize
* conf->disks.
*/
ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
if (ndisks) {
for (i=0; i<conf->raid_disks; i++)
ndisks[i] = conf->disks[i];
kfree(conf->disks);
conf->disks = ndisks;
} else
err = -ENOMEM;
/* Step 4, return new stripes to service */
while(!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del_init(&nsh->lru);
for (i=conf->raid_disks; i < newsize; i++)
if (nsh->dev[i].page == NULL) {
struct page *p = alloc_page(GFP_NOIO);
nsh->dev[i].page = p;
if (!p)
err = -ENOMEM;
}
release_stripe(nsh);
}
/* critical section pass, GFP_NOIO no longer needed */
conf->slab_cache = sc;
conf->active_name = 1-conf->active_name;
conf->pool_size = newsize;
return err;
}
#endif
static int drop_one_stripe(raid5_conf_t *conf)
{
struct stripe_head *sh;
spin_lock_irq(&conf->device_lock);
sh = get_free_stripe(conf);
spin_unlock_irq(&conf->device_lock);
if (!sh)
return 0;
if (atomic_read(&sh->count))
BUG();
shrink_buffers(sh, conf->pool_size);
kmem_cache_free(conf->slab_cache, sh);
atomic_dec(&conf->active_stripes);
return 1;
}
static void shrink_stripes(raid5_conf_t *conf)
{
while (drop_one_stripe(conf))
;
if (conf->slab_cache)
kmem_cache_destroy(conf->slab_cache);
conf->slab_cache = NULL;
}
static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
int error)
{
struct stripe_head *sh = bi->bi_private;
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks, i;
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
if (bi->bi_size)
return 1;
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
uptodate);
if (i == disks) {
BUG();
return 0;
}
if (uptodate) {
#if 0
struct bio *bio;
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
/* we can return a buffer if we bypassed the cache or
* if the top buffer is not in highmem. If there are
* multiple buffers, leave the extra work to
* handle_stripe
*/
buffer = sh->bh_read[i];
if (buffer &&
(!PageHighMem(buffer->b_page)
|| buffer->b_page == bh->b_page )
) {
sh->bh_read[i] = buffer->b_reqnext;
buffer->b_reqnext = NULL;
} else
buffer = NULL;
spin_unlock_irqrestore(&conf->device_lock, flags);
if (sh->bh_page[i]==bh->b_page)
set_buffer_uptodate(bh);
if (buffer) {
if (buffer->b_page != bh->b_page)
memcpy(buffer->b_data, bh->b_data, bh->b_size);
buffer->b_end_io(buffer, 1);
}
#else
set_bit(R5_UPTODATE, &sh->dev[i].flags);
#endif
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
printk(KERN_INFO "raid5: read error corrected!!\n");
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
}
if (atomic_read(&conf->disks[i].rdev->read_errors))
atomic_set(&conf->disks[i].rdev->read_errors, 0);
} else {
int retry = 0;
clear_bit(R5_UPTODATE, &sh->dev[i].flags);
atomic_inc(&conf->disks[i].rdev->read_errors);
if (conf->mddev->degraded)
printk(KERN_WARNING "raid5: read error not correctable.\n");
else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
/* Oh, no!!! */
printk(KERN_WARNING "raid5: read error NOT corrected!!\n");
else if (atomic_read(&conf->disks[i].rdev->read_errors)
> conf->max_nr_stripes)
printk(KERN_WARNING
"raid5: Too many read errors, failing device.\n");
else
retry = 1;
if (retry)
set_bit(R5_ReadError, &sh->dev[i].flags);
else {
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
md_error(conf->mddev, conf->disks[i].rdev);
}
}
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
#if 0
/* must restore b_page before unlocking buffer... */
if (sh->bh_page[i] != bh->b_page) {
bh->b_page = sh->bh_page[i];
bh->b_data = page_address(bh->b_page);
clear_buffer_uptodate(bh);
}
#endif
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
return 0;
}
static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
int error)
{
struct stripe_head *sh = bi->bi_private;
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks, i;
unsigned long flags;
int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
if (bi->bi_size)
return 1;
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
uptodate);
if (i == disks) {
BUG();
return 0;
}
spin_lock_irqsave(&conf->device_lock, flags);
if (!uptodate)
md_error(conf->mddev, conf->disks[i].rdev);
rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
__release_stripe(conf, sh);
spin_unlock_irqrestore(&conf->device_lock, flags);
return 0;
}
static sector_t compute_blocknr(struct stripe_head *sh, int i);
static void raid5_build_block (struct stripe_head *sh, int i)
{
struct r5dev *dev = &sh->dev[i];
bio_init(&dev->req);
dev->req.bi_io_vec = &dev->vec;
dev->req.bi_vcnt++;
dev->req.bi_max_vecs++;
dev->vec.bv_page = dev->page;
dev->vec.bv_len = STRIPE_SIZE;
dev->vec.bv_offset = 0;
dev->req.bi_sector = sh->sector;
dev->req.bi_private = sh;
dev->flags = 0;
if (i != sh->pd_idx)
dev->sector = compute_blocknr(sh, i);
}
static void error(mddev_t *mddev, mdk_rdev_t *rdev)
{
char b[BDEVNAME_SIZE];
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
PRINTK("raid5: error called\n");
if (!test_bit(Faulty, &rdev->flags)) {
mddev->sb_dirty = 1;
if (test_bit(In_sync, &rdev->flags)) {
conf->working_disks--;
mddev->degraded++;
conf->failed_disks++;
clear_bit(In_sync, &rdev->flags);
/*
* if recovery was running, make sure it aborts.
*/
set_bit(MD_RECOVERY_ERR, &mddev->recovery);
}
set_bit(Faulty, &rdev->flags);
printk (KERN_ALERT
"raid5: Disk failure on %s, disabling device."
" Operation continuing on %d devices\n",
bdevname(rdev->bdev,b), conf->working_disks);
}
}
/*
* Input: a 'big' sector number,
* Output: index of the data and parity disk, and the sector # in them.
*/
static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
unsigned int data_disks, unsigned int * dd_idx,
unsigned int * pd_idx, raid5_conf_t *conf)
{
long stripe;
unsigned long chunk_number;
unsigned int chunk_offset;
sector_t new_sector;
int sectors_per_chunk = conf->chunk_size >> 9;
/* First compute the information on this sector */
/*
* Compute the chunk number and the sector offset inside the chunk
*/
chunk_offset = sector_div(r_sector, sectors_per_chunk);
chunk_number = r_sector;
BUG_ON(r_sector != chunk_number);
/*
* Compute the stripe number
*/
stripe = chunk_number / data_disks;
/*
* Compute the data disk and parity disk indexes inside the stripe
*/
*dd_idx = chunk_number % data_disks;
/*
* Select the parity disk based on the user selected algorithm.
