/*
* Device driver for the via-pmu on Apple Powermacs.
*
* The VIA (versatile interface adapter) interfaces to the PMU,
* a 6805 microprocessor core whose primary function is to control
* battery charging and system power on the PowerBook 3400 and 2400.
* The PMU also controls the ADB (Apple Desktop Bus) which connects
* to the keyboard and mouse, as well as the non-volatile RAM
* and the RTC (real time clock) chip.
*
* Copyright (C) 1998 Paul Mackerras and Fabio Riccardi.
* Copyright (C) 2001-2002 Benjamin Herrenschmidt
*
* THIS DRIVER IS BECOMING A TOTAL MESS !
* - Cleanup atomically disabling reply to PMU events after
* a sleep or a freq. switch
* - Move sleep code out of here to pmac_pm, merge into new
* common PM infrastructure
* - Move backlight code out as well
* - Save/Restore PCI space properly
*
*/
#include <stdarg.h>
#include <linux/config.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/miscdevice.h>
#include <linux/blkdev.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/poll.h>
#include <linux/adb.h>
#include <linux/pmu.h>
#include <linux/cuda.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/pm.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/sysdev.h>
#include <linux/suspend.h>
#include <linux/syscalls.h>
#include <linux/cpu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/system.h>
#include <asm/sections.h>
#include <asm/irq.h>
#include <asm/pmac_feature.h>
#include <asm/pmac_pfunc.h>
#include <asm/pmac_low_i2c.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/cputable.h>
#include <asm/time.h>
#ifdef CONFIG_PMAC_BACKLIGHT
#include <asm/backlight.h>
#endif
#ifdef CONFIG_PPC32
#include <asm/open_pic.h>
#endif
/* Some compile options */
#undef SUSPEND_USES_PMU
#define DEBUG_SLEEP
#undef HACKED_PCI_SAVE
/* Misc minor number allocated for /dev/pmu */
#define PMU_MINOR 154
/* How many iterations between battery polls */
#define BATTERY_POLLING_COUNT 2
static volatile unsigned char __iomem *via;
/* VIA registers - spaced 0x200 bytes apart */
#define RS 0x200 /* skip between registers */
#define B 0 /* B-side data */
#define A RS /* A-side data */
#define DIRB (2*RS) /* B-side direction (1=output) */
#define DIRA (3*RS) /* A-side direction (1=output) */
#define T1CL (4*RS) /* Timer 1 ctr/latch (low 8 bits) */
#define T1CH (5*RS) /* Timer 1 counter (high 8 bits) */
#define T1LL (6*RS) /* Timer 1 latch (low 8 bits) */
#define T1LH (7*RS) /* Timer 1 latch (high 8 bits) */
#define T2CL (8*RS) /* Timer 2 ctr/latch (low 8 bits) */
#define T2CH (9*RS) /* Timer 2 counter (high 8 bits) */
#define SR (10*RS) /* Shift register */
#define ACR (11*RS) /* Auxiliary control register */
#define PCR (12*RS) /* Peripheral control register */
#define IFR (13*RS) /* Interrupt flag register */
#define IER (14*RS) /* Interrupt enable register */
#define ANH (15*RS) /* A-side data, no handshake */
/* Bits in B data register: both active low */
#define TACK 0x08 /* Transfer acknowledge (input) */
#define TREQ 0x10 /* Transfer request (output) */
/* Bits in ACR */
#define SR_CTRL 0x1c /* Shift register control bits */
#define SR_EXT 0x0c /* Shift on external clock */
#define SR_OUT 0x10 /* Shift out if 1 */
/* Bits in IFR and IER */
#define IER_SET 0x80 /* set bits in IER */
#define IER_CLR 0 /* clear bits in IER */
#define SR_INT 0x04 /* Shift register full/empty */
#define CB2_INT 0x08
#define CB1_INT 0x10 /* transition on CB1 input */
static volatile enum pmu_state {
idle,
sending,
intack,
reading,
reading_intr,
locked,
} pmu_state;
static volatile enum int_data_state {
int_data_empty,
int_data_fill,
int_data_ready,
int_data_flush
} int_data_state[2] = { int_data_empty, int_data_empty };
static struct adb_request *current_req;
static struct adb_request *last_req;
static struct adb_request *req_awaiting_reply;
static unsigned char interrupt_data[2][32];
static int interrupt_data_len[2];
static int int_data_last;
static unsigned char *reply_ptr;
static int data_index;
static int data_len;
static volatile int adb_int_pending;
static volatile int disable_poll;
static struct adb_request bright_req_1, bright_req_2;
static struct device_node *vias;
static int pmu_kind = PMU_UNKNOWN;
static int pmu_fully_inited = 0;
static int pmu_has_adb;
static struct device_node *gpio_node;
static unsigned char __iomem *gpio_reg = NULL;
static int gpio_irq = -1;
static int gpio_irq_enabled = -1;
static volatile int pmu_suspended = 0;
static spinlock_t pmu_lock;
static u8 pmu_intr_mask;
static int pmu_version;
static int drop_interrupts;
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
static int option_lid_wakeup = 1;
#endif /* CONFIG_PM && CONFIG_PPC32 */
#if (defined(CONFIG_PM)&&defined(CONFIG_PPC32))||defined(CONFIG_PMAC_BACKLIGHT)
static int sleep_in_progress;
#endif
static unsigned long async_req_locks;
static unsigned int pmu_irq_stats[11];
static struct proc_dir_entry *proc_pmu_root;
static struct proc_dir_entry *proc_pmu_info;
static struct proc_dir_entry *proc_pmu_irqstats;
static struct proc_dir_entry *proc_pmu_options;
static int option_server_mode;
int pmu_battery_count;
int pmu_cur_battery;
unsigned int pmu_power_flags;
struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES];
static int query_batt_timer = BATTERY_POLLING_COUNT;
static struct adb_request batt_req;
static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES];
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
extern int disable_kernel_backlight;
#endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
int __fake_sleep;
int asleep;
BLOCKING_NOTIFIER_HEAD(sleep_notifier_list);
#ifdef CONFIG_ADB
static int adb_dev_map = 0;
static int pmu_adb_flags;
static int pmu_probe(void);
static int pmu_init(void);
static int pmu_send_request(struct adb_request *req, int sync);
static int pmu_adb_autopoll(int devs);
static int pmu_adb_reset_bus(void);
#endif /* CONFIG_ADB */
static int init_pmu(void);
static void pmu_start(void);
static irqreturn_t via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs);
static irqreturn_t gpio1_interrupt(int irq, void *arg, struct pt_regs *regs);
static int proc_get_info(char *page, char **start, off_t off,
int count, int *eof, void *data);
static int proc_get_irqstats(char *page, char **start, off_t off,
int count, int *eof, void *data);
#ifdef CONFIG_PMAC_BACKLIGHT
static int pmu_set_backlight_level(int level, void* data);
static int pmu_set_backlight_enable(int on, int level, void* data);
#endif /* CONFIG_PMAC_BACKLIGHT */
static void pmu_pass_intr(unsigned char *data, int len);
static int proc_get_batt(char *page, char **start, off_t off,
int count, int *eof, void *data);
static int proc_read_options(char *page, char **start, off_t off,
int count, int *eof, void *data);
static int proc_write_options(struct file *file, const char __user *buffer,
unsigned long count, void *data);
#ifdef CONFIG_ADB
struct adb_driver via_pmu_driver = {
"PMU",
pmu_probe,
pmu_init,
pmu_send_request,
pmu_adb_autopoll,
pmu_poll_adb,
pmu_adb_reset_bus
};
#endif /* CONFIG_ADB */
extern void low_sleep_handler(void);
extern void enable_kernel_altivec(void);
extern void enable_kernel_fp(void);
#ifdef DEBUG_SLEEP
int pmu_polled_request(struct adb_request *req);
int pmu_wink(struct adb_request *req);
#endif
/*
* This table indicates for each PMU opcode:
* - the number of data bytes to be sent with the command, or -1
* if a length byte should be sent,
* - the number of response bytes which the PMU will return, or
* -1 if it will send a length byte.
