summaryrefslogblamecommitdiff
path: root/drivers/kvm/svm.c
blob: 3bf25795b3ef070204064989af3fd605c43d727b (plain) (tree)
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
































































































































































































































































































                                                                              
                    
























































































                                                                             
                                          



















                                                                             
                    


                                                                 



                                                               
                                                          









































































































































































































































































































                                                                               
                    







































































































































































































































































































































































































                                                                                       
                         

                                                   
                    















































                                                                             
                    





















                                                                           
                         

                                                  
                     








































































































































































                                                                               



                                                          



                                                



                                                           





























                                                                       
                    








                                                                 
                    






















                                                  
                    



















                                                               
                    







































                                                                           
                    















































































































































                                                                               
                                                         








                                 
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <asm/desc.h>

#include "kvm_svm.h"
#include "x86_emulate.h"

MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1

#define DB_VECTOR 1
#define UD_VECTOR 6
#define GP_VECTOR 13

#define DR7_GD_MASK (1 << 13)
#define DR6_BD_MASK (1 << 13)
#define CR4_DE_MASK (1UL << 3)

#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3

#define KVM_EFER_LMA (1 << 10)
#define KVM_EFER_LME (1 << 8)

unsigned long iopm_base;
unsigned long msrpm_base;

struct kvm_ldttss_desc {
	u16 limit0;
	u16 base0;
	unsigned base1 : 8, type : 5, dpl : 2, p : 1;
	unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
	u32 base3;
	u32 zero1;
} __attribute__((packed));

struct svm_cpu_data {
	int cpu;

	uint64_t asid_generation;
	uint32_t max_asid;
	uint32_t next_asid;
	struct kvm_ldttss_desc *tss_desc;

	struct page *save_area;
};

static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);

struct svm_init_data {
	int cpu;
	int r;
};

static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};

#define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges))
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)

#define MAX_INST_SIZE 15

static unsigned get_addr_size(struct kvm_vcpu *vcpu)
{
	struct vmcb_save_area *sa = &vcpu->svm->vmcb->save;
	u16 cs_attrib;

	if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM))
		return 2;

	cs_attrib = sa->cs.attrib;

	return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 :
				(cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2;
}

static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
	int word_index = __ffs(vcpu->irq_summary);
	int bit_index = __ffs(vcpu->irq_pending[word_index]);
	int irq = word_index * BITS_PER_LONG + bit_index;

	clear_bit(bit_index, &vcpu->irq_pending[word_index]);
	if (!vcpu->irq_pending[word_index])
		clear_bit(word_index, &vcpu->irq_summary);
	return irq;
}

static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
	set_bit(irq, vcpu->irq_pending);
	set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
}

static inline void clgi(void)
{
	asm volatile (SVM_CLGI);
}

static inline void stgi(void)
{
	asm volatile (SVM_STGI);
}

static inline void invlpga(unsigned long addr, u32 asid)
{
	asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
}

static inline unsigned long kvm_read_cr2(void)
{
	unsigned long cr2;

	asm volatile ("mov %%cr2, %0" : "=r" (cr2));
	return cr2;
}

static inline void kvm_write_cr2(unsigned long val)
{
	asm volatile ("mov %0, %%cr2" :: "r" (val));
}

static inline unsigned long read_dr6(void)
{
	unsigned long dr6;

	asm volatile ("mov %%dr6, %0" : "=r" (dr6));
	return dr6;
}

static inline void write_dr6(unsigned long val)
{
	asm volatile ("mov %0, %%dr6" :: "r" (val));
}

static inline unsigned long read_dr7(void)
{
	unsigned long dr7;

	asm volatile ("mov %%dr7, %0" : "=r" (dr7));
	return dr7;
}

static inline void write_dr7(unsigned long val)
{
	asm volatile ("mov %0, %%dr7" :: "r" (val));
}

static inline int svm_is_long_mode(struct kvm_vcpu *vcpu)
{
	return vcpu->svm->vmcb->save.efer & KVM_EFER_LMA;
}

static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
	vcpu->svm->asid_generation--;
}

static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
	force_new_asid(vcpu);
}

static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
	if (!(efer & KVM_EFER_LMA))
		efer &= ~KVM_EFER_LME;

	vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
	vcpu->shadow_efer = efer;
}