*/
if (conf->level == 4)
*pd_idx = data_disks;
else switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
*pd_idx = data_disks - stripe % raid_disks;
if (*dd_idx >= *pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
*pd_idx = stripe % raid_disks;
if (*dd_idx >= *pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_LEFT_SYMMETRIC:
*pd_idx = data_disks - stripe % raid_disks;
*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
*pd_idx = stripe % raid_disks;
*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
break;
default:
printk(KERN_ERR "raid5: unsupported algorithm %d\n",
conf->algorithm);
}
/*
* Finally, compute the new sector number
*/
new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
return new_sector;
}
static sector_t compute_blocknr(struct stripe_head *sh, int i)
{
raid5_conf_t *conf = sh->raid_conf;
int raid_disks = sh->disks, data_disks = raid_disks - 1;
sector_t new_sector = sh->sector, check;
int sectors_per_chunk = conf->chunk_size >> 9;
sector_t stripe;
int chunk_offset;
int chunk_number, dummy1, dummy2, dd_idx = i;
sector_t r_sector;
chunk_offset = sector_div(new_sector, sectors_per_chunk);
stripe = new_sector;
BUG_ON(new_sector != stripe);
switch (conf->algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
break;
default:
printk(KERN_ERR "raid5: unsupported algorithm %d\n",
conf->algorithm);
}
chunk_number = stripe * data_disks + i;
r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
printk(KERN_ERR "compute_blocknr: map not correct\n");
return 0;
}
return r_sector;
}
/*
* Copy data between a page in the stripe cache, and a bio.
* There are no alignment or size guarantees between the page or the
* bio except that there is some overlap.
* All iovecs in the bio must be considered.
*/
static void copy_data(int frombio, struct bio *bio,
struct page *page,
sector_t sector)
{
char *pa = page_address(page);
struct bio_vec *bvl;
int i;
int page_offset;
if (bio->bi_sector >= sector)
page_offset = (signed)(bio->bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_sector) * -512;
bio_for_each_segment(bvl, bio, i) {
int len = bio_iovec_idx(bio,i)->bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else clen = len;
if (clen > 0) {
char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
if (frombio)
memcpy(pa+page_offset, ba+b_offset, clen);
else
memcpy(ba+b_offset, pa+page_offset, clen);
__bio_kunmap_atomic(ba, KM_USER0);
}
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
}
#define check_xor() do { \
if (count == MAX_XOR_BLOCKS) { \
xor_block(count, STRIPE_SIZE, ptr); \
count = 1; \
} \
} while(0)
static void compute_block(struct stripe_head *sh, int dd_idx)
{
int i, count, disks = sh->disks;
void *ptr[MAX_XOR_BLOCKS], *p;
PRINTK("compute_block, stripe %llu, idx %d\n",
(unsigned long long)sh->sector, dd_idx);
ptr[0] = page_address(sh->dev[dd_idx].page);
memset(ptr[0], 0, STRIPE_SIZE);
count = 1;
for (i = disks ; i--; ) {
if (i == dd_idx)
continue;
p = page_address(sh->dev[i].page);
if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
ptr[count++] = p;
else
printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
" not present\n", dd_idx,
(unsigned long long)sh->sector, i);
check_xor();
}
if (count != 1)
xor_block(count, STRIPE_SIZE, ptr);
set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
}
static void compute_parity(struct stripe_head *sh, int method)
{
raid5_conf_t *conf = sh->raid_conf;
int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
void *ptr[MAX_XOR_BLOCKS];
struct bio *chosen;
PRINTK("compute_parity, stripe %llu, method %d\n",
(unsigned long long)sh->sector, method);
count = 1;
ptr[0] = page_address(sh->dev[pd_idx].page);
switch(method) {
case READ_MODIFY_WRITE:
if (!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags))
BUG();
for (i=disks ; i-- ;) {
if (i==pd_idx)
continue;
if (sh->dev[i].towrite &&
test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
ptr[count++] = page_address(sh->dev[i].page);
chosen = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (sh->dev[i].written) BUG();
sh->dev[i].written = chosen;
check_xor();
}
}
break;
case RECONSTRUCT_WRITE:
memset(ptr[0], 0, STRIPE_SIZE);
for (i= disks; i-- ;)
if (i!=pd_idx && sh->dev[i].towrite) {
chosen = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (sh->dev[i].written) BUG();
sh->dev[i].written = chosen;
}
break;
case CHECK_PARITY:
break;
}
if (count>1) {
xor_block(count, STRIPE_SIZE, ptr);
count = 1;
}
for (i = disks; i--;)
if (sh->dev[i].written) {
sector_t sector = sh->dev[i].sector;
struct bio *wbi = sh->dev[i].written;
while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
copy_data(1, wbi, sh->dev[i].page, sector);
wbi = r5_next_bio(wbi, sector);
}
set_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(R5_UPTODATE, &sh->dev[i].flags);
}
switch(method) {
case RECONSTRUCT_WRITE:
case CHECK_PARITY:
for (i=disks; i--;)
if (i != pd_idx) {
ptr[count++] = page_address(sh->dev[i].page);
check_xor();
}
break;
case READ_MODIFY_WRITE:
for (i = disks; i--;)
if (sh->dev[i].written) {
ptr[count++] = page_address(sh->dev[i].page);
check_xor();
}
}
if (count != 1)
xor_block(count, STRIPE_SIZE, ptr);
if (method != CHECK_PARITY) {
set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
} else
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
}
/*
* Each stripe/dev can have one or more bion attached.
* toread/towrite point to the first in a chain.
* The bi_next chain must be in order.
*/
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
{
struct bio **bip;
raid5_conf_t *conf = sh->raid_conf;
int firstwrite=0;
PRINTK("adding bh b#%llu to stripe s#%llu\n",
(unsigned long long)bi->bi_sector,
(unsigned long long)sh->sector);
spin_lock(&sh->lock);
spin_lock_irq(&conf->device_lock);
if (forwrite) {
bip = &sh->dev[dd_idx].towrite;
if (*bip == NULL && sh->dev[dd_idx].written == NULL)
firstwrite = 1;
} else
bip = &sh->dev[dd_idx].toread;
while (*bip && (*bip)->bi_sector < bi->bi_sector) {
if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
goto overlap;
bip = & (*bip)->bi_next;
}
if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
goto overlap;
if (*bip && bi->bi_next && (*bip) != bi->bi_next)
BUG();
if (*bip)
bi->bi_next = *bip;
*bip = bi;
bi->bi_phys_segments ++;
spin_unlock_irq(&conf->device_lock);
spin_unlock(&sh->lock);
PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
(unsigned long long)bi->bi_sector,
(unsigned long long)sh->sector, dd_idx);
if (conf->mddev->bitmap && firstwrite) {
sh->bm_seq = conf->seq_write;
bitmap_startwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0);
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
if (forwrite) {
/* check if page is covered */
sector_t sector = sh->dev[dd_idx].sector;
for (bi=sh->dev[dd_idx].towrite;
sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
bi && bi->bi_sector <= sector;
bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
if (bi->bi_sector + (bi->bi_size>>9) >= sector)
sector = bi->bi_sector + (bi->bi_size>>9);
}
if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
}
return 1;
overlap:
set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
spin_unlock_irq(&conf->device_lock);
spin_unlock(&sh->lock);
return 0;
}
static void end_reshape(raid5_conf_t *conf);
static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
{
int sectors_per_chunk = conf->chunk_size >> 9;
sector_t x = stripe;
int pd_idx, dd_idx;
int chunk_offset = sector_div(x, sectors_per_chunk);
stripe = x;
raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
+ chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
return pd_idx;
}
/*
* handle_stripe - do things to a stripe.