*/
static const s8 pmu_data_len[256][2] = {
/* 0 1 2 3 4 5 6 7 */
/*00*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*08*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*10*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*18*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
/*20*/ {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
/*28*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
/*30*/ { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*38*/ { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
/*40*/ { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*48*/ { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
/*50*/ { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
/*58*/ { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
/*60*/ { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*68*/ { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
/*70*/ { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*78*/ { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
/*80*/ { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*88*/ { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*90*/ { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*98*/ { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*a0*/ { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
/*a8*/ { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*b0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*b8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*c0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*c8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
/*d0*/ { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*d8*/ { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
/*e0*/ {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
/*e8*/ { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
/*f0*/ {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
/*f8*/ {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
};
static char *pbook_type[] = {
"Unknown PowerBook",
"PowerBook 2400/3400/3500(G3)",
"PowerBook G3 Series",
"1999 PowerBook G3",
"Core99"
};
#ifdef CONFIG_PMAC_BACKLIGHT
static struct backlight_controller pmu_backlight_controller = {
pmu_set_backlight_enable,
pmu_set_backlight_level
};
#endif /* CONFIG_PMAC_BACKLIGHT */
int __init find_via_pmu(void)
{
u64 taddr;
u32 *reg;
if (via != 0)
return 1;
vias = of_find_node_by_name(NULL, "via-pmu");
if (vias == NULL)
return 0;
reg = (u32 *)get_property(vias, "reg", NULL);
if (reg == NULL) {
printk(KERN_ERR "via-pmu: No \"reg\" property !\n");
goto fail;
}
taddr = of_translate_address(vias, reg);
if (taddr == OF_BAD_ADDR) {
printk(KERN_ERR "via-pmu: Can't translate address !\n");
goto fail;
}
spin_lock_init(&pmu_lock);
pmu_has_adb = 1;
pmu_intr_mask = PMU_INT_PCEJECT |
PMU_INT_SNDBRT |
PMU_INT_ADB |
PMU_INT_TICK;
if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0)
|| device_is_compatible(vias->parent, "ohare")))
pmu_kind = PMU_OHARE_BASED;
else if (device_is_compatible(vias->parent, "paddington"))
pmu_kind = PMU_PADDINGTON_BASED;
else if (device_is_compatible(vias->parent, "heathrow"))
pmu_kind = PMU_HEATHROW_BASED;
else if (device_is_compatible(vias->parent, "Keylargo")
|| device_is_compatible(vias->parent, "K2-Keylargo")) {
struct device_node *gpiop;
u64 gaddr = OF_BAD_ADDR;
pmu_kind = PMU_KEYLARGO_BASED;
pmu_has_adb = (find_type_devices("adb") != NULL);
pmu_intr_mask = PMU_INT_PCEJECT |
PMU_INT_SNDBRT |
PMU_INT_ADB |
PMU_INT_TICK |
PMU_INT_ENVIRONMENT;
gpiop = of_find_node_by_name(NULL, "gpio");
if (gpiop) {
reg = (u32 *)get_property(gpiop, "reg", NULL);
if (reg)
gaddr = of_translate_address(gpiop, reg);
if (gaddr != OF_BAD_ADDR)
gpio_reg = ioremap(gaddr, 0x10);
}
if (gpio_reg == NULL)
printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n");
} else
pmu_kind = PMU_UNKNOWN;
via = ioremap(taddr, 0x2000);
if (via == NULL) {
printk(KERN_ERR "via-pmu: Can't map address !\n");
goto fail;
}
out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */
out_8(&via[IFR], 0x7f); /* clear IFR */
pmu_state = idle;
if (!init_pmu()) {
via = NULL;
return 0;
}
printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n",
PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version);
sys_ctrler = SYS_CTRLER_PMU;
return 1;
fail:
of_node_put(vias);
vias = NULL;
return 0;
}
#ifdef CONFIG_ADB
static int pmu_probe(void)
{
return vias == NULL? -ENODEV: 0;
}
static int __init pmu_init(void)
{
if (vias == NULL)
return -ENODEV;
return 0;
}
#endif /* CONFIG_ADB */
/*
* We can't wait until pmu_init gets called, that happens too late.
* It happens after IDE and SCSI initialization, which can take a few
* seconds, and by that time the PMU could have given up on us and
* turned us off.
* Thus this is called with arch_initcall rather than device_initcall.
*/
static int __init via_pmu_start(void)
{
if (vias == NULL)
return -ENODEV;
bright_req_1.complete = 1;
bright_req_2.complete = 1;
batt_req.complete = 1;
#ifndef CONFIG_PPC_MERGE
if (pmu_kind == PMU_KEYLARGO_BASED)
openpic_set_irq_priority(vias->intrs[0].line,
OPENPIC_PRIORITY_DEFAULT + 1);
#endif
if (request_irq(vias->intrs[0].line, via_pmu_interrupt, 0, "VIA-PMU",
(void *)0)) {
printk(KERN_ERR "VIA-PMU: can't get irq %d\n",
vias->intrs[0].line);
return -EAGAIN;
}
if (pmu_kind == PMU_KEYLARGO_BASED) {
gpio_node = of_find_node_by_name(NULL, "extint-gpio1");
if (gpio_node == NULL)
gpio_node = of_find_node_by_name(NULL,
"pmu-interrupt");
if (gpio_node && gpio_node->n_intrs > 0)
gpio_irq = gpio_node->intrs[0].line;
if (gpio_irq != -1) {
if (request_irq(gpio_irq, gpio1_interrupt, 0,
"GPIO1 ADB", (void *)0))
printk(KERN_ERR "pmu: can't get irq %d"
" (GPIO1)\n", gpio_irq);
else
gpio_irq_enabled = 1;
}
}
/* Enable interrupts */
out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
pmu_fully_inited = 1;
/* Make sure PMU settle down before continuing. This is _very_ important
* since the IDE probe may shut interrupts down for quite a bit of time. If
* a PMU communication is pending while this happens, the PMU may timeout
* Not that on Core99 machines, the PMU keeps sending us environement
* messages, we should find a way to either fix IDE or make it call
* pmu_suspend() before masking interrupts. This can also happens while
* scolling with some fbdevs.
*/
do {
pmu_poll();
} while (pmu_state != idle);
return 0;
}
arch_initcall(via_pmu_start);
/*
* This has to be done after pci_init, which is a subsys_initcall.
*/
static int __init via_pmu_dev_init(void)
{
if (vias == NULL)
return -ENODEV;
#ifdef CONFIG_PMAC_BACKLIGHT
/* Enable backlight */
register_backlight_controller(&pmu_backlight_controller, NULL, "pmu");
#endif /* CONFIG_PMAC_BACKLIGHT */
#ifdef CONFIG_PPC32
if (machine_is_compatible("AAPL,3400/2400") ||
machine_is_compatible("AAPL,3500")) {
int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
NULL, PMAC_MB_INFO_MODEL, 0);
pmu_battery_count = 1;
if (mb == PMAC_TYPE_COMET)
pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET;
else
pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER;
} else if (machine_is_compatible("AAPL,PowerBook1998") ||
machine_is_compatible("PowerBook1,1")) {
pmu_battery_count = 2;
pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
} else {
struct device_node* prim = find_devices("power-mgt");
u32 *prim_info = NULL;
if (prim)
prim_info = (u32 *)get_property(prim, "prim-info", NULL);
if (prim_info) {
/* Other stuffs here yet unknown */
pmu_battery_count = (prim_info[6] >> 16) & 0xff;
pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
if (pmu_battery_count > 1)
pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
}
}
#endif /* CONFIG_PPC32 */
/* Create /proc/pmu */
proc_pmu_root = proc_mkdir("pmu", NULL);
if (proc_pmu_root) {
long i;
for (i=0; i<pmu_battery_count; i++) {
char title[16];
sprintf(title, "battery_%ld", i);
proc_pmu_batt[i] = create_proc_read_entry(title, 0, proc_pmu_root,
proc_get_batt, (void *)i);
}
proc_pmu_info = create_proc_read_entry("info", 0, proc_pmu_root,
proc_get_info, NULL);
proc_pmu_irqstats = create_proc_read_entry("interrupts", 0, proc_pmu_root,
proc_get_irqstats, NULL);
proc_pmu_options = create_proc_entry("options", 0600, proc_pmu_root);
if (proc_pmu_options) {
proc_pmu_options->nlink = 1;
proc_pmu_options->read_proc = proc_read_options;
proc_pmu_options->write_proc = proc_write_options;
}
}
return 0;
}
device_initcall(via_pmu_dev_init);
static int
init_pmu(void)
{
int timeout;
struct adb_request req;
out_8(&via[B], via[B] | TREQ); /* negate TREQ */
out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK); /* TACK in, TREQ out */
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
timeout = 100000;
while (!req.complete) {
if (--timeout < 0) {
printk(KERN_ERR "init_pmu: no response from PMU\n");
return 0;
}
udelay(10);
pmu_poll();
}
/* ack all pending interrupts */
timeout = 100000;
interrupt_data[0][0] = 1;
while (interrupt_data[0][0] || pmu_state != idle) {
if (--timeout < 0) {
printk(KERN_ERR "init_pmu: timed out acking intrs\n");
return 0;
}
if (pmu_state == idle)
adb_int_pending = 1;
via_pmu_interrupt(0, NULL, NULL);
udelay(10);
}
/* Tell PMU we are ready. */
if (pmu_kind == PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
while (!req.complete)
pmu_poll();
}
/* Read PMU version */
pmu_request(&req, NULL, 1, PMU_GET_VERSION);
pmu_wait_complete(&req);
if (req.reply_len > 0)
pmu_version = req.reply[0];
/* Read server mode setting */
if (pmu_kind == PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_POWER_EVENTS,
PMU_PWR_GET_POWERUP_EVENTS);
pmu_wait_complete(&req);
if (req.reply_len == 2) {
if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT)
option_server_mode = 1;
printk(KERN_INFO "via-pmu: Server Mode is %s\n",
option_server_mode ? "enabled" : "disabled");
}
}
return 1;
}
int
pmu_get_model(void)
{
return pmu_kind;
}
static void pmu_set_server_mode(int server_mode)
{
struct adb_request req;
if (pmu_kind != PMU_KEYLARGO_BASED)
return;
option_server_mode = server_mode;
pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS);
pmu_wait_complete(&req);
if (req.reply_len < 2)
return;
if (server_mode)
