/*P:500 Just as userspace programs request kernel operations through a system
* call, the Guest requests Host operations through a "hypercall". You might
* notice this nomenclature doesn't really follow any logic, but the name has
* been around for long enough that we're stuck with it. As you'd expect, this
* code is basically a one big switch statement. :*/
/* Copyright (C) 2006 Rusty Russell IBM Corporation
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include "lg.h"
/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
* Or gets killed. Or, in the case of LHCALL_CRASH, both. */
static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
{
struct lguest *lg = cpu->lg;
switch (args->arg0) {
case LHCALL_FLUSH_ASYNC:
/* This call does nothing, except by breaking out of the Guest
* it makes us process all the asynchronous hypercalls. */
break;
case LHCALL_LGUEST_INIT:
/* You can't get here unless you're already initialized. Don't
* do that. */
kill_guest(lg, "already have lguest_data");
break;
case LHCALL_SHUTDOWN: {
/* Shutdown is such a trivial hypercall that we do it in four
* lines right here. */
char msg[128];
/* If the lgread fails, it will call kill_guest() itself; the
* kill_guest() with the message will be ignored. */
__lgread(lg, msg, args->arg1, sizeof(msg));
msg[sizeof(msg)-1] = '\0';
kill_guest(lg, "CRASH: %s", msg);
if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
lg->dead = ERR_PTR(-ERESTART);
break;
}
case LHCALL_FLUSH_TLB:
/* FLUSH_TLB comes in two flavors, depending on the
* argument: */
if (args->arg1)
guest_pagetable_clear_all(cpu);
else
guest_pagetable_flush_user(lg);
break;
/* All these calls simply pass the arguments through to the right
* routines. */
case LHCALL_NEW_PGTABLE:
guest_new_pagetable(cpu, args->arg1);
break;
case LHCALL_SET_STACK:
guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
break;
case LHCALL_SET_PTE:
guest_set_pte(lg, args->arg1, args->arg2, __pte(args->arg3));
break;
case LHCALL_SET_PMD:
guest_set_pmd(lg, args->arg1, args->arg2);
break;
case LHCALL_SET_CLOCKEVENT:
guest_set_clockevent(cpu, args->arg1);
break;
case LHCALL_TS:
/* This sets the TS flag, as we saw used in run_guest(). */
cpu->ts = args->arg1;
break;
case LHCALL_HALT:
/* Similarly, this sets the halted flag for run_guest(). */
cpu->halted = 1;
break;
case LHCALL_NOTIFY:
cpu->pending_notify = args->arg1;
break;
default:
/* It should be an architecture-specific hypercall. */
if (lguest_arch_do_hcall(cpu, args))
kill_guest(lg, "Bad hypercall %li\n", args->arg0);
}
}
/*:*/
/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
* Guest's "struct lguest_data" to see if any new ones are marked "ready".
*
* We are careful to do these in order: obviously we respect the order the
* Guest put them in the ring, but we also promise the Guest that they will
* happen before any normal hypercall (which is why we check this before
* checking for a normal hcall). */
static void do_async_hcalls(struct lg_cpu *cpu)
{
unsigned int i;
u8 st[LHCALL_RING_SIZE];
struct lguest *lg = cpu->lg;
/* For simplicity, we copy the entire call status array in at once. */
if (copy_from_user(&st, &lg->lguest_data->hcall_status, sizeof(st)))
return;
/* We process "struct lguest_data"s hcalls[] ring once. */
for (i = 0; i < ARRAY_SIZE(st); i++) {
struct hcall_args args;
/* We remember where we were up to from last time. This makes
* sure that the hypercalls are done in the order the Guest
* places them in the ring. */
unsigned int n = cpu->next_hcall;
/* 0xFF means there's no call here (yet). */
if (st[n] == 0xFF)
break;
/* OK, we have hypercall. Increment the "next_hcall" cursor,
* and wrap back to 0 if we reach the end. */
if (++cpu->next_hcall == LHCALL_RING_SIZE)
cpu->next_hcall = 0;
/* Copy the hypercall arguments into a local copy of
* the hcall_args struct. */
if (copy_from_user(&args, &lg->lguest_data->hcalls[n],
sizeof(struct hcall_args))) {
kill_guest(lg, "Fetching async hypercalls");
break;
}
/* Do the hypercall, same as a normal one. */
do_hcall(cpu, &args);
/* Mark the hypercall done. */
if (put_user(0xFF, &lg->lguest_data->hcall_status[n])) {
kill_guest(lg, "Writing result for async hypercall");
break;
}
/* Stop doing hypercalls if they want to notify the Launcher:
* it needs to service this first. */
if (cpu->pending_notify)
break;
}
}
/* Last of all, we look at what happens first of all. The very first time the
* Guest makes a hypercall, we end up here to set things up: */
static void initialize(struct lg_cpu *cpu)
{
struct lguest *lg = cpu->lg;
/* You can't do anything until you're initialized. The Guest knows the
* rules, so we're unforgiving here. */
if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
kill_guest(lg, "hypercall %li before INIT", cpu->hcall->arg0);
return;
}
if (lguest_arch_init_hypercalls(cpu))
kill_guest(lg, "bad guest page %p", lg->lguest_data);
/* The Guest tells us where we're not to deliver interrupts by putting
* the range of addresses into "struct lguest_data". */
if (get_user(lg->noirq_start, &lg->lguest_data->noirq_start)
|| get_user(lg->noirq_end, &lg->lguest_data->noirq_end))
kill_guest(lg, "bad guest page %p", lg->lguest_data);
/* We write the current time into the Guest's data page once so it can
* set its clock. */
write_timestamp(lg);
/* page_tables.c will also do some setup. */
page_table_guest_data_init(lg);
/* This is the one case where the above accesses might have been the
* first write to a Guest page. This may have caused a copy-on-write
* fault, but the old page might be (read-only) in the Guest
* pagetable. */
guest_pagetable_clear_all(cpu);
}
/*H:100
* Hypercalls
*
* Remember from the Guest, hypercalls come in two flavors: normal and
* asynchronous. This file handles both of types.
*/
void do_hypercalls(struct lg_cpu *cpu)
{
/* Not initialized yet? This hypercall must do it. */
if (unlikely(!cpu->lg->lguest_data)) {
/* Set up the "struct lguest_data" */
initialize(cpu);
/* Hcall is done. */
cpu->hcall = NULL;
return;
}
/* The Guest has initialized.
*
* Look in the hypercall ring for the async hypercalls: */
do_async_hcalls(cpu);
/* If we stopped reading the hypercall ring because the Guest did a
* NOTIFY to the Launcher, we want to return now. Otherwise we do
* the hypercall. */
if (!cpu->pending_notify) {
do_hcall(cpu, cpu->hcall);
/* Tricky point: we reset the hcall pointer to mark the
* hypercall as "done". We use the hcall pointer rather than
* the trap number to indicate a hypercall is pending.
* Normally it doesn't matter: the Guest will run again and
* update the trap number before we come back here.
*
* However, if we are signalled or the Guest sends I/O to the
* Launcher, the run_guest() loop will exit without running the
* Guest. When it comes back it would try to re-run the
* hypercall. */
cpu->hcall = NULL;
}
}
/* This routine supplies the Guest with time: it's used for wallclock time at
* initial boot and as a rough time source if the TSC isn't available. */
void write_timestamp(struct lguest *lg)
{
struct timespec now;
ktime_get_real_ts(&now);
if (copy_to_user(&lg->lguest_data->time, &now, sizeof(struct timespec)))
kill_guest(lg, "Writing timestamp");
}