*
* We lock the stripe and then examine the state of various bits
* to see what needs to be done.
* Possible results:
* return some read request which now have data
* return some write requests which are safely on disc
* schedule a read on some buffers
* schedule a write of some buffers
* return confirmation of parity correctness
*
* Parity calculations are done inside the stripe lock
* buffers are taken off read_list or write_list, and bh_cache buffers
* get BH_Lock set before the stripe lock is released.
*
*/
static void handle_stripe(struct stripe_head *sh)
{
raid5_conf_t *conf = sh->raid_conf;
int disks = sh->disks;
struct bio *return_bi= NULL;
struct bio *bi;
int i;
int syncing, expanding, expanded;
int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
int non_overwrite = 0;
int failed_num=0;
struct r5dev *dev;
PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
(unsigned long long)sh->sector, atomic_read(&sh->count),
sh->pd_idx);
spin_lock(&sh->lock);
clear_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
syncing = test_bit(STRIPE_SYNCING, &sh->state);
expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
/* Now to look around and see what can be done */
rcu_read_lock();
for (i=disks; i--; ) {
mdk_rdev_t *rdev;
dev = &sh->dev[i];
clear_bit(R5_Insync, &dev->flags);
PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
i, dev->flags, dev->toread, dev->towrite, dev->written);
/* maybe we can reply to a read */
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
struct bio *rbi, *rbi2;
PRINTK("Return read for disc %d\n", i);
spin_lock_irq(&conf->device_lock);
rbi = dev->toread;
dev->toread = NULL;
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&conf->wait_for_overlap);
spin_unlock_irq(&conf->device_lock);
while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
copy_data(0, rbi, dev->page, dev->sector);
rbi2 = r5_next_bio(rbi, dev->sector);
spin_lock_irq(&conf->device_lock);
if (--rbi->bi_phys_segments == 0) {
rbi->bi_next = return_bi;
return_bi = rbi;
}
spin_unlock_irq(&conf->device_lock);
rbi = rbi2;
}
}
/* now count some things */
if (test_bit(R5_LOCKED, &dev->flags)) locked++;
if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
if (dev->toread) to_read++;
if (dev->towrite) {
to_write++;
if (!test_bit(R5_OVERWRITE, &dev->flags))
non_overwrite++;
}
if (dev->written) written++;
rdev = rcu_dereference(conf->disks[i].rdev);
if (!rdev || !test_bit(In_sync, &rdev->flags)) {
/* The ReadError flag will just be confusing now */
clear_bit(R5_ReadError, &dev->flags);
clear_bit(R5_ReWrite, &dev->flags);
}
if (!rdev || !test_bit(In_sync, &rdev->flags)
|| test_bit(R5_ReadError, &dev->flags)) {
failed++;
failed_num = i;
} else
set_bit(R5_Insync, &dev->flags);
}
rcu_read_unlock();
PRINTK("locked=%d uptodate=%d to_read=%d"
" to_write=%d failed=%d failed_num=%d\n",
locked, uptodate, to_read, to_write, failed, failed_num);
/* check if the array has lost two devices and, if so, some requests might
* need to be failed
*/
if (failed > 1 && to_read+to_write+written) {
for (i=disks; i--; ) {
int bitmap_end = 0;
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
mdk_rdev_t *rdev;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(In_sync, &rdev->flags))
/* multiple read failures in one stripe */
md_error(conf->mddev, rdev);
rcu_read_unlock();
}
spin_lock_irq(&conf->device_lock);
/* fail all writes first */
bi = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
if (bi) { to_write--; bitmap_end = 1; }
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (--bi->bi_phys_segments == 0) {
md_write_end(conf->mddev);
bi->bi_next = return_bi;
return_bi = bi;
}
bi = nextbi;
}
/* and fail all 'written' */
bi = sh->dev[i].written;
sh->dev[i].written = NULL;
if (bi) bitmap_end = 1;
while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (--bi->bi_phys_segments == 0) {
md_write_end(conf->mddev);
bi->bi_next = return_bi;
return_bi = bi;
}
bi = bi2;
}
/* fail any reads if this device is non-operational */
if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
test_bit(R5_ReadError, &sh->dev[i].flags)) {
bi = sh->dev[i].toread;
sh->dev[i].toread = NULL;
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (bi) to_read--;
while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
clear_bit(BIO_UPTODATE, &bi->bi_flags);
if (--bi->bi_phys_segments == 0) {
bi->bi_next = return_bi;
return_bi = bi;
}
bi = nextbi;
}
}
spin_unlock_irq(&conf->device_lock);
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
}
}
if (failed > 1 && syncing) {
md_done_sync(conf->mddev, STRIPE_SECTORS,0);
clear_bit(STRIPE_SYNCING, &sh->state);
syncing = 0;
}
/* might be able to return some write requests if the parity block
* is safe, or on a failed drive
*/
dev = &sh->dev[sh->pd_idx];
if ( written &&
( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
test_bit(R5_UPTODATE, &dev->flags))
|| (failed == 1 && failed_num == sh->pd_idx))
) {
/* any written block on an uptodate or failed drive can be returned.
* Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
* never LOCKED, so we don't need to test 'failed' directly.
*/
for (i=disks; i--; )
if (sh->dev[i].written) {
dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) &&
test_bit(R5_UPTODATE, &dev->flags) ) {
/* We can return any write requests */
struct bio *wbi, *wbi2;
int bitmap_end = 0;
PRINTK("Return write for disc %d\n", i);
spin_lock_irq(&conf->device_lock);
wbi = dev->written;
dev->written = NULL;
while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
wbi2 = r5_next_bio(wbi, dev->sector);
if (--wbi->bi_phys_segments == 0) {
md_write_end(conf->mddev);
wbi->bi_next = return_bi;
return_bi = wbi;
}
wbi = wbi2;
}
if (dev->towrite == NULL)
bitmap_end = 1;
spin_unlock_irq(&conf->device_lock);
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS,
!test_bit(STRIPE_DEGRADED, &sh->state), 0);
}
}
}
/* Now we might consider reading some blocks, either to check/generate
* parity, or to satisfy requests
* or to load a block that is being partially written.