static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
{
	vcpu->svm->vmcb->control.event_inj = 	SVM_EVTINJ_VALID |
						SVM_EVTINJ_VALID_ERR |
						SVM_EVTINJ_TYPE_EXEPT |
						GP_VECTOR;
	vcpu->svm->vmcb->control.event_inj_err = error_code;
}

static void inject_ud(struct kvm_vcpu *vcpu)
{
	vcpu->svm->vmcb->control.event_inj = 	SVM_EVTINJ_VALID |
						SVM_EVTINJ_TYPE_EXEPT |
						UD_VECTOR;
}

static void inject_db(struct kvm_vcpu *vcpu)
{
	vcpu->svm->vmcb->control.event_inj = 	SVM_EVTINJ_VALID |
						SVM_EVTINJ_TYPE_EXEPT |
						DB_VECTOR;
}

static int is_page_fault(uint32_t info)
{
	info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
	return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT);
}

static int is_external_interrupt(u32 info)
{
	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}

static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
	if (!vcpu->svm->next_rip) {
		printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
		return;
	}
	if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) {
		printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
		       __FUNCTION__,
		       vcpu->svm->vmcb->save.rip,
		       vcpu->svm->next_rip);
	}

	vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip;
	vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
}

static int has_svm(void)
{
	uint32_t eax, ebx, ecx, edx;

	if (current_cpu_data.x86_vendor != X86_VENDOR_AMD) {
		printk(KERN_INFO "has_svm: not amd\n");
		return 0;
	}

	cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
	if (eax < SVM_CPUID_FUNC) {
		printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
		return 0;
	}

	cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
	if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
		printk(KERN_DEBUG "has_svm: svm not available\n");
		return 0;
	}
	return 1;
}

static void svm_hardware_disable(void *garbage)
{
	struct svm_cpu_data *svm_data
		= per_cpu(svm_data, raw_smp_processor_id());

	if (svm_data) {
		uint64_t efer;

		wrmsrl(MSR_VM_HSAVE_PA, 0);
		rdmsrl(MSR_EFER, efer);
		wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
		per_cpu(svm_data, raw_smp_processor_id()) = 0;
		__free_page(svm_data->save_area);
		kfree(svm_data);
	}
}

static void svm_hardware_enable(void *garbage)
{

	struct svm_cpu_data *svm_data;
	uint64_t efer;
#ifdef CONFIG_X86_64
	struct desc_ptr gdt_descr;
#else
	struct Xgt_desc_struct gdt_descr;
#endif
	struct desc_struct *gdt;
	int me = raw_smp_processor_id();

	if (!has_svm()) {
		printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
		return;
	}
	svm_data = per_cpu(svm_data, me);

	if (!svm_data) {
		printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
		       me);
		return;
	}

	svm_data->asid_generation = 1;
	svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
	svm_data->next_asid = svm_data->max_asid + 1;

	asm volatile ( "sgdt %0" : "=m"(gdt_descr) );
	gdt = (struct desc_struct *)gdt_descr.address;
	svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);

	rdmsrl(MSR_EFER, efer);
	wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);

	wrmsrl(MSR_VM_HSAVE_PA,
	       page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
}

static int svm_cpu_init(int cpu)
{
	struct svm_cpu_data *svm_data;
	int r;

	svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
	if (!svm_data)
		return -ENOMEM;
	svm_data->cpu = cpu;
	svm_data->save_area = alloc_page(GFP_KERNEL);
	r = -ENOMEM;
	if (!svm_data->save_area)
		goto err_1;

	per_cpu(svm_data, cpu) = svm_data;

	return 0;

err_1:
	kfree(svm_data);
	return r;

}

static int set_msr_interception(u32 *msrpm, unsigned msr,
				int read, int write)
{
	int i;

	for (i = 0; i < NUM_MSR_MAPS; i++) {
		if (msr >= msrpm_ranges[i] &&
		    msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
			u32 msr_offset = (i * MSRS_IN_RANGE + msr -
					  msrpm_ranges[i]) * 2;

			u32 *base = msrpm + (msr_offset / 32);
			u32 msr_shift = msr_offset % 32;
			u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
			*base = (*base & ~(0x3 << msr_shift)) |
				(mask << msr_shift);
			return 1;
		}
	}
	printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr);
	return 0;
}

static __init int svm_hardware_setup(void)
{
	int cpu;
	struct page *iopm_pages;
	struct page *msrpm_pages;
	void *msrpm_va;
	int r;

	kvm_emulator_want_group7_invlpg();