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
PMU_PWR_SET_POWERUP_EVENTS,
req.reply[0], PMU_PWR_WAKEUP_AC_INSERT);
else
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
PMU_PWR_CLR_POWERUP_EVENTS,
req.reply[0], PMU_PWR_WAKEUP_AC_INSERT);
pmu_wait_complete(&req);
}
/* This new version of the code for 2400/3400/3500 powerbooks
* is inspired from the implementation in gkrellm-pmu
*/
static void
done_battery_state_ohare(struct adb_request* req)
{
/* format:
* [0] : flags
* 0x01 : AC indicator
* 0x02 : charging
* 0x04 : battery exist
* 0x08 :
* 0x10 :
* 0x20 : full charged
* 0x40 : pcharge reset
* 0x80 : battery exist
*
* [1][2] : battery voltage
* [3] : CPU temperature
* [4] : battery temperature
* [5] : current
* [6][7] : pcharge
* --tkoba
*/
unsigned int bat_flags = PMU_BATT_TYPE_HOOPER;
long pcharge, charge, vb, vmax, lmax;
long vmax_charging, vmax_charged;
long amperage, voltage, time, max;
int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
NULL, PMAC_MB_INFO_MODEL, 0);
if (req->reply[0] & 0x01)
pmu_power_flags |= PMU_PWR_AC_PRESENT;
else
pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
if (mb == PMAC_TYPE_COMET) {
vmax_charged = 189;
vmax_charging = 213;
lmax = 6500;
} else {
vmax_charged = 330;
vmax_charging = 330;
lmax = 6500;
}
vmax = vmax_charged;
/* If battery installed */
if (req->reply[0] & 0x04) {
bat_flags |= PMU_BATT_PRESENT;
if (req->reply[0] & 0x02)
bat_flags |= PMU_BATT_CHARGING;
vb = (req->reply[1] << 8) | req->reply[2];
voltage = (vb * 265 + 72665) / 10;
amperage = req->reply[5];
if ((req->reply[0] & 0x01) == 0) {
if (amperage > 200)
vb += ((amperage - 200) * 15)/100;
} else if (req->reply[0] & 0x02) {
vb = (vb * 97) / 100;
vmax = vmax_charging;
}
charge = (100 * vb) / vmax;
if (req->reply[0] & 0x40) {
pcharge = (req->reply[6] << 8) + req->reply[7];
if (pcharge > lmax)
pcharge = lmax;
pcharge *= 100;
pcharge = 100 - pcharge / lmax;
if (pcharge < charge)
charge = pcharge;
}
if (amperage > 0)
time = (charge * 16440) / amperage;
else
time = 0;
max = 100;
amperage = -amperage;
} else
charge = max = amperage = voltage = time = 0;
pmu_batteries[pmu_cur_battery].flags = bat_flags;
pmu_batteries[pmu_cur_battery].charge = charge;
pmu_batteries[pmu_cur_battery].max_charge = max;
pmu_batteries[pmu_cur_battery].amperage = amperage;
pmu_batteries[pmu_cur_battery].voltage = voltage;
pmu_batteries[pmu_cur_battery].time_remaining = time;
clear_bit(0, &async_req_locks);
}
static void
done_battery_state_smart(struct adb_request* req)
{
/* format:
* [0] : format of this structure (known: 3,4,5)
* [1] : flags
*
* format 3 & 4:
*
* [2] : charge
* [3] : max charge
* [4] : current
* [5] : voltage
*
* format 5:
*
* [2][3] : charge
* [4][5] : max charge
* [6][7] : current
* [8][9] : voltage
*/
unsigned int bat_flags = PMU_BATT_TYPE_SMART;
int amperage;
unsigned int capa, max, voltage;
if (req->reply[1] & 0x01)
pmu_power_flags |= PMU_PWR_AC_PRESENT;
else
pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
capa = max = amperage = voltage = 0;
if (req->reply[1] & 0x04) {
bat_flags |= PMU_BATT_PRESENT;
switch(req->reply[0]) {
case 3:
case 4: capa = req->reply[2];
max = req->reply[3];
amperage = *((signed char *)&req->reply[4]);
voltage = req->reply[5];
break;
case 5: capa = (req->reply[2] << 8) | req->reply[3];
max = (req->reply[4] << 8) | req->reply[5];
amperage = *((signed short *)&req->reply[6]);
voltage = (req->reply[8] << 8) | req->reply[9];
break;
default:
printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n",
req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]);
break;
}
}
if ((req->reply[1] & 0x01) && (amperage > 0))
bat_flags |= PMU_BATT_CHARGING;
pmu_batteries[pmu_cur_battery].flags = bat_flags;
pmu_batteries[pmu_cur_battery].charge = capa;
pmu_batteries[pmu_cur_battery].max_charge = max;
pmu_batteries[pmu_cur_battery].amperage = amperage;
pmu_batteries[pmu_cur_battery].voltage = voltage;
if (amperage) {
if ((req->reply[1] & 0x01) && (amperage > 0))
pmu_batteries[pmu_cur_battery].time_remaining
= ((max-capa) * 3600) / amperage;
else
pmu_batteries[pmu_cur_battery].time_remaining
= (capa * 3600) / (-amperage);
} else
pmu_batteries[pmu_cur_battery].time_remaining = 0;
pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count;
clear_bit(0, &async_req_locks);
}
static void
query_battery_state(void)
{
if (test_and_set_bit(0, &async_req_locks))
return;
if (pmu_kind == PMU_OHARE_BASED)
pmu_request(&batt_req, done_battery_state_ohare,
1, PMU_BATTERY_STATE);
else
pmu_request(&batt_req, done_battery_state_smart,
2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1);
}
static int
proc_get_info(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
char* p = page;
p += sprintf(p, "PMU driver version : %d\n", PMU_DRIVER_VERSION);
p += sprintf(p, "PMU firmware version : %02x\n", pmu_version);
p += sprintf(p, "AC Power : %d\n",
((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0) || pmu_battery_count == 0);
p += sprintf(p, "Battery count : %d\n", pmu_battery_count);
return p - page;
}
static int
proc_get_irqstats(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int i;
char* p = page;
static const char *irq_names[] = {
"Total CB1 triggered events",
"Total GPIO1 triggered events",
"PC-Card eject button",
"Sound/Brightness button",
"ADB message",
"Battery state change",
"Environment interrupt",
"Tick timer",
"Ghost interrupt (zero len)",
"Empty interrupt (empty mask)",
"Max irqs in a row"
};
for (i=0; i<11; i++) {
p += sprintf(p, " %2u: %10u (%s)\n",
i, pmu_irq_stats[i], irq_names[i]);
}
return p - page;
}
static int
proc_get_batt(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
long batnum = (long)data;
char *p = page;
p += sprintf(p, "\n");
p += sprintf(p, "flags : %08x\n",
pmu_batteries[batnum].flags);
p += sprintf(p, "charge : %d\n",
pmu_batteries[batnum].charge);
p += sprintf(p, "max_charge : %d\n",
pmu_batteries[batnum].max_charge);
p += sprintf(p, "current : %d\n",
pmu_batteries[batnum].amperage);
p += sprintf(p, "voltage : %d\n",
pmu_batteries[batnum].voltage);
p += sprintf(p, "time rem. : %d\n",
pmu_batteries[batnum].time_remaining);
return p - page;
}
static int
proc_read_options(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
char *p = page;
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
if (pmu_kind == PMU_KEYLARGO_BASED &&
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
p += sprintf(p, "lid_wakeup=%d\n", option_lid_wakeup);
#endif
if (pmu_kind == PMU_KEYLARGO_BASED)
p += sprintf(p, "server_mode=%d\n", option_server_mode);
return p - page;
}
static int
proc_write_options(struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
char tmp[33];
char *label, *val;
unsigned long fcount = count;
if (!count)
return -EINVAL;
if (count > 32)
count = 32;
if (copy_from_user(tmp, buffer, count))
return -EFAULT;
tmp[count] = 0;
label = tmp;
while(*label == ' ')
label++;
val = label;
while(*val && (*val != '=')) {
if (*val == ' ')
*val = 0;
val++;
}
if ((*val) == 0)
return -EINVAL;
*(val++) = 0;
while(*val == ' ')
val++;
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
if (pmu_kind == PMU_KEYLARGO_BASED &&
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
if (!strcmp(label, "lid_wakeup"))
option_lid_wakeup = ((*val) == '1');
#endif
if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) {
int new_value;
new_value = ((*val) == '1');
if (new_value != option_server_mode)
pmu_set_server_mode(new_value);
}
return fcount;
}
#ifdef CONFIG_ADB
/* Send an ADB command */
static int
pmu_send_request(struct adb_request *req, int sync)
{
int i, ret;
if ((vias == NULL) || (!pmu_fully_inited)) {
req->complete = 1;
return -ENXIO;
}
ret = -EINVAL;
switch (req->data[0]) {
case PMU_PACKET:
for (i = 0; i < req->nbytes - 1; ++i)
req->data[i] = req->data[i+1];
--req->nbytes;
if (pmu_data_len[req->data[0]][1] != 0) {
req->reply[0] = ADB_RET_OK;
req->reply_len = 1;
} else
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
case CUDA_PACKET:
switch (req->data[1]) {
case CUDA_GET_TIME:
if (req->nbytes != 2)
break;
req->data[0] = PMU_READ_RTC;
req->nbytes = 1;
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_GET_TIME;
ret = pmu_queue_request(req);
break;
case CUDA_SET_TIME:
if (req->nbytes != 6)
break;
req->data[0] = PMU_SET_RTC;
req->nbytes = 5;
for (i = 1; i <= 4; ++i)
req->data[i] = req->data[i+1];
req->reply_len = 3;
req->reply[0] = CUDA_PACKET;
req->reply[1] = 0;
req->reply[2] = CUDA_SET_TIME;
ret = pmu_queue_request(req);
break;
}
break;
case ADB_PACKET:
if (!pmu_has_adb)
return -ENXIO;
for (i = req->nbytes - 1; i > 1; --i)
req->data[i+2] = req->data[i];
req->data[3] = req->nbytes - 2;
req->data[2] = pmu_adb_flags;
/*req->data[1] = req->data[1];*/
req->data[0] = PMU_ADB_CMD;
req->nbytes += 2;
req->reply_expected = 1;
req->reply_len = 0;
ret = pmu_queue_request(req);
break;
}
if (ret) {
req->complete = 1;
return ret;
}
if (sync)
while (!req->complete)
pmu_poll();
return 0;
}
/* Enable/disable autopolling */
static int
pmu_adb_autopoll(int devs)
{
struct adb_request req;
if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
return -ENXIO;
if (devs) {
adb_dev_map = devs;
pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
adb_dev_map >> 8, adb_dev_map);
pmu_adb_flags = 2;
} else {
pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
pmu_adb_flags = 0;
}
while (!req.complete)
pmu_poll();
return 0;
}
/* Reset the ADB bus */
static int
pmu_adb_reset_bus(void)
{
struct adb_request req;
int save_autopoll = adb_dev_map;
if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
return -ENXIO;
/* anyone got a better idea?? */
pmu_adb_autopoll(0);
req.nbytes = 5;
req.done = NULL;
req.data[0] = PMU_ADB_CMD;
req.data[1] = 0;
req.data[2] = ADB_BUSRESET;
req.data[3] = 0;
req.data[4] = 0;
req.reply_len = 0;
req.reply_expected = 1;
if (pmu_queue_request(&req) != 0) {
printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
return -EIO;
}
pmu_wait_complete(&req);
if (save_autopoll != 0)
pmu_adb_autopoll(save_autopoll);
return 0;
}
#endif /* CONFIG_ADB */
/* Construct and send a pmu request */
int
pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
int nbytes, ...)