*/
if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
for (i=disks; i--;) {
dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
(dev->toread ||
(dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
syncing ||
expanding ||
(failed && (sh->dev[failed_num].toread ||
(sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
)
) {
/* we would like to get this block, possibly
* by computing it, but we might not be able to
*/
if (uptodate == disks-1) {
PRINTK("Computing block %d\n", i);
compute_block(sh, i);
uptodate++;
} else if (test_bit(R5_Insync, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
#if 0
/* if I am just reading this block and we don't have
a failed drive, or any pending writes then sidestep the cache */
if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
! syncing && !failed && !to_write) {
sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page;
sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data;
}
#endif
locked++;
PRINTK("Reading block %d (sync=%d)\n",
i, syncing);
}
}
}
set_bit(STRIPE_HANDLE, &sh->state);
}
/* now to consider writing and what else, if anything should be read */
if (to_write) {
int rmw=0, rcw=0;
for (i=disks ; i--;) {
/* would I have to read this buffer for read_modify_write */
dev = &sh->dev[i];
if ((dev->towrite || i == sh->pd_idx) &&
(!test_bit(R5_LOCKED, &dev->flags)
#if 0
|| sh->bh_page[i]!=bh->b_page
#endif
) &&
!test_bit(R5_UPTODATE, &dev->flags)) {
if (test_bit(R5_Insync, &dev->flags)
/* && !(!mddev->insync && i == sh->pd_idx) */
)
rmw++;
else rmw += 2*disks; /* cannot read it */
}
/* Would I have to read this buffer for reconstruct_write */
if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
(!test_bit(R5_LOCKED, &dev->flags)
#if 0
|| sh->bh_page[i] != bh->b_page
#endif
) &&
!test_bit(R5_UPTODATE, &dev->flags)) {
if (test_bit(R5_Insync, &dev->flags)) rcw++;
else rcw += 2*disks;
}
}
PRINTK("for sector %llu, rmw=%d rcw=%d\n",
(unsigned long long)sh->sector, rmw, rcw);
set_bit(STRIPE_HANDLE, &sh->state);
if (rmw < rcw && rmw > 0)
/* prefer read-modify-write, but need to get some data */
for (i=disks; i--;) {
dev = &sh->dev[i];
if ((dev->towrite || i == sh->pd_idx) &&
!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
test_bit(R5_Insync, &dev->flags)) {
if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
{
PRINTK("Read_old block %d for r-m-w\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
if (rcw <= rmw && rcw > 0)
/* want reconstruct write, but need to get some data */
for (i=disks; i--;) {
dev = &sh->dev[i];
if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
test_bit(R5_Insync, &dev->flags)) {
if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
{
PRINTK("Read_old block %d for Reconstruct\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
/* now if nothing is locked, and if we have enough data, we can start a write request */
if (locked == 0 && (rcw == 0 ||rmw == 0) &&
!test_bit(STRIPE_BIT_DELAY, &sh->state)) {
PRINTK("Computing parity...\n");
compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
/* now every locked buffer is ready to be written */
for (i=disks; i--;)
if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
PRINTK("Writing block %d\n", i);
locked++;
set_bit(R5_Wantwrite, &sh->dev[i].flags);
if (!test_bit(R5_Insync, &sh->dev[i].flags)
|| (i==sh->pd_idx && failed == 0))
set_bit(STRIPE_INSYNC, &sh->state);
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
}
}
/* maybe we need to check and possibly fix the parity for this stripe
* Any reads will already have been scheduled, so we just see if enough data
* is available
*/
if (syncing && locked == 0 &&
!test_bit(STRIPE_INSYNC, &sh->state)) {
set_bit(STRIPE_HANDLE, &sh->state);
if (failed == 0) {
char *pagea;
if (uptodate != disks)
BUG();
compute_parity(sh, CHECK_PARITY);
uptodate--;
pagea = page_address(sh->dev[sh->pd_idx].page);
if ((*(u32*)pagea) == 0 &&
!memcmp(pagea, pagea+4, STRIPE_SIZE-4)) {
/* parity is correct (on disc, not in buffer any more) */
set_bit(STRIPE_INSYNC, &sh->state);
} else {
conf->mddev->resync_mismatches += STRIPE_SECTORS;
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
else {
compute_block(sh, sh->pd_idx);
uptodate++;
}
}
}
if (!test_bit(STRIPE_INSYNC, &sh->state)) {
/* either failed parity check, or recovery is happening */
if (failed==0)
failed_num = sh->pd_idx;
dev = &sh->dev[failed_num];
BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
BUG_ON(uptodate != disks);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
clear_bit(STRIPE_DEGRADED, &sh->state);
locked++;
set_bit(STRIPE_INSYNC, &sh->state);
}
}
if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
md_done_sync(conf->mddev, STRIPE_SECTORS,1);
clear_bit(STRIPE_SYNCING, &sh->state);
}
/* If the failed drive is just a ReadError, then we might need to progress
* the repair/check process
*/
if (failed == 1 && ! conf->mddev->ro &&
test_bit(R5_ReadError, &sh->dev[failed_num].flags)
&& !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
&& test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
) {
dev = &sh->dev[failed_num];
if (!test_bit(R5_ReWrite, &dev->flags)) {
set_bit(R5_Wantwrite, &dev->flags);
set_bit(R5_ReWrite, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
locked++;
} else {
/* let's read it back */
set_bit(R5_Wantread, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
locked++;
}
}
if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
/* Need to write out all blocks after computing parity */
sh->disks = conf->raid_disks;
sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
compute_parity(sh, RECONSTRUCT_WRITE);
for (i= conf->raid_disks; i--;) {
set_bit(R5_LOCKED, &sh->dev[i].flags);
locked++;
set_bit(R5_Wantwrite, &sh->dev[i].flags);
}
clear_bit(STRIPE_EXPANDING, &sh->state);
} else if (expanded) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
}
if (expanding && locked == 0) {
/* We have read all the blocks in this stripe and now we need to
* copy some of them into a target stripe for expand.
