summaryrefslogblamecommitdiff
path: root/drivers/md/raid1.h
blob: 2377a461f794deea56090d2661a9b98f247f8705 (plain) (tree)
1
2
3
4
5
6
7


                


                                         
                              






















                                                                            




                                                                  

                                              





                                                                       

                                            



                                                                         
                                           
 

                                                            
 






                                                                            
                                            
                                           
                                           
                                          
                                        
 



                                                                   
 



                                                                   
 
 



                                                                 

                              
 





                                                                       



                                                                           




                                        









                                                                        


                                                                                         













                                                                     
                                                                
                                              
                                                  




                                                                        
                                                                                

  




                                                                        







                                                                           
 


                          
                         
                         



                                                            






                                                           
                        


                                                      

                          
 

                                                        
      
#ifndef _RAID1_H
#define _RAID1_H

typedef struct mirror_info mirror_info_t;

struct mirror_info {
	struct md_rdev	*rdev;
	sector_t	head_position;
};

/*
 * memory pools need a pointer to the mddev, so they can force an unplug
 * when memory is tight, and a count of the number of drives that the
 * pool was allocated for, so they know how much to allocate and free.
 * mddev->raid_disks cannot be used, as it can change while a pool is active
 * These two datums are stored in a kmalloced struct.
 */

struct pool_info {
	mddev_t *mddev;
	int	raid_disks;
};


typedef struct r1bio_s r1bio_t;

struct r1_private_data_s {
	mddev_t			*mddev;
	mirror_info_t		*mirrors;
	int			raid_disks;

	/* When choose the best device for a read (read_balance())
	 * we try to keep sequential reads one the same device
	 * using 'last_used' and 'next_seq_sect'
	 */
	int			last_used;
	sector_t		next_seq_sect;
	/* During resync, read_balancing is only allowed on the part
	 * of the array that has been resynced.  'next_resync' tells us
	 * where that is.
	 */
	sector_t		next_resync;

	spinlock_t		device_lock;

	/* list of 'r1bio_t' that need to be processed by raid1d, whether
	 * to retry a read, writeout a resync or recovery block, or
	 * anything else.
	 */
	struct list_head	retry_list;

	/* queue pending writes to be submitted on unplug */
	struct bio_list		pending_bio_list;

	/* for use when syncing mirrors:
	 * We don't allow both normal IO and resync/recovery IO at
	 * the same time - resync/recovery can only happen when there
	 * is no other IO.  So when either is active, the other has to wait.
	 * See more details description in raid1.c near raise_barrier().
	 */
	wait_queue_head_t	wait_barrier;
	spinlock_t		resync_lock;
	int			nr_pending;
	int			nr_waiting;
	int			nr_queued;
	int			barrier;

	/* Set to 1 if a full sync is needed, (fresh device added).
	 * Cleared when a sync completes.
	 */
	int			fullsync;

	/* When the same as mddev->recovery_disabled we don't allow
	 * recovery to be attempted as we expect a read error.
	 */
	int			recovery_disabled;


	/* poolinfo contains information about the content of the
	 * mempools - it changes when the array grows or shrinks
	 */
	struct pool_info	*poolinfo;
	mempool_t *r1bio_pool;
	mempool_t *r1buf_pool;

	/* temporary buffer to synchronous IO when attempting to repair
	 * a read error.
	 */
	struct page		*tmppage;


	/* When taking over an array from a different personality, we store
	 * the new thread here until we fully activate the array.
	 */
	struct mdk_thread_s	*thread;
};

typedef struct r1_private_data_s conf_t;

/*
 * this is our 'private' RAID1 bio.
 *
 * it contains information about what kind of IO operations were started
 * for this RAID1 operation, and about their status:
 */

struct r1bio_s {
	atomic_t		remaining; /* 'have we finished' count,
					    * used from IRQ handlers
					    */
	atomic_t		behind_remaining; /* number of write-behind ios remaining
						 * in this BehindIO request
						 */
	sector_t		sector;
	int			sectors;
	unsigned long		state;
	mddev_t			*mddev;
	/*
	 * original bio going to /dev/mdx
	 */
	struct bio		*master_bio;
	/*
	 * if the IO is in READ direction, then this is where we read
	 */
	int			read_disk;

	struct list_head	retry_list;
	/* Next two are only valid when R1BIO_BehindIO is set */
	struct bio_vec		*behind_bvecs;
	int			behind_page_count;
	/*
	 * if the IO is in WRITE direction, then multiple bios are used.
	 * We choose the number when they are allocated.
	 */
	struct bio		*bios[0];
	/* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/
};

/* when we get a read error on a read-only array, we redirect to another
 * device without failing the first device, or trying to over-write to
 * correct the read error.  To keep track of bad blocks on a per-bio
 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
 */
#define IO_BLOCKED ((struct bio *)1)
/* When we successfully write to a known bad-block, we need to remove the
 * bad-block marking which must be done from process context.  So we record
 * the success by setting bios[n] to IO_MADE_GOOD
 */
#define IO_MADE_GOOD ((struct bio *)2)

#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)

/* bits for r1bio.state */
#define	R1BIO_Uptodate	0
#define	R1BIO_IsSync	1
#define	R1BIO_Degraded	2
#define	R1BIO_BehindIO	3
/* Set ReadError on bios that experience a readerror so that
 * raid1d knows what to do with them.
 */
#define R1BIO_ReadError 4
/* For write-behind requests, we call bi_end_io when
 * the last non-write-behind device completes, providing
 * any write was successful.  Otherwise we call when
 * any write-behind write succeeds, otherwise we call
 * with failure when last write completes (and all failed).
 * Record that bi_end_io was called with this flag...
 */
#define	R1BIO_Returned 6
/* If a write for this request means we can clear some
 * known-bad-block records, we set this flag
 */
#define	R1BIO_MadeGood 7
#define	R1BIO_WriteError 8

extern int md_raid1_congested(mddev_t *mddev, int bits);

#endif