{
va_list list;
int i;
if (vias == NULL)
return -ENXIO;
if (nbytes < 0 || nbytes > 32) {
printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
req->complete = 1;
return -EINVAL;
}
req->nbytes = nbytes;
req->done = done;
va_start(list, nbytes);
for (i = 0; i < nbytes; ++i)
req->data[i] = va_arg(list, int);
va_end(list);
req->reply_len = 0;
req->reply_expected = 0;
return pmu_queue_request(req);
}
int
pmu_queue_request(struct adb_request *req)
{
unsigned long flags;
int nsend;
if (via == NULL) {
req->complete = 1;
return -ENXIO;
}
if (req->nbytes <= 0) {
req->complete = 1;
return 0;
}
nsend = pmu_data_len[req->data[0]][0];
if (nsend >= 0 && req->nbytes != nsend + 1) {
req->complete = 1;
return -EINVAL;
}
req->next = NULL;
req->sent = 0;
req->complete = 0;
spin_lock_irqsave(&pmu_lock, flags);
if (current_req != 0) {
last_req->next = req;
last_req = req;
} else {
current_req = req;
last_req = req;
if (pmu_state == idle)
pmu_start();
}
spin_unlock_irqrestore(&pmu_lock, flags);
return 0;
}
static inline void
wait_for_ack(void)
{
/* Sightly increased the delay, I had one occurrence of the message
* reported
*/
int timeout = 4000;
while ((in_8(&via[B]) & TACK) == 0) {
if (--timeout < 0) {
printk(KERN_ERR "PMU not responding (!ack)\n");
return;
}
udelay(10);
}
}
/* New PMU seems to be very sensitive to those timings, so we make sure
* PCI is flushed immediately */
static inline void
send_byte(int x)
{
volatile unsigned char __iomem *v = via;
out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT);
out_8(&v[SR], x);
out_8(&v[B], in_8(&v[B]) & ~TREQ); /* assert TREQ */
(void)in_8(&v[B]);
}
static inline void
recv_byte(void)
{
volatile unsigned char __iomem *v = via;
out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT);
in_8(&v[SR]); /* resets SR */
out_8(&v[B], in_8(&v[B]) & ~TREQ);
(void)in_8(&v[B]);
}
static inline void
pmu_done(struct adb_request *req)
{
void (*done)(struct adb_request *) = req->done;
mb();
req->complete = 1;
/* Here, we assume that if the request has a done member, the
* struct request will survive to setting req->complete to 1
*/
if (done)
(*done)(req);
}
static void
pmu_start(void)
{
struct adb_request *req;
/* assert pmu_state == idle */
/* get the packet to send */
req = current_req;
if (req == 0 || pmu_state != idle
|| (/*req->reply_expected && */req_awaiting_reply))
return;
pmu_state = sending;
data_index = 1;
data_len = pmu_data_len[req->data[0]][0];
/* Sounds safer to make sure ACK is high before writing. This helped
* kill a problem with ADB and some iBooks
*/
wait_for_ack();
/* set the shift register to shift out and send a byte */
send_byte(req->data[0]);
}
void
pmu_poll(void)
{
if (!via)
return;
if (disable_poll)
return;
via_pmu_interrupt(0, NULL, NULL);
}
void
pmu_poll_adb(void)
{
if (!via)
return;
if (disable_poll)
return;
/* Kicks ADB read when PMU is suspended */
adb_int_pending = 1;
do {
via_pmu_interrupt(0, NULL, NULL);
} while (pmu_suspended && (adb_int_pending || pmu_state != idle
|| req_awaiting_reply));
}
void
pmu_wait_complete(struct adb_request *req)
{
if (!via)
return;
while((pmu_state != idle && pmu_state != locked) || !req->complete)
via_pmu_interrupt(0, NULL, NULL);
}
/* This function loops until the PMU is idle and prevents it from
* anwsering to ADB interrupts. pmu_request can still be called.
* This is done to avoid spurrious shutdowns when we know we'll have
* interrupts switched off for a long time
*/
void
pmu_suspend(void)
{
unsigned long flags;
#ifdef SUSPEND_USES_PMU
struct adb_request *req;
#endif
if (!via)
return;
spin_lock_irqsave(&pmu_lock, flags);
pmu_suspended++;
if (pmu_suspended > 1) {
spin_unlock_irqrestore(&pmu_lock, flags);
return;
}
do {
spin_unlock_irqrestore(&pmu_lock, flags);
if (req_awaiting_reply)
adb_int_pending = 1;
via_pmu_interrupt(0, NULL, NULL);
spin_lock_irqsave(&pmu_lock, flags);
if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) {
#ifdef SUSPEND_USES_PMU
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
spin_unlock_irqrestore(&pmu_lock, flags);
while(!req.complete)
pmu_poll();
#else /* SUSPEND_USES_PMU */
if (gpio_irq >= 0)
disable_irq_nosync(gpio_irq);
out_8(&via[IER], CB1_INT | IER_CLR);
spin_unlock_irqrestore(&pmu_lock, flags);
#endif /* SUSPEND_USES_PMU */
break;
}
} while (1);
}
void
pmu_resume(void)
{
unsigned long flags;
if (!via || (pmu_suspended < 1))
return;
spin_lock_irqsave(&pmu_lock, flags);
pmu_suspended--;
if (pmu_suspended > 0) {
spin_unlock_irqrestore(&pmu_lock, flags);
return;
}
adb_int_pending = 1;
#ifdef SUSPEND_USES_PMU
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
spin_unlock_irqrestore(&pmu_lock, flags);
while(!req.complete)
pmu_poll();
#else /* SUSPEND_USES_PMU */
if (gpio_irq >= 0)
enable_irq(gpio_irq);
out_8(&via[IER], CB1_INT | IER_SET);
spin_unlock_irqrestore(&pmu_lock, flags);
pmu_poll();
#endif /* SUSPEND_USES_PMU */
}
/* Interrupt data could be the result data from an ADB cmd */
static void
pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs)
{
unsigned char ints, pirq;
int i = 0;
asleep = 0;
if (drop_interrupts || len < 1) {
adb_int_pending = 0;
pmu_irq_stats[8]++;
return;
}
/* Get PMU interrupt mask */
ints = data[0];
/* Record zero interrupts for stats */
if (ints == 0)
pmu_irq_stats[9]++;
/* Hack to deal with ADB autopoll flag */
if (ints & PMU_INT_ADB)
ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL);
next:
if (ints == 0) {
if (i > pmu_irq_stats[10])
pmu_irq_stats[10] = i;
return;
}
for (pirq = 0; pirq < 8; pirq++)
if (ints & (1 << pirq))
break;
pmu_irq_stats[pirq]++;
i++;
ints &= ~(1 << pirq);
/* Note: for some reason, we get an interrupt with len=1,
* data[0]==0 after each normal ADB interrupt, at least
* on the Pismo. Still investigating... --BenH
*/
if ((1 << pirq) & PMU_INT_ADB) {
if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
struct adb_request *req = req_awaiting_reply;
if (req == 0) {
printk(KERN_ERR "PMU: extra ADB reply\n");
return;
}
req_awaiting_reply = NULL;
if (len <= 2)
req->reply_len = 0;
else {
memcpy(req->reply, data + 1, len - 1);
req->reply_len = len - 1;
}
pmu_done(req);
} else {
if (len == 4 && data[1] == 0x2c) {
extern int xmon_wants_key, xmon_adb_keycode;
if (xmon_wants_key) {
xmon_adb_keycode = data[2];
return;
}
}
#ifdef CONFIG_ADB
/*
* XXX On the [23]400 the PMU gives us an up
* event for keycodes 0x74 or 0x75 when the PC
* card eject buttons are released, so we
* ignore those events.