*/
clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
for (i=0; i< sh->disks; i++)
if (i != sh->pd_idx) {
int dd_idx, pd_idx, j;
struct stripe_head *sh2;
sector_t bn = compute_blocknr(sh, i);
sector_t s = raid5_compute_sector(bn, conf->raid_disks,
conf->raid_disks-1,
&dd_idx, &pd_idx, conf);
sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
if (sh2 == NULL)
/* so far only the early blocks of this stripe
* have been requested. When later blocks
* get requested, we will try again
*/
continue;
if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
/* must have already done this block */
release_stripe(sh2);
continue;
}
memcpy(page_address(sh2->dev[dd_idx].page),
page_address(sh->dev[i].page),
STRIPE_SIZE);
set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
for (j=0; j<conf->raid_disks; j++)
if (j != sh2->pd_idx &&
!test_bit(R5_Expanded, &sh2->dev[j].flags))
break;
if (j == conf->raid_disks) {
set_bit(STRIPE_EXPAND_READY, &sh2->state);
set_bit(STRIPE_HANDLE, &sh2->state);
}
release_stripe(sh2);
}
}
spin_unlock(&sh->lock);
while ((bi=return_bi)) {
int bytes = bi->bi_size;
return_bi = bi->bi_next;
bi->bi_next = NULL;
bi->bi_size = 0;
bi->bi_end_io(bi, bytes, 0);
}
for (i=disks; i-- ;) {
int rw;
struct bio *bi;
mdk_rdev_t *rdev;
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
rw = 1;
else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
rw = 0;
else
continue;
bi = &sh->dev[i].req;
bi->bi_rw = rw;
if (rw)
bi->bi_end_io = raid5_end_write_request;
else
bi->bi_end_io = raid5_end_read_request;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev)
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (rdev) {
if (syncing || expanding || expanded)
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
bi->bi_bdev = rdev->bdev;
PRINTK("for %llu schedule op %ld on disc %d\n",
(unsigned long long)sh->sector, bi->bi_rw, i);
atomic_inc(&sh->count);
bi->bi_sector = sh->sector + rdev->data_offset;
bi->bi_flags = 1 << BIO_UPTODATE;
bi->bi_vcnt = 1;
bi->bi_max_vecs = 1;
bi->bi_idx = 0;
bi->bi_io_vec = &sh->dev[i].vec;
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
bi->bi_io_vec[0].bv_offset = 0;
bi->bi_size = STRIPE_SIZE;
bi->bi_next = NULL;
if (rw == WRITE &&
test_bit(R5_ReWrite, &sh->dev[i].flags))
atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
generic_make_request(bi);
} else {
if (rw == 1)
set_bit(STRIPE_DEGRADED, &sh->state);
PRINTK("skip op %ld on disc %d for sector %llu\n",
bi->bi_rw, i, (unsigned long long)sh->sector);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
static void raid5_activate_delayed(raid5_conf_t *conf)
{
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
while (!list_empty(&conf->delayed_list)) {
struct list_head *l = conf->delayed_list.next;
struct stripe_head *sh;
sh = list_entry(l, struct stripe_head, lru);
list_del_init(l);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
list_add_tail(&sh->lru, &conf->handle_list);
}
}
}
static void activate_bit_delay(raid5_conf_t *conf)
{
/* device_lock is held */
struct list_head head;
list_add(&head, &conf->bitmap_list);
list_del_init(&conf->bitmap_list);
while (!list_empty(&head)) {
struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
list_del_init(&sh->lru);
atomic_inc(&sh->count);
__release_stripe(conf, sh);
}
}
static void unplug_slaves(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
int i;
rcu_read_lock();
for (i=0; i<mddev->raid_disks; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (r_queue->unplug_fn)
r_queue->unplug_fn(r_queue);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
rcu_read_unlock();
}
static void raid5_unplug_device(request_queue_t *q)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
if (blk_remove_plug(q)) {
conf->seq_flush++;
raid5_activate_delayed(conf);
}
md_wakeup_thread(mddev->thread);
spin_unlock_irqrestore(&conf->device_lock, flags);
unplug_slaves(mddev);
}
static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
sector_t *error_sector)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
int i, ret = 0;
rcu_read_lock();
for (i=0; i<mddev->raid_disks && ret == 0; i++) {
mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && !test_bit(Faulty, &rdev->flags)) {
struct block_device *bdev = rdev->bdev;
request_queue_t *r_queue = bdev_get_queue(bdev);
if (!r_queue->issue_flush_fn)
ret = -EOPNOTSUPP;
else {
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
error_sector);
rdev_dec_pending(rdev, mddev);
rcu_read_lock();
}
}
}
rcu_read_unlock();
return ret;
}
static inline void raid5_plug_device(raid5_conf_t *conf)
{
spin_lock_irq(&conf->device_lock);
blk_plug_device(conf->mddev->queue);
spin_unlock_irq(&conf->device_lock);
}
static int make_request(request_queue_t *q, struct bio * bi)
{
mddev_t *mddev = q->queuedata;
raid5_conf_t *conf = mddev_to_conf(mddev);
unsigned int dd_idx, pd_idx;
sector_t new_sector;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
const int rw = bio_data_dir(bi);
if (unlikely(bio_barrier(bi))) {
bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
return 0;
}
md_write_start(mddev, bi);
disk_stat_inc(mddev->gendisk, ios[rw]);
disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bi->bi_sector + (bi->bi_size>>9);
bi->bi_next = NULL;
bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
DEFINE_WAIT(w);
int disks;
retry:
prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
if (likely(conf->expand_progress == MaxSector))
disks = conf->raid_disks;
else {
spin_lock_irq(&conf->device_lock);
disks = conf->raid_disks;
if (logical_sector >= conf->expand_progress)
disks = conf->previous_raid_disks;
else {
if (logical_sector >= conf->expand_lo) {
spin_unlock_irq(&conf->device_lock);
schedule();
goto retry;
}
}
spin_unlock_irq(&conf->device_lock);
}
new_sector = raid5_compute_sector(logical_sector, disks, disks - 1,
&dd_idx, &pd_idx, conf);
PRINTK("raid5: make_request, sector %llu logical %llu\n",
(unsigned long long)new_sector,
(unsigned long long)logical_sector);
sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
if (sh) {
if (unlikely(conf->expand_progress != MaxSector)) {
/* expansion might have moved on while waiting for a
* stripe, so we much do the range check again.
*/
int must_retry = 0;
spin_lock_irq(&conf->device_lock);
if (logical_sector < conf->expand_progress &&
disks == conf->previous_raid_disks)
/* mismatch, need to try again */
must_retry = 1;
spin_unlock_irq(&conf->device_lock);
if (must_retry) {
release_stripe(sh);
goto retry;
}
}
/* FIXME what if we get a false positive because these
* are being updated.
*/
if (logical_sector >= mddev->suspend_lo &&
logical_sector < mddev->suspend_hi) {
release_stripe(sh);
schedule();
goto retry;
}
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
!add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
/* Stripe is busy expanding or
* add failed due to overlap. Flush everything
* and wait a while
*/
raid5_unplug_device(mddev->queue);
release_stripe(sh);
schedule();
goto retry;
}
finish_wait(&conf->wait_for_overlap, &w);
raid5_plug_device(conf);
handle_stripe(sh);
release_stripe(sh);
} else {
/* cannot get stripe for read-ahead, just give-up */
clear_bit(BIO_UPTODATE, &bi->bi_flags);
finish_wait(&conf->wait_for_overlap, &w);
break;
}
}
spin_lock_irq(&conf->device_lock);
if (--bi->bi_phys_segments == 0) {
int bytes = bi->bi_size;
if ( bio_data_dir(bi) == WRITE )
md_write_end(mddev);
bi->bi_size = 0;
bi->bi_end_io(bi, bytes, 0);
}
spin_unlock_irq(&conf->device_lock);
return 0;
}
/* FIXME go_faster isn't used */
static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
struct stripe_head *sh;
int pd_idx;
sector_t first_sector, last_sector;
int raid_disks = conf->raid_disks;
int data_disks = raid_disks-1;
sector_t max_sector = mddev->size << 1;
int sync_blocks;
if (sector_nr >= max_sector) {
/* just being told to finish up .. nothing much to do */
unplug_slaves(mddev);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
end_reshape(conf);
return 0;
}
if (mddev->curr_resync < max_sector) /* aborted */
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* compelted sync */
conf->fullsync = 0;
bitmap_close_sync(mddev->bitmap);
return 0;
}
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
/* reshaping is quite different to recovery/resync so it is
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
int i;
int dd_idx;
sector_t writepos, safepos, gap;
if (sector_nr == 0 &&
conf->expand_progress != 0) {
/* restarting in the middle, skip the initial sectors */
sector_nr = conf->expand_progress;
sector_div(sector_nr, conf->raid_disks-1);
*skipped = 1;
return sector_nr;
}
/* we update the metadata when there is more than 3Meg
* in the block range (that is rather arbitrary, should
* probably be time based) or when the data about to be
* copied would over-write the source of the data at
* the front of the range.