	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);

	if (!iopm_pages)
		return -ENOMEM;
	memset(page_address(iopm_pages), 0xff,
					PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;


	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);

	r = -ENOMEM;
	if (!msrpm_pages)
		goto err_1;

	msrpm_va = page_address(msrpm_pages);
	memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
	msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;

#ifdef CONFIG_X86_64
	set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
	set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
	set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
	set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
	set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
	set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
#endif
	set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
	set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
	set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
	set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);

	for_each_online_cpu(cpu) {
		r = svm_cpu_init(cpu);
		if (r)
			goto err_2;
	}
	return 0;

err_2:
	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
	msrpm_base = 0;
err_1:
	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
	iopm_base = 0;
	return r;
}

static __exit void svm_hardware_unsetup(void)
{
	__free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
	iopm_base = msrpm_base = 0;
}

static void init_seg(struct vmcb_seg *seg)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
		SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
	seg->limit = 0xffff;
	seg->base = 0;
}

static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
	seg->selector = 0;
	seg->attrib = SVM_SELECTOR_P_MASK | type;
	seg->limit = 0xffff;
	seg->base = 0;
}

static int svm_vcpu_setup(struct kvm_vcpu *vcpu)
{
	return 0;
}

static void init_vmcb(struct vmcb *vmcb)
{
	struct vmcb_control_area *control = &vmcb->control;
	struct vmcb_save_area *save = &vmcb->save;
	u64 tsc;

	control->intercept_cr_read = 	INTERCEPT_CR0_MASK |
					INTERCEPT_CR3_MASK |
					INTERCEPT_CR4_MASK;

	control->intercept_cr_write = 	INTERCEPT_CR0_MASK |
					INTERCEPT_CR3_MASK |
					INTERCEPT_CR4_MASK;

	control->intercept_dr_read = 	INTERCEPT_DR0_MASK |
					INTERCEPT_DR1_MASK |
					INTERCEPT_DR2_MASK |
					INTERCEPT_DR3_MASK;

	control->intercept_dr_write = 	INTERCEPT_DR0_MASK |
					INTERCEPT_DR1_MASK |
					INTERCEPT_DR2_MASK |
					INTERCEPT_DR3_MASK |
					INTERCEPT_DR5_MASK |
					INTERCEPT_DR7_MASK;

	control->intercept_exceptions = 1 << PF_VECTOR;


	control->intercept = 	(1ULL << INTERCEPT_INTR) |
				(1ULL << INTERCEPT_NMI) |
		/*
		 * selective cr0 intercept bug?
		 *    	0:   0f 22 d8                mov    %eax,%cr3
		 *	3:   0f 20 c0                mov    %cr0,%eax
		 *	6:   0d 00 00 00 80          or     $0x80000000,%eax
		 *	b:   0f 22 c0                mov    %eax,%cr0
		 * set cr3 ->interception
		 * get cr0 ->interception
		 * set cr0 -> no interception
		 */
		/*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
				(1ULL << INTERCEPT_CPUID) |
				(1ULL << INTERCEPT_HLT) |
				(1ULL << INTERCEPT_INVLPG) |
				(1ULL << INTERCEPT_INVLPGA) |
				(1ULL << INTERCEPT_IOIO_PROT) |
				(1ULL << INTERCEPT_MSR_PROT) |
				(1ULL << INTERCEPT_TASK_SWITCH) |
				(1ULL << INTERCEPT_VMRUN) |
				(1ULL << INTERCEPT_VMMCALL) |
				(1ULL << INTERCEPT_VMLOAD) |
				(1ULL << INTERCEPT_VMSAVE) |
				(1ULL << INTERCEPT_STGI) |
				(1ULL << INTERCEPT_CLGI) |
				(1ULL << INTERCEPT_SKINIT);

	control->iopm_base_pa = iopm_base;
	control->msrpm_base_pa = msrpm_base;
	rdtscll(tsc);
	control->tsc_offset = -tsc;
	control->int_ctl = V_INTR_MASKING_MASK;

	init_seg(&save->es);
	init_seg(&save->ss);
	init_seg(&save->ds);
	init_seg(&save->fs);
	init_seg(&save->gs);

	save->cs.selector = 0xf000;
	/* Executable/Readable Code Segment */
	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
	save->cs.limit = 0xffff;
	save->cs.base = 0xffff0000;

	save->gdtr.limit = 0xffff;
	save->idtr.limit = 0xffff;