*/
if (!(pmu_kind == PMU_OHARE_BASED && len == 4
&& data[1] == 0x2c && data[3] == 0xff
&& (data[2] & ~1) == 0xf4))
adb_input(data+1, len-1, regs, 1);
#endif /* CONFIG_ADB */
}
}
/* Sound/brightness button pressed */
else if ((1 << pirq) & PMU_INT_SNDBRT) {
#ifdef CONFIG_PMAC_BACKLIGHT
if (len == 3)
#ifdef CONFIG_INPUT_ADBHID
if (!disable_kernel_backlight)
#endif /* CONFIG_INPUT_ADBHID */
set_backlight_level(data[1] >> 4);
#endif /* CONFIG_PMAC_BACKLIGHT */
}
/* Tick interrupt */
else if ((1 << pirq) & PMU_INT_TICK) {
/* Environement or tick interrupt, query batteries */
if (pmu_battery_count) {
if ((--query_batt_timer) == 0) {
query_battery_state();
query_batt_timer = BATTERY_POLLING_COUNT;
}
}
}
else if ((1 << pirq) & PMU_INT_ENVIRONMENT) {
if (pmu_battery_count)
query_battery_state();
pmu_pass_intr(data, len);
} else {
pmu_pass_intr(data, len);
}
goto next;
}
static struct adb_request*
pmu_sr_intr(struct pt_regs *regs)
{
struct adb_request *req;
int bite = 0;
if (via[B] & TREQ) {
printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]);
out_8(&via[IFR], SR_INT);
return NULL;
}
/* The ack may not yet be low when we get the interrupt */
while ((in_8(&via[B]) & TACK) != 0)
;
/* if reading grab the byte, and reset the interrupt */
if (pmu_state == reading || pmu_state == reading_intr)
bite = in_8(&via[SR]);
/* reset TREQ and wait for TACK to go high */
out_8(&via[B], in_8(&via[B]) | TREQ);
wait_for_ack();
switch (pmu_state) {
case sending:
req = current_req;
if (data_len < 0) {
data_len = req->nbytes - 1;
send_byte(data_len);
break;
}
if (data_index <= data_len) {
send_byte(req->data[data_index++]);
break;
}
req->sent = 1;
data_len = pmu_data_len[req->data[0]][1];
if (data_len == 0) {
pmu_state = idle;
current_req = req->next;
if (req->reply_expected)
req_awaiting_reply = req;
else
return req;
} else {
pmu_state = reading;
data_index = 0;
reply_ptr = req->reply + req->reply_len;
recv_byte();
}
break;
case intack:
data_index = 0;
data_len = -1;
pmu_state = reading_intr;
reply_ptr = interrupt_data[int_data_last];
recv_byte();
if (gpio_irq >= 0 && !gpio_irq_enabled) {
enable_irq(gpio_irq);
gpio_irq_enabled = 1;
}
break;
case reading:
case reading_intr:
if (data_len == -1) {
data_len = bite;
if (bite > 32)
printk(KERN_ERR "PMU: bad reply len %d\n", bite);
} else if (data_index < 32) {
reply_ptr[data_index++] = bite;
}
if (data_index < data_len) {
recv_byte();
break;
}
if (pmu_state == reading_intr) {
pmu_state = idle;
int_data_state[int_data_last] = int_data_ready;
interrupt_data_len[int_data_last] = data_len;
} else {
req = current_req;
/*
* For PMU sleep and freq change requests, we lock the
* PMU until it's explicitely unlocked. This avoids any
* spurrious event polling getting in
*/
current_req = req->next;
req->reply_len += data_index;
if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED)
pmu_state = locked;
else
pmu_state = idle;
return req;
}
break;
default:
printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n",
pmu_state);
}
return NULL;
}
static irqreturn_t
via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
{
unsigned long flags;
int intr;
int nloop = 0;
int int_data = -1;
struct adb_request *req = NULL;
int handled = 0;
/* This is a bit brutal, we can probably do better */
spin_lock_irqsave(&pmu_lock, flags);
++disable_poll;
for (;;) {
intr = in_8(&via[IFR]) & (SR_INT | CB1_INT);
if (intr == 0)
break;
handled = 1;
if (++nloop > 1000) {
printk(KERN_DEBUG "PMU: stuck in intr loop, "
"intr=%x, ier=%x pmu_state=%d\n",
intr, in_8(&via[IER]), pmu_state);
break;
}
out_8(&via[IFR], intr);
if (intr & CB1_INT) {
adb_int_pending = 1;
pmu_irq_stats[0]++;
}
if (intr & SR_INT) {
req = pmu_sr_intr(regs);
if (req)
break;
}
}
recheck:
if (pmu_state == idle) {
if (adb_int_pending) {
if (int_data_state[0] == int_data_empty)
int_data_last = 0;
else if (int_data_state[1] == int_data_empty)
int_data_last = 1;
else
goto no_free_slot;
pmu_state = intack;
int_data_state[int_data_last] = int_data_fill;
/* Sounds safer to make sure ACK is high before writing.
* This helped kill a problem with ADB and some iBooks
*/
wait_for_ack();
send_byte(PMU_INT_ACK);
adb_int_pending = 0;
} else if (current_req)
pmu_start();
}
no_free_slot:
/* Mark the oldest buffer for flushing */
if (int_data_state[!int_data_last] == int_data_ready) {
int_data_state[!int_data_last] = int_data_flush;
int_data = !int_data_last;
} else if (int_data_state[int_data_last] == int_data_ready) {
int_data_state[int_data_last] = int_data_flush;
int_data = int_data_last;
}
--disable_poll;
spin_unlock_irqrestore(&pmu_lock, flags);
/* Deal with completed PMU requests outside of the lock */
if (req) {
pmu_done(req);
req = NULL;
}
/* Deal with interrupt datas outside of the lock */
if (int_data >= 0) {
pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data], regs);
spin_lock_irqsave(&pmu_lock, flags);
++disable_poll;
int_data_state[int_data] = int_data_empty;
int_data = -1;
goto recheck;
}
return IRQ_RETVAL(handled);
}
void
pmu_unlock(void)
{
unsigned long flags;
spin_lock_irqsave(&pmu_lock, flags);
if (pmu_state == locked)
pmu_state = idle;
adb_int_pending = 1;
spin_unlock_irqrestore(&pmu_lock, flags);
}
static irqreturn_t
gpio1_interrupt(int irq, void *arg, struct pt_regs *regs)
{
unsigned long flags;
if ((in_8(gpio_reg + 0x9) & 0x02) == 0) {
spin_lock_irqsave(&pmu_lock, flags);
if (gpio_irq_enabled > 0) {
disable_irq_nosync(gpio_irq);
gpio_irq_enabled = 0;
}
pmu_irq_stats[1]++;
adb_int_pending = 1;
spin_unlock_irqrestore(&pmu_lock, flags);
via_pmu_interrupt(0, NULL, NULL);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
#ifdef CONFIG_PMAC_BACKLIGHT
static int backlight_to_bright[] = {
0x7f, 0x46, 0x42, 0x3e, 0x3a, 0x36, 0x32, 0x2e,
0x2a, 0x26, 0x22, 0x1e, 0x1a, 0x16, 0x12, 0x0e
};
static int
pmu_set_backlight_enable(int on, int level, void* data)
{
struct adb_request req;
if (vias == NULL)
return -ENODEV;
if (on) {
pmu_request(&req, NULL, 2, PMU_BACKLIGHT_BRIGHT,
backlight_to_bright[level]);
pmu_wait_complete(&req);
}
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_BACKLIGHT | (on ? PMU_POW_ON : PMU_POW_OFF));
pmu_wait_complete(&req);
return 0;
}
static void
pmu_bright_complete(struct adb_request *req)
{
if (req == &bright_req_1)
clear_bit(1, &async_req_locks);
if (req == &bright_req_2)
clear_bit(2, &async_req_locks);
}
static int
pmu_set_backlight_level(int level, void* data)
{
if (vias == NULL)
return -ENODEV;
if (test_and_set_bit(1, &async_req_locks))
return -EAGAIN;
pmu_request(&bright_req_1, pmu_bright_complete, 2, PMU_BACKLIGHT_BRIGHT,
backlight_to_bright[level]);
if (test_and_set_bit(2, &async_req_locks))
return -EAGAIN;
pmu_request(&bright_req_2, pmu_bright_complete, 2, PMU_POWER_CTRL,
PMU_POW_BACKLIGHT | (level > BACKLIGHT_OFF ?