* i.e. one new_stripe forward from expand_progress new_maps
* to after where expand_lo old_maps to
*/
writepos = conf->expand_progress +
conf->chunk_size/512*(conf->raid_disks-1);
sector_div(writepos, conf->raid_disks-1);
safepos = conf->expand_lo;
sector_div(safepos, conf->previous_raid_disks-1);
gap = conf->expand_progress - conf->expand_lo;
if (writepos >= safepos ||
gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0);
mddev->reshape_position = conf->expand_progress;
mddev->sb_dirty = 1;
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_dirty == 0 ||
kthread_should_stop());
spin_lock_irq(&conf->device_lock);
conf->expand_lo = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
}
for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
int j;
int skipped = 0;
pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
sh = get_active_stripe(conf, sector_nr+i,
conf->raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
s = compute_blocknr(sh, j);
if (s < (mddev->array_size<<1)) {
skipped = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
release_stripe(sh);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
raid_disks = conf->previous_raid_disks;
data_disks = raid_disks - 1;
first_sector =
raid5_compute_sector(sector_nr*(conf->raid_disks-1),
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
last_sector =
raid5_compute_sector((sector_nr+conf->chunk_size/512)
*(conf->raid_disks-1) -1,
raid_disks, data_disks,
&dd_idx, &pd_idx, conf);
if (last_sector >= (mddev->size<<1))
last_sector = (mddev->size<<1)-1;
while (first_sector <= last_sector) {
pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
sh = get_active_stripe(conf, first_sector,
conf->previous_raid_disks, pd_idx, 0);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
return conf->chunk_size>>9;
}
/* if there is 1 or more failed drives and we are trying
* to resync, then assert that we are finished, because there is
* nothing we can do.
*/
if (mddev->degraded >= 1 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
sector_t rv = (mddev->size << 1) - sector_nr;
*skipped = 1;
return rv;
}
if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
/* we can skip this block, and probably more */
sync_blocks /= STRIPE_SECTORS;
*skipped = 1;
return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
}
pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
if (sh == NULL) {
sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
/* make sure we don't swamp the stripe cache if someone else
* is trying to get access
*/
schedule_timeout_uninterruptible(1);
}
bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 0);
spin_lock(&sh->lock);
set_bit(STRIPE_SYNCING, &sh->state);
clear_bit(STRIPE_INSYNC, &sh->state);
spin_unlock(&sh->lock);
handle_stripe(sh);
release_stripe(sh);
return STRIPE_SECTORS;
}
/*
* This is our raid5 kernel thread.
*
* We scan the hash table for stripes which can be handled now.
* During the scan, completed stripes are saved for us by the interrupt
* handler, so that they will not have to wait for our next wakeup.
*/
static void raid5d (mddev_t *mddev)
{
struct stripe_head *sh;
raid5_conf_t *conf = mddev_to_conf(mddev);
int handled;
PRINTK("+++ raid5d active\n");
md_check_recovery(mddev);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
struct list_head *first;
if (conf->seq_flush - conf->seq_write > 0) {
int seq = conf->seq_flush;
spin_unlock_irq(&conf->device_lock);
bitmap_unplug(mddev->bitmap);
spin_lock_irq(&conf->device_lock);
conf->seq_write = seq;
activate_bit_delay(conf);
}
if (list_empty(&conf->handle_list) &&
atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
!blk_queue_plugged(mddev->queue) &&
!list_empty(&conf->delayed_list))
raid5_activate_delayed(conf);
if (list_empty(&conf->handle_list))
break;
first = conf->handle_list.next;
sh = list_entry(first, struct stripe_head, lru);
list_del_init(first);
atomic_inc(&sh->count);
if (atomic_read(&sh->count)!= 1)
BUG();
spin_unlock_irq(&conf->device_lock);
handled++;
handle_stripe(sh);
release_stripe(sh);
spin_lock_irq(&conf->device_lock);
}
PRINTK("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
unplug_slaves(mddev);
PRINTK("--- raid5d inactive\n");
}
static ssize_t
raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
if (conf)
return sprintf(page, "%d\n", conf->max_nr_stripes);
else
return 0;
}
static ssize_t
raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
char *end;
int new;
if (len >= PAGE_SIZE)
return -EINVAL;
if (!conf)
return -ENODEV;
new = simple_strtoul(page, &end, 10);
if (!*page || (*end && *end != '\n') )
return -EINVAL;
if (new <= 16 || new > 32768)
return -EINVAL;
while (new < conf->max_nr_stripes) {
if (drop_one_stripe(conf))
conf->max_nr_stripes--;
else
break;
}
while (new > conf->max_nr_stripes) {
if (grow_one_stripe(conf))
conf->max_nr_stripes++;
else break;
}
return len;
}
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
raid5_show_stripe_cache_size,
raid5_store_stripe_cache_size);
static ssize_t
stripe_cache_active_show(mddev_t *mddev, char *page)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
if (conf)
return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
else
return 0;
}
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
static struct attribute *raid5_attrs[] = {
&raid5_stripecache_size.attr,
&raid5_stripecache_active.attr,
NULL,
};
static struct attribute_group raid5_attrs_group = {
.name = NULL,
.attrs = raid5_attrs,
};
static int run(mddev_t *mddev)
{
raid5_conf_t *conf;
int raid_disk, memory;
mdk_rdev_t *rdev;
struct disk_info *disk;
struct list_head *tmp;
if (mddev->level != 5 && mddev->level != 4) {
printk(KERN_ERR "raid5: %s: raid level not set to 4/5 (%d)\n",
mdname(mddev), mddev->level);
return -EIO;
}
if (mddev->reshape_position != MaxSector) {
/* Check that we can continue the reshape.
* Currently only disks can change, it must
* increase, and we must be past the point where
* a stripe over-writes itself
*/
sector_t here_new, here_old;
int old_disks;
if (mddev->new_level != mddev->level ||
mddev->new_layout != mddev->layout ||
mddev->new_chunk != mddev->chunk_size) {
printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->delta_disks <= 0) {
printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
old_disks = mddev->raid_disks - mddev->delta_disks;
/* reshape_position must be on a new-stripe boundary, and one
* further up in new geometry must map after here in old geometry.
*/
here_new = mddev->reshape_position;
if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
return -EINVAL;
}
/* here_new is the stripe we will write to */
here_old = mddev->reshape_position;
sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
/* here_old is the first stripe that we might need to read from */
if (here_new >= here_old) {
/* Reading from the same stripe as writing to - bad */
printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
return -EINVAL;
}
printk(KERN_INFO "raid5: reshape will continue\n");
/* OK, we should be able to continue; */
}
mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
if ((conf = mddev->private) == NULL)
goto abort;
if (mddev->reshape_position == MaxSector) {
conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
} else {
conf->raid_disks = mddev->raid_disks;
conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
}
conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
GFP_KERNEL);
if (!conf->disks)
goto abort;
conf->mddev = mddev;
if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
goto abort;
spin_lock_init(&conf->device_lock);
init_waitqueue_head(&conf->wait_for_stripe);
init_waitqueue_head(&conf->wait_for_overlap);
INIT_LIST_HEAD(&conf->handle_list);
INIT_LIST_HEAD(&conf->delayed_list);
INIT_LIST_HEAD(&conf->bitmap_list);
INIT_LIST_HEAD(&conf->inactive_list);
atomic_set(&conf->active_stripes, 0);
atomic_set(&conf->preread_active_stripes, 0);
PRINTK("raid5: run(%s) called.\n", mdname(mddev));
ITERATE_RDEV(mddev,rdev,tmp) {
raid_disk = rdev->raid_disk;
if (raid_disk >= conf->raid_disks
|| raid_disk < 0)
continue;
disk = conf->disks + raid_disk;
disk->rdev = rdev;
if (test_bit(In_sync, &rdev->flags)) {
char b[BDEVNAME_SIZE];
printk(KERN_INFO "raid5: device %s operational as raid"
" disk %d\n", bdevname(rdev->bdev,b),
raid_disk);
conf->working_disks++;
}
}
/*
* 0 for a fully functional array, 1 for a degraded array.
*/
mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks;
conf->mddev = mddev;
conf->chunk_size = mddev->chunk_size;
conf->level = mddev->level;
conf->algorithm = mddev->layout;
conf->max_nr_stripes = NR_STRIPES;
conf->expand_progress = mddev->reshape_position;
/* device size must be a multiple of chunk size */
mddev->size &= ~(mddev->chunk_size/1024 -1);
mddev->resync_max_sectors = mddev->size << 1;
if (!conf->chunk_size || conf->chunk_size % 4) {
printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
conf->chunk_size, mdname(mddev));
goto abort;
}
if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
printk(KERN_ERR
"raid5: unsupported parity algorithm %d for %s\n",
conf->algorithm, mdname(mddev));
goto abort;
}
if (mddev->degraded > 1) {
printk(KERN_ERR "raid5: not enough operational devices for %s"
" (%d/%d failed)\n",
mdname(mddev), conf->failed_disks, conf->raid_disks);
goto abort;
}
if (mddev->degraded == 1 &&
mddev->recovery_cp != MaxSector) {
if (mddev->ok_start_degraded)
printk(KERN_WARNING
"raid5: starting dirty degraded array: %s"
"- data corruption possible.\n",
mdname(mddev));
else {
printk(KERN_ERR
"raid5: cannot start dirty degraded array for %s\n",
mdname(mddev));
goto abort;
}
}
{
mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
if (!mddev->thread) {
printk(KERN_ERR
"raid5: couldn't allocate thread for %s\n",
mdname(mddev));
goto abort;
}
}
memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
if (grow_stripes(conf, conf->max_nr_stripes)) {
printk(KERN_ERR
"raid5: couldn't allocate %dkB for buffers\n", memory);
shrink_stripes(conf);
md_unregister_thread(mddev->thread);
goto abort;
} else
printk(KERN_INFO "raid5: allocated %dkB for %s\n",
memory, mdname(mddev));
if (mddev->degraded == 0)
printk("raid5: raid level %d set %s active with %d out of %d"
" devices, algorithm %d\n", conf->level, mdname(mddev),
mddev->raid_disks-mddev->degraded, mddev->raid_disks,
conf->algorithm);
else
printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
" out of %d devices, algorithm %d\n", conf->level,
mdname(mddev), mddev->raid_disks - mddev->degraded,
mddev->raid_disks, conf->algorithm);
print_raid5_conf(conf);
if (conf->expand_progress != MaxSector) {
printk("...ok start reshape thread\n");
conf->expand_lo = conf->expand_progress;
atomic_set(&conf->reshape_stripes, 0);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"%s_reshape");
/* FIXME if md_register_thread fails?? */
md_wakeup_thread(mddev->sync_thread);
}
/* read-ahead size must cover two whole stripes, which is
* 2 * (n-1) * chunksize where 'n' is the number of raid devices
*/
{
int stripe = (mddev->raid_disks-1) * mddev->chunk_size
/ PAGE_SIZE;
if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
}
/* Ok, everything is just fine now */
sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
mddev->queue->unplug_fn = raid5_unplug_device;
mddev->queue->issue_flush_fn = raid5_issue_flush;
mddev->array_size = mddev->size * (conf->previous_raid_disks - 1);
return 0;
abort:
if (conf) {
print_raid5_conf(conf);
kfree(conf->disks);
kfree(conf->stripe_hashtbl);
kfree(conf);
}
mddev->private = NULL;
printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
return -EIO;
}
static int stop(mddev_t *mddev)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
md_unregister_thread(mddev->thread);
mddev->thread = NULL;
shrink_stripes(conf);
kfree(conf->stripe_hashtbl);
blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
kfree(conf->disks);
kfree(conf);
mddev->private = NULL;
return 0;
}
#if RAID5_DEBUG
static void print_sh (struct stripe_head *sh)
{
int i;
printk("sh %llu, pd_idx %d, state %ld.\n",
(unsigned long long)sh->sector, sh->pd_idx, sh->state);
printk("sh %llu, count %d.\n",
(unsigned long long)sh->sector, atomic_read(&sh->count));
printk("sh %llu, ", (unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
printk("(cache%d: %p %ld) ",
i, sh->dev[i].page, sh->dev[i].flags);
}
printk("\n");
}
static void printall (raid5_conf_t *conf)
{
struct stripe_head *sh;
struct hlist_node *hn;
int i;
spin_lock_irq(&conf->device_lock);
for (i = 0; i < NR_HASH; i++) {
hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
if (sh->raid_conf != conf)
continue;
print_sh(sh);
}
}
spin_unlock_irq(&conf->device_lock);
}
#endif
static void status (struct seq_file *seq, mddev_t *mddev)
{
raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
int i;
seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks);
for (i = 0; i < conf->raid_disks; i++)
seq_printf (seq, "%s",
conf->disks[i].rdev &&
test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
seq_printf (seq, "]");
#if RAID5_DEBUG
#define D(x) \
seq_printf (seq, "<"#x":%d>", atomic_read(&conf->x))
printall(conf);
#endif
}
static void print_raid5_conf (raid5_conf_t *conf)
{
int i;
struct disk_info *tmp;
printk("RAID5 conf printout:\n");
if (!conf) {
printk("(conf==NULL)\n");
return;
}
printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks,
conf->working_disks, conf->failed_disks);
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
tmp = conf->disks + i;
if (tmp->rdev)
printk(" disk %d, o:%d, dev:%s\n",
i, !test_bit(Faulty, &tmp->rdev->flags),
bdevname(tmp->rdev->bdev,b));
}
}
static int raid5_spare_active(mddev_t *mddev)
{
int i;
raid5_conf_t *conf = mddev->private;
struct disk_info *tmp;
for (i = 0; i < conf->raid_disks; i++) {
tmp = conf->disks + i;
if (tmp->rdev
&& !test_bit(Faulty, &tmp->rdev->flags)
&& !test_bit(In_sync, &tmp->rdev->flags)) {
mddev->degraded--;
conf->failed_disks--;
conf->working_disks++;
set_bit(In_sync, &tmp->rdev->flags);
}
}
print_raid5_conf(conf);
return 0;
}
static int raid5_remove_disk(mddev_t *mddev, int number)
{
raid5_conf_t *conf = mddev->private;
int err = 0;
mdk_rdev_t *rdev;
struct disk_info *p = conf->disks + number;
print_raid5_conf(conf);
rdev = p->rdev;
if (rdev) {
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
p->rdev = NULL;
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
p->rdev = rdev;
}
}
abort:
print_raid5_conf(conf);
return err;
}
static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
{
raid5_conf_t *conf = mddev->private;
int found = 0;
int disk;
struct disk_info *p;
if (mddev->degraded > 1)
/* no point adding a device */
return 0;
/*
* find the disk ...