PMU_POW_ON : PMU_POW_OFF));
return 0;
}
#endif /* CONFIG_PMAC_BACKLIGHT */
void
pmu_enable_irled(int on)
{
struct adb_request req;
if (vias == NULL)
return ;
if (pmu_kind == PMU_KEYLARGO_BASED)
return ;
pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
(on ? PMU_POW_ON : PMU_POW_OFF));
pmu_wait_complete(&req);
}
void
pmu_restart(void)
{
struct adb_request req;
if (via == NULL)
return;
local_irq_disable();
drop_interrupts = 1;
if (pmu_kind != PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
PMU_INT_TICK );
while(!req.complete)
pmu_poll();
}
pmu_request(&req, NULL, 1, PMU_RESET);
pmu_wait_complete(&req);
for (;;)
;
}
void
pmu_shutdown(void)
{
struct adb_request req;
if (via == NULL)
return;
local_irq_disable();
drop_interrupts = 1;
if (pmu_kind != PMU_KEYLARGO_BASED) {
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
PMU_INT_TICK );
pmu_wait_complete(&req);
} else {
/* Disable server mode on shutdown or we'll just
* wake up again
*/
pmu_set_server_mode(0);
}
pmu_request(&req, NULL, 5, PMU_SHUTDOWN,
'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
for (;;)
;
}
int
pmu_present(void)
{
return via != 0;
}
#ifdef CONFIG_PM
static LIST_HEAD(sleep_notifiers);
int
pmu_register_sleep_notifier(struct pmu_sleep_notifier *n)
{
struct list_head *list;
struct pmu_sleep_notifier *notifier;
for (list = sleep_notifiers.next; list != &sleep_notifiers;
list = list->next) {
notifier = list_entry(list, struct pmu_sleep_notifier, list);
if (n->priority > notifier->priority)
break;
}
__list_add(&n->list, list->prev, list);
return 0;
}
EXPORT_SYMBOL(pmu_register_sleep_notifier);
int
pmu_unregister_sleep_notifier(struct pmu_sleep_notifier* n)
{
if (n->list.next == 0)
return -ENOENT;
list_del(&n->list);
n->list.next = NULL;
return 0;
}
EXPORT_SYMBOL(pmu_unregister_sleep_notifier);
#endif /* CONFIG_PM */
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
/* Sleep is broadcast last-to-first */
static int
broadcast_sleep(int when, int fallback)
{
int ret = PBOOK_SLEEP_OK;
struct list_head *list;
struct pmu_sleep_notifier *notifier;
for (list = sleep_notifiers.prev; list != &sleep_notifiers;
list = list->prev) {
notifier = list_entry(list, struct pmu_sleep_notifier, list);
ret = notifier->notifier_call(notifier, when);
if (ret != PBOOK_SLEEP_OK) {
printk(KERN_DEBUG "sleep %d rejected by %p (%p)\n",
when, notifier, notifier->notifier_call);
for (; list != &sleep_notifiers; list = list->next) {
notifier = list_entry(list, struct pmu_sleep_notifier, list);
notifier->notifier_call(notifier, fallback);
}
return ret;
}
}
return ret;
}
/* Wake is broadcast first-to-last */
static int
broadcast_wake(void)
{
int ret = PBOOK_SLEEP_OK;
struct list_head *list;
struct pmu_sleep_notifier *notifier;
for (list = sleep_notifiers.next; list != &sleep_notifiers;
list = list->next) {
notifier = list_entry(list, struct pmu_sleep_notifier, list);
notifier->notifier_call(notifier, PBOOK_WAKE);
}
return ret;
}
/*
* This struct is used to store config register values for
* PCI devices which may get powered off when we sleep.
*/
static struct pci_save {
#ifndef HACKED_PCI_SAVE
u16 command;
u16 cache_lat;
u16 intr;
u32 rom_address;
#else
u32 config[16];
#endif
} *pbook_pci_saves;
static int pbook_npci_saves;
static void
pbook_alloc_pci_save(void)
{
int npci;
struct pci_dev *pd = NULL;
npci = 0;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
++npci;
}
if (npci == 0)
return;
pbook_pci_saves = (struct pci_save *)
kmalloc(npci * sizeof(struct pci_save), GFP_KERNEL);
pbook_npci_saves = npci;
}
static void
pbook_free_pci_save(void)
{
if (pbook_pci_saves == NULL)
return;
kfree(pbook_pci_saves);
pbook_pci_saves = NULL;
pbook_npci_saves = 0;
}
static void
pbook_pci_save(void)
{
struct pci_save *ps = pbook_pci_saves;
struct pci_dev *pd = NULL;
int npci = pbook_npci_saves;
if (ps == NULL)
return;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
if (npci-- == 0)
return;
#ifndef HACKED_PCI_SAVE
pci_read_config_word(pd, PCI_COMMAND, &ps->command);
pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat);
pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr);
pci_read_config_dword(pd, PCI_ROM_ADDRESS, &ps->rom_address);
#else
int i;
for (i=1;i<16;i++)
pci_read_config_dword(pd, i<<4, &ps->config[i]);
#endif
++ps;
}
}
/* For this to work, we must take care of a few things: If gmac was enabled
* during boot, it will be in the pci dev list. If it's disabled at this point
* (and it will probably be), then you can't access it's config space.
*/
static void
pbook_pci_restore(void)
{
u16 cmd;
struct pci_save *ps = pbook_pci_saves - 1;
struct pci_dev *pd = NULL;
int npci = pbook_npci_saves;
int j;
while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
#ifdef HACKED_PCI_SAVE
int i;
if (npci-- == 0)
return;
ps++;
for (i=2;i<16;i++)
pci_write_config_dword(pd, i<<4, ps->config[i]);
pci_write_config_dword(pd, 4, ps->config[1]);
#else
if (npci-- == 0)
return;
ps++;
if (ps->command == 0)
continue;
pci_read_config_word(pd, PCI_COMMAND, &cmd);
if ((ps->command & ~cmd) == 0)
continue;
switch (pd->hdr_type) {
case PCI_HEADER_TYPE_NORMAL:
for (j = 0; j < 6; ++j)
pci_write_config_dword(pd,
PCI_BASE_ADDRESS_0 + j*4,
pd->resource[j].start);
pci_write_config_dword(pd, PCI_ROM_ADDRESS,
ps->rom_address);
pci_write_config_word(pd, PCI_CACHE_LINE_SIZE,
ps->cache_lat);
pci_write_config_word(pd, PCI_INTERRUPT_LINE,
ps->intr);
pci_write_config_word(pd, PCI_COMMAND, ps->command);
break;
}
#endif
}
}
#ifdef DEBUG_SLEEP
/* N.B. This doesn't work on the 3400 */
void
pmu_blink(int n)
{
struct adb_request req;
memset(&req, 0, sizeof(req));
for (; n > 0; --n) {
req.nbytes = 4;
req.done = NULL;
req.data[0] = 0xee;
req.data[1] = 4;
req.data[2] = 0;
req.data[3] = 1;
req.reply[0] = ADB_RET_OK;
req.reply_len = 1;
req.reply_expected = 0;
pmu_polled_request(&req);
mdelay(50);
req.nbytes = 4;
req.done = NULL;
req.data[0] = 0xee;
req.data[1] = 4;
req.data[2] = 0;
req.data[3] = 0;
req.reply[0] = ADB_RET_OK;
req.reply_len = 1;
req.reply_expected = 0;
pmu_polled_request(&req);
mdelay(50);
}
mdelay(50);
}
#endif
/*
* Put the powerbook to sleep.
*/
static u32 save_via[8];
static void
save_via_state(void)
{
save_via[0] = in_8(&via[ANH]);
save_via[1] = in_8(&via[DIRA]);
save_via[2] = in_8(&via[B]);
save_via[3] = in_8(&via[DIRB]);
save_via[4] = in_8(&via[PCR]);
save_via[5] = in_8(&via[ACR]);
save_via[6] = in_8(&via[T1CL]);
save_via[7] = in_8(&via[T1CH]);
}
static void
restore_via_state(void)
{
out_8(&via[ANH], save_via[0]);
out_8(&via[DIRA], save_via[1]);
out_8(&via[B], save_via[2]);
out_8(&via[DIRB], save_via[3]);
out_8(&via[PCR], save_via[4]);
out_8(&via[ACR], save_via[5]);
out_8(&via[T1CL], save_via[6]);
out_8(&via[T1CH], save_via[7]);
out_8(&via[IER], IER_CLR | 0x7f); /* disable all intrs */
out_8(&via[IFR], 0x7f); /* clear IFR */
out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
}
static int
pmac_suspend_devices(void)
{
int ret;
pm_prepare_console();
/* Notify old-style device drivers & userland */
ret = broadcast_sleep(PBOOK_SLEEP_REQUEST, PBOOK_SLEEP_REJECT);
if (ret != PBOOK_SLEEP_OK) {
printk(KERN_ERR "Sleep rejected by drivers\n");
return -EBUSY;
}
/* Sync the disks. */
/* XXX It would be nice to have some way to ensure that
* nobody is dirtying any new buffers while we wait. That
* could be achieved using the refrigerator for processes
* that swsusp uses
*/
sys_sync();
/* Sleep can fail now. May not be very robust but useful for debugging */
ret = broadcast_sleep(PBOOK_SLEEP_NOW, PBOOK_WAKE);
if (ret != PBOOK_SLEEP_OK) {
printk(KERN_ERR "Driver sleep failed\n");
return -EBUSY;
}
/* Send suspend call to devices, hold the device core's dpm_sem */
ret = device_suspend(PMSG_SUSPEND);
if (ret) {
broadcast_wake();
printk(KERN_ERR "Driver sleep failed\n");
return -EBUSY;
}
/* Call platform functions marked "on sleep" */
pmac_pfunc_i2c_suspend();
pmac_pfunc_base_suspend();
/* Stop preemption */
preempt_disable();
/* Make sure the decrementer won't interrupt us */
asm volatile("mtdec %0" : : "r" (0x7fffffff));
/* Make sure any pending DEC interrupt occurring while we did
* the above didn't re-enable the DEC */
mb();
asm volatile("mtdec %0" : : "r" (0x7fffffff));
/* We can now disable MSR_EE. This code of course works properly only
* on UP machines... For SMP, if we ever implement sleep, we'll have to
* stop the "other" CPUs way before we do all that stuff.
*/
local_irq_disable();
/* Broadcast power down irq
* This isn't that useful in most cases (only directly wired devices can
* use this but still... This will take care of sysdev's as well, so
* we exit from here with local irqs disabled and PIC off.
*/
ret = device_power_down(PMSG_SUSPEND);
if (ret) {
wakeup_decrementer();
local_irq_enable();
preempt_enable();
device_resume();
broadcast_wake();
printk(KERN_ERR "Driver powerdown failed\n");
return -EBUSY;
}
/* Wait for completion of async backlight requests */
while (!bright_req_1.complete || !bright_req_2.complete ||
!batt_req.complete)
pmu_poll();
/* Giveup the lazy FPU & vec so we don't have to back them
* up from the low level code
*/
enable_kernel_fp();
#ifdef CONFIG_ALTIVEC
if (cpu_has_feature(CPU_FTR_ALTIVEC))
enable_kernel_altivec();
#endif /* CONFIG_ALTIVEC */
return 0;
}
static int
pmac_wakeup_devices(void)
{
mdelay(100);
/* Power back up system devices (including the PIC) */
device_power_up();
/* Force a poll of ADB interrupts */
adb_int_pending = 1;
via_pmu_interrupt(0, NULL, NULL);
/* Restart jiffies & scheduling */
wakeup_decrementer();
/* Re-enable local CPU interrupts */
local_irq_enable();
mdelay(10);
preempt_enable();
/* Call platform functions marked "on wake" */
pmac_pfunc_base_resume();
pmac_pfunc_i2c_resume();
/* Resume devices */
device_resume();
/* Notify old style drivers */
broadcast_wake();
pm_restore_console();
return 0;
}
#define GRACKLE_PM (1<<7)
#define GRACKLE_DOZE (1<<5)
#define GRACKLE_NAP (1<<4)
#define GRACKLE_SLEEP (1<<3)
static int powerbook_sleep_grackle(void)
{
unsigned long save_l2cr;
unsigned short pmcr1;
struct adb_request req;
int ret;
struct pci_dev *grackle;
grackle = pci_find_slot(0, 0);
if (!grackle)
return -ENODEV;
ret = pmac_suspend_devices();
if (ret) {
printk(KERN_ERR "Sleep rejected by devices\n");
return ret;
}
/* Turn off various things. Darwin does some retry tests here... */
pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY);
pmu_wait_complete(&req);
/* For 750, save backside cache setting and disable it */
save_l2cr = _get_L2CR(); /* (returns -1 if not available) */
if (!__fake_sleep) {
/* Ask the PMU to put us to sleep */
pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
}
/* The VIA is supposed not to be restored correctly*/
save_via_state();
/* We shut down some HW */
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
pci_read_config_word(grackle, 0x70, &pmcr1);
/* Apparently, MacOS uses NAP mode for Grackle ??? */
pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP);
pmcr1 |= GRACKLE_PM|GRACKLE_NAP;
pci_write_config_word(grackle, 0x70, pmcr1);
/* Call low-level ASM sleep handler */
if (__fake_sleep)
mdelay(5000);
else
low_sleep_handler();
/* We're awake again, stop grackle PM */
pci_read_config_word(grackle, 0x70, &pmcr1);
pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP);
pci_write_config_word(grackle, 0x70, pmcr1);
/* Make sure the PMU is idle */
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
restore_via_state();
/* Restore L2 cache */
if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
_set_L2CR(save_l2cr);
/* Restore userland MMU context */
set_context(current->active_mm->context.id, current->active_mm->pgd);
/* Power things up */
pmu_unlock();
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL0,
PMU_POW0_ON|PMU_POW0_HARD_DRIVE);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY);
pmu_wait_complete(&req);
pmac_wakeup_devices();
return 0;
}
static int
powerbook_sleep_Core99(void)
{
unsigned long save_l2cr;
unsigned long save_l3cr;
struct adb_request req;
int ret;
if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) {
printk(KERN_ERR "Sleep mode not supported on this machine\n");
return -ENOSYS;
}
if (num_online_cpus() > 1 || cpu_is_offline(0))
return -EAGAIN;
ret = pmac_suspend_devices();
if (ret) {
printk(KERN_ERR "Sleep rejected by devices\n");
return ret;
}
/* Stop environment and ADB interrupts */
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
pmu_wait_complete(&req);
/* Tell PMU what events will wake us up */
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS,
0xff, 0xff);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS,
0, PMU_PWR_WAKEUP_KEY |
(option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0));
pmu_wait_complete(&req);
/* Save the state of the L2 and L3 caches */
save_l3cr = _get_L3CR(); /* (returns -1 if not available) */
save_l2cr = _get_L2CR(); /* (returns -1 if not available) */
if (!__fake_sleep) {
/* Ask the PMU to put us to sleep */
pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
pmu_wait_complete(&req);
}
/* The VIA is supposed not to be restored correctly*/
save_via_state();
/* Shut down various ASICs. There's a chance that we can no longer
* talk to the PMU after this, so I moved it to _after_ sending the
* sleep command to it. Still need to be checked.
*/
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);
/* Call low-level ASM sleep handler */
if (__fake_sleep)
mdelay(5000);
else
low_sleep_handler();
/* Restore Apple core ASICs state */
pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);
/* Restore VIA */
restore_via_state();
/* tweak LPJ before cpufreq is there */
loops_per_jiffy *= 2;
/* Restore video */
pmac_call_early_video_resume();
/* Restore L2 cache */
if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
_set_L2CR(save_l2cr);
/* Restore L3 cache */
if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0)
_set_L3CR(save_l3cr);
/* Restore userland MMU context */
set_context(current->active_mm->context.id, current->active_mm->pgd);
/* Tell PMU we are ready */
pmu_unlock();
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
pmu_wait_complete(&req);
pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
pmu_wait_complete(&req);
/* Restore LPJ, cpufreq will adjust the cpu frequency */
loops_per_jiffy /= 2;
pmac_wakeup_devices();
return 0;
}
#define PB3400_MEM_CTRL 0xf8000000
#define PB3400_MEM_CTRL_SLEEP 0x70
static int
powerbook_sleep_3400(void)
{
int ret, i, x;
unsigned int hid0;
unsigned long p;
struct adb_request sleep_req;
void __iomem *mem_ctrl;
unsigned int __iomem *mem_ctrl_sleep;
/* first map in the memory controller registers */
mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100);
if (mem_ctrl == NULL) {
printk("powerbook_sleep_3400: ioremap failed\n");
return -ENOMEM;
}
mem_ctrl_sleep = mem_ctrl + PB3400_MEM_CTRL_SLEEP;
/* Allocate room for PCI save */
pbook_alloc_pci_save();
ret = pmac_suspend_devices();
if (ret) {
pbook_free_pci_save();
printk(KERN_ERR "Sleep rejected by devices\n");
return ret;
}
/* Save the state of PCI config space for some slots */
pbook_pci_save();
/* Set the memory controller to keep the memory refreshed
while we're asleep */
for (i = 0x403f; i >= 0x4000; --i) {
out_be32(mem_ctrl_sleep, i);
do {
x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff;
} while (x == 0);
if (x >= 0x100)
break;
}
/* Ask the PMU to put us to sleep */
pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
while (!sleep_req.complete)
mb();
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
/* displacement-flush the L2 cache - necessary? */
for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000)
i = *(volatile int *)p;
asleep = 1;
/* Put the CPU into sleep mode */
hid0 = mfspr(SPRN_HID0);
hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
mtspr(SPRN_HID0, hid0);
mtmsr(mfmsr() | MSR_POW | MSR_EE);
udelay(10);
/* OK, we're awake again, start restoring things */
out_be32(mem_ctrl_sleep, 0x3f);
pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
pbook_pci_restore();
pmu_unlock();
/* wait for the PMU interrupt sequence to complete */
while (asleep)
mb();
pmac_wakeup_devices();
pbook_free_pci_save();
iounmap(mem_ctrl);
return 0;
}
#endif /* CONFIG_PM && CONFIG_PPC32 */
/*
* Support for /dev/pmu device
*/
#define RB_SIZE 0x10
struct pmu_private {
struct list_head list;
int rb_get;
int rb_put;
struct rb_entry {
unsigned short len;
unsigned char data[16];
} rb_buf[RB_SIZE];
wait_queue_head_t wait;
spinlock_t lock;
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
int backlight_locker;
#endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
};
static LIST_HEAD(all_pmu_pvt);
static DEFINE_SPINLOCK(all_pvt_lock);
static void
pmu_pass_intr(unsigned char *data, int len)
{
struct pmu_private *pp;
struct list_head *list;
int i;
unsigned long flags;
if (len > sizeof(pp->rb_buf[0].data))
len = sizeof(pp->rb_buf[0].data);
spin_lock_irqsave(&all_pvt_lock, flags);
for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) {
pp = list_entry(list, struct pmu_private, list);
spin_lock(&pp->lock);
i = pp->rb_put + 1;
if (i >= RB_SIZE)
i = 0;
if (i != pp->rb_get) {