*/
for (disk=0; disk < conf->raid_disks; disk++)
if ((p=conf->disks + disk)->rdev == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->raid_disk = disk;
found = 1;
if (rdev->saved_raid_disk != disk)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
break;
}
print_raid5_conf(conf);
return found;
}
static int raid5_resize(mddev_t *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
mddev->array_size = (sectors * (mddev->raid_disks-1))>>1;
set_capacity(mddev->gendisk, mddev->array_size << 1);
mddev->changed = 1;
if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
mddev->recovery_cp = mddev->size << 1;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->size = sectors /2;
mddev->resync_max_sectors = sectors;
return 0;
}
#ifdef CONFIG_MD_RAID5_RESHAPE
static int raid5_check_reshape(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
int err;
if (mddev->delta_disks < 0 ||
mddev->new_level != mddev->level)
return -EINVAL; /* Cannot shrink array or change level yet */
if (mddev->delta_disks == 0)
return 0; /* nothing to do */
/* Can only proceed if there are plenty of stripe_heads.
* We need a minimum of one full stripe,, and for sensible progress
* it is best to have about 4 times that.
* If we require 4 times, then the default 256 4K stripe_heads will
* allow for chunk sizes up to 256K, which is probably OK.
* If the chunk size is greater, user-space should request more
* stripe_heads first.
*/
if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
(mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
(mddev->chunk_size / STRIPE_SIZE)*4);
return -ENOSPC;
}
err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
if (err)
return err;
/* looks like we might be able to manage this */
return 0;
}
static int raid5_start_reshape(mddev_t *mddev)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
mdk_rdev_t *rdev;
struct list_head *rtmp;
int spares = 0;
int added_devices = 0;
if (mddev->degraded ||
test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
ITERATE_RDEV(mddev, rdev, rtmp)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags))
spares++;
if (spares < mddev->delta_disks-1)
/* Not enough devices even to make a degraded array
* of that size
*/
return -EINVAL;
atomic_set(&conf->reshape_stripes, 0);
spin_lock_irq(&conf->device_lock);
conf->previous_raid_disks = conf->raid_disks;
conf->raid_disks += mddev->delta_disks;
conf->expand_progress = 0;
conf->expand_lo = 0;
spin_unlock_irq(&conf->device_lock);
/* Add some new drives, as many as will fit.
* We know there are enough to make the newly sized array work.
*/
ITERATE_RDEV(mddev, rdev, rtmp)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags)) {
if (raid5_add_disk(mddev, rdev)) {
char nm[20];
set_bit(In_sync, &rdev->flags);
conf->working_disks++;
added_devices++;
sprintf(nm, "rd%d", rdev->raid_disk);
sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
} else
break;
}
mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
mddev->raid_disks = conf->raid_disks;
mddev->reshape_position = 0;
mddev->sb_dirty = 1;
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"%s_reshape");
if (!mddev->sync_thread) {
mddev->recovery = 0;
spin_lock_irq(&conf->device_lock);
mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
conf->expand_progress = MaxSector;
spin_unlock_irq(&conf->device_lock);
return -EAGAIN;
}
md_wakeup_thread(mddev->sync_thread);
md_new_event(mddev);
return 0;
}
#endif
static void end_reshape(raid5_conf_t *conf)
{
struct block_device *bdev;
if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
conf->mddev->changed = 1;
bdev = bdget_disk(conf->mddev->gendisk, 0);
if (bdev) {
mutex_lock(&bdev->bd_inode->i_mutex);
i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
mutex_unlock(&bdev->bd_inode->i_mutex);
bdput(bdev);
}
spin_lock_irq(&conf->device_lock);
conf->expand_progress = MaxSector;
spin_unlock_irq(&conf->device_lock);
conf->mddev->reshape_position = MaxSector;
}
}
static void raid5_quiesce(mddev_t *mddev, int state)
{
raid5_conf_t *conf = mddev_to_conf(mddev);
switch(state) {
case 2: /* resume for a suspend */
wake_up(&conf->wait_for_overlap);
break;
case 1: /* stop all writes */
spin_lock_irq(&conf->device_lock);
conf->quiesce = 1;
wait_event_lock_irq(conf->wait_for_stripe,
atomic_read(&conf->active_stripes) == 0,
conf->device_lock, /* nothing */);
spin_unlock_irq(&conf->device_lock);
break;
case 0: /* re-enable writes */
spin_lock_irq(&conf->device_lock);
conf->quiesce = 0;
wake_up(&conf->wait_for_stripe);
wake_up(&conf->wait_for_overlap);
spin_unlock_irq(&conf->device_lock);
break;
}
}
static struct mdk_personality raid5_personality =
{
.name = "raid5",
.level = 5,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = sync_request,
.resize = raid5_resize,
#ifdef CONFIG_MD_RAID5_RESHAPE
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
#endif
.quiesce = raid5_quiesce,
};
static struct mdk_personality raid4_personality =
{
.name = "raid4",
.level = 4,
.owner = THIS_MODULE,
.make_request = make_request,
.run = run,
.stop = stop,
.status = status,
.error_handler = error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = sync_request,
.resize = raid5_resize,
.quiesce = raid5_quiesce,
};
static int __init raid5_init(void)
{
register_md_personality(&raid5_personality);
register_md_personality(&raid4_personality);
return 0;
}
static void raid5_exit(void)
{
unregister_md_personality(&raid5_personality);
unregister_md_personality(&raid4_personality);
}
module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");