struct rb_entry *rp = &pp->rb_buf[pp->rb_put];
rp->len = len;
memcpy(rp->data, data, len);
pp->rb_put = i;
wake_up_interruptible(&pp->wait);
}
spin_unlock(&pp->lock);
}
spin_unlock_irqrestore(&all_pvt_lock, flags);
}
static int
pmu_open(struct inode *inode, struct file *file)
{
struct pmu_private *pp;
unsigned long flags;
pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL);
if (pp == 0)
return -ENOMEM;
pp->rb_get = pp->rb_put = 0;
spin_lock_init(&pp->lock);
init_waitqueue_head(&pp->wait);
spin_lock_irqsave(&all_pvt_lock, flags);
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
pp->backlight_locker = 0;
#endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
list_add(&pp->list, &all_pmu_pvt);
spin_unlock_irqrestore(&all_pvt_lock, flags);
file->private_data = pp;
return 0;
}
static ssize_t
pmu_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct pmu_private *pp = file->private_data;
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int ret = 0;
if (count < 1 || pp == 0)
return -EINVAL;
if (!access_ok(VERIFY_WRITE, buf, count))
return -EFAULT;
spin_lock_irqsave(&pp->lock, flags);
add_wait_queue(&pp->wait, &wait);
current->state = TASK_INTERRUPTIBLE;
for (;;) {
ret = -EAGAIN;
if (pp->rb_get != pp->rb_put) {
int i = pp->rb_get;
struct rb_entry *rp = &pp->rb_buf[i];
ret = rp->len;
spin_unlock_irqrestore(&pp->lock, flags);
if (ret > count)
ret = count;
if (ret > 0 && copy_to_user(buf, rp->data, ret))
ret = -EFAULT;
if (++i >= RB_SIZE)
i = 0;
spin_lock_irqsave(&pp->lock, flags);
pp->rb_get = i;
}
if (ret >= 0)
break;
if (file->f_flags & O_NONBLOCK)
break;
ret = -ERESTARTSYS;
if (signal_pending(current))
break;
spin_unlock_irqrestore(&pp->lock, flags);
schedule();
spin_lock_irqsave(&pp->lock, flags);
}
current->state = TASK_RUNNING;
remove_wait_queue(&pp->wait, &wait);
spin_unlock_irqrestore(&pp->lock, flags);
return ret;
}
static ssize_t
pmu_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static unsigned int
pmu_fpoll(struct file *filp, poll_table *wait)
{
struct pmu_private *pp = filp->private_data;
unsigned int mask = 0;
unsigned long flags;
if (pp == 0)
return 0;
poll_wait(filp, &pp->wait, wait);
spin_lock_irqsave(&pp->lock, flags);
if (pp->rb_get != pp->rb_put)
mask |= POLLIN;
spin_unlock_irqrestore(&pp->lock, flags);
return mask;
}
static int
pmu_release(struct inode *inode, struct file *file)
{
struct pmu_private *pp = file->private_data;
unsigned long flags;
lock_kernel();
if (pp != 0) {
file->private_data = NULL;
spin_lock_irqsave(&all_pvt_lock, flags);
list_del(&pp->list);
spin_unlock_irqrestore(&all_pvt_lock, flags);
#if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
if (pp->backlight_locker) {
spin_lock_irqsave(&pmu_lock, flags);
disable_kernel_backlight--;
spin_unlock_irqrestore(&pmu_lock, flags);
}
#endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
kfree(pp);
}
unlock_kernel();
return 0;
}
static int
pmu_ioctl(struct inode * inode, struct file *filp,
u_int cmd, u_long arg)
{
__u32 __user *argp = (__u32 __user *)arg;
int error = -EINVAL;
switch (cmd) {
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
case PMU_IOC_SLEEP:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
if (sleep_in_progress)
return -EBUSY;
sleep_in_progress = 1;
switch (pmu_kind) {
case PMU_OHARE_BASED:
error = powerbook_sleep_3400();
break;
case PMU_HEATHROW_BASED:
case PMU_PADDINGTON_BASED:
error = powerbook_sleep_grackle();
break;
case PMU_KEYLARGO_BASED:
error = powerbook_sleep_Core99();
break;
default:
error = -ENOSYS;
}
sleep_in_progress = 0;
break;
case PMU_IOC_CAN_SLEEP:
if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0)
return put_user(0, argp);
else
return put_user(1, argp);
#endif /* CONFIG_PM && CONFIG_PPC32 */
#ifdef CONFIG_PMAC_BACKLIGHT
/* Backlight should have its own device or go via
* the fbdev
*/
case PMU_IOC_GET_BACKLIGHT:
if (sleep_in_progress)
return -EBUSY;
error = get_backlight_level();
if (error < 0)
return error;
return put_user(error, argp);
case PMU_IOC_SET_BACKLIGHT:
{
__u32 value;
if (sleep_in_progress)
return -EBUSY;
error = get_user(value, argp);
if (!error)
error = set_backlight_level(value);
break;
}
#ifdef CONFIG_INPUT_ADBHID
case PMU_IOC_GRAB_BACKLIGHT: {
struct pmu_private *pp = filp->private_data;
unsigned long flags;
if (pp->backlight_locker)
return 0;
pp->backlight_locker = 1;
spin_lock_irqsave(&pmu_lock, flags);
disable_kernel_backlight++;
spin_unlock_irqrestore(&pmu_lock, flags);
return 0;
}
#endif /* CONFIG_INPUT_ADBHID */
#endif /* CONFIG_PMAC_BACKLIGHT */
case PMU_IOC_GET_MODEL:
return put_user(pmu_kind, argp);
case PMU_IOC_HAS_ADB:
return put_user(pmu_has_adb, argp);
}
return error;
}
static struct file_operations pmu_device_fops = {
.read = pmu_read,
.write = pmu_write,
.poll = pmu_fpoll,
.ioctl = pmu_ioctl,
.open = pmu_open,
.release = pmu_release,
};
static struct miscdevice pmu_device = {
PMU_MINOR, "pmu", &pmu_device_fops
};
static int pmu_device_init(void)
{
if (!via)
return 0;
if (misc_register(&pmu_device) < 0)
printk(KERN_ERR "via-pmu: cannot register misc device.\n");
return 0;
}
device_initcall(pmu_device_init);
#ifdef DEBUG_SLEEP
static inline void
polled_handshake(volatile unsigned char __iomem *via)
{
via[B] &= ~TREQ; eieio();
while ((via[B] & TACK) != 0)
;
via[B] |= TREQ; eieio();
while ((via[B] & TACK) == 0)
;
}
static inline void
polled_send_byte(volatile unsigned char __iomem *via, int x)
{
via[ACR] |= SR_OUT | SR_EXT; eieio();
via[SR] = x; eieio();
polled_handshake(via);
}
static inline int
polled_recv_byte(volatile unsigned char __iomem *via)
{
int x;
via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio();
x = via[SR]; eieio();
polled_handshake(via);
x = via[SR]; eieio();
return x;
}
int
pmu_polled_request(struct adb_request *req)
{
unsigned long flags;
int i, l, c;
volatile unsigned char __iomem *v = via;
req->complete = 1;
c = req->data[0];
l = pmu_data_len[c][0];
if (l >= 0 && req->nbytes != l + 1)
return -EINVAL;
local_irq_save(flags);
while (pmu_state != idle)
pmu_poll();
while ((via[B] & TACK) == 0)
;
polled_send_byte(v, c);
if (l < 0) {
l = req->nbytes - 1;
polled_send_byte(v, l);
}
for (i = 1; i <= l; ++i)
polled_send_byte(v, req->data[i]);
l = pmu_data_len[c][1];
if (l < 0)
l = polled_recv_byte(v);
for (i = 0; i < l; ++i)
req->reply[i + req->reply_len] = polled_recv_byte(v);
if (req->done)
(*req->done)(req);
local_irq_restore(flags);
return 0;
}
#endif /* DEBUG_SLEEP */
/* FIXME: This is a temporary set of callbacks to enable us
* to do suspend-to-disk.
*/
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
static int pmu_sys_suspended = 0;
static int pmu_sys_suspend(struct sys_device *sysdev, pm_message_t state)
{
if (state.event != PM_EVENT_SUSPEND || pmu_sys_suspended)
return 0;
/* Suspend PMU event interrupts */
pmu_suspend();
pmu_sys_suspended = 1;
return 0;
}
static int pmu_sys_resume(struct sys_device *sysdev)
{
struct adb_request req;
if (!pmu_sys_suspended)
return 0;
/* Tell PMU we are ready */
pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
pmu_wait_complete(&req);
/* Resume PMU event interrupts */
pmu_resume();
pmu_sys_suspended = 0;
return 0;
}
#endif /* CONFIG_PM && CONFIG_PPC32 */
static struct sysdev_class pmu_sysclass = {
set_kset_name("pmu"),
};
static struct sys_device device_pmu = {
.id = 0,
.cls = &pmu_sysclass,
};
static struct sysdev_driver driver_pmu = {
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
.suspend = &pmu_sys_suspend,
.resume = &pmu_sys_resume,
#endif /* CONFIG_PM && CONFIG_PPC32 */
};
static int __init init_pmu_sysfs(void)
{
int rc;
rc = sysdev_class_register(&pmu_sysclass);
if (rc) {
printk(KERN_ERR "Failed registering PMU sys class\n");
return -ENODEV;
}
rc = sysdev_register(&device_pmu);
if (rc) {
printk(KERN_ERR "Failed registering PMU sys device\n");
return -ENODEV;
}
rc = sysdev_driver_register(&pmu_sysclass, &driver_pmu);
if (rc) {
printk(KERN_ERR "Failed registering PMU sys driver\n");
return -ENODEV;
}
return 0;
}
subsys_initcall(init_pmu_sysfs);
EXPORT_SYMBOL(pmu_request);
EXPORT_SYMBOL(pmu_queue_request);
EXPORT_SYMBOL(pmu_poll);
EXPORT_SYMBOL(pmu_poll_adb);
EXPORT_SYMBOL(pmu_wait_complete);
EXPORT_SYMBOL(pmu_suspend);
EXPORT_SYMBOL(pmu_resume);
EXPORT_SYMBOL(pmu_unlock);
#if defined(CONFIG_PM) && defined(CONFIG_PPC32)
EXPORT_SYMBOL(pmu_enable_irled);
EXPORT_SYMBOL(pmu_battery_count);
EXPORT_SYMBOL(pmu_batteries);
EXPORT_SYMBOL(pmu_power_flags);
#endif /* CONFIG_PM && CONFIG_PPC32 */