	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);

	save->efer = MSR_EFER_SVME_MASK;

        save->dr6 = 0xffff0ff0;
	save->dr7 = 0x400;
	save->rflags = 2;
	save->rip = 0x0000fff0;

	/*
	 * cr0 val on cpu init should be 0x60000010, we enable cpu
	 * cache by default. the orderly way is to enable cache in bios.
	 */
	save->cr0 = 0x00000010 | CR0_PG_MASK;
	save->cr4 = CR4_PAE_MASK;
	/* rdx = ?? */
}

static int svm_create_vcpu(struct kvm_vcpu *vcpu)
{
	struct page *page;
	int r;

	r = -ENOMEM;
	vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL);
	if (!vcpu->svm)
		goto out1;
	page = alloc_page(GFP_KERNEL);
	if (!page)
		goto out2;

	vcpu->svm->vmcb = page_address(page);
	memset(vcpu->svm->vmcb, 0, PAGE_SIZE);
	vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
	vcpu->svm->cr0 = 0x00000010;
	vcpu->svm->asid_generation = 0;
	memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs));
	init_vmcb(vcpu->svm->vmcb);

	return 0;

out2:
	kfree(vcpu->svm);
out1:
	return r;
}

static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
	if (!vcpu->svm)
		return;
	if (vcpu->svm->vmcb)
		__free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT));
	kfree(vcpu->svm);
}

static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu)
{
	get_cpu();
	return vcpu;
}

static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
	put_cpu();
}

static void svm_cache_regs(struct kvm_vcpu *vcpu)
{
	vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax;
	vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp;
	vcpu->rip = vcpu->svm->vmcb->save.rip;
}

static void svm_decache_regs(struct kvm_vcpu *vcpu)
{
	vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
	vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
	vcpu->svm->vmcb->save.rip = vcpu->rip;
}

static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
	return vcpu->svm->vmcb->save.rflags;
}

static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
	vcpu->svm->vmcb->save.rflags = rflags;
}

static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_save_area *save = &vcpu->svm->vmcb->save;

	switch (seg) {
	case VCPU_SREG_CS: return &save->cs;
	case VCPU_SREG_DS: return &save->ds;
	case VCPU_SREG_ES: return &save->es;
	case VCPU_SREG_FS: return &save->fs;
	case VCPU_SREG_GS: return &save->gs;
	case VCPU_SREG_SS: return &save->ss;
	case VCPU_SREG_TR: return &save->tr;
	case VCPU_SREG_LDTR: return &save->ldtr;
	}
	BUG();
	return 0;
}

static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	return s->base;
}

static void svm_get_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	var->base = s->base;
	var->limit = s->limit;
	var->selector = s->selector;
	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
	var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
	var->unusable = !var->present;
}

static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
{
	struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS);

	*db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
	*l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
}

static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
	dt->limit = vcpu->svm->vmcb->save.ldtr.limit;
	dt->base = vcpu->svm->vmcb->save.ldtr.base;
}

static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
	vcpu->svm->vmcb->save.ldtr.limit = dt->limit;
	vcpu->svm->vmcb->save.ldtr.base = dt->base ;
}

static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
	dt->limit = vcpu->svm->vmcb->save.gdtr.limit;
	dt->base = vcpu->svm->vmcb->save.gdtr.base;
}

static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
	vcpu->svm->vmcb->save.gdtr.limit = dt->limit;
	vcpu->svm->vmcb->save.gdtr.base = dt->base ;
}

static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
#ifdef CONFIG_X86_64
	if (vcpu->shadow_efer & KVM_EFER_LME) {
		if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
			vcpu->shadow_efer |= KVM_EFER_LMA;
			vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME;
		}

		if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) {
			vcpu->shadow_efer &= ~KVM_EFER_LMA;
			vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME);
		}
	}
#endif
	vcpu->svm->cr0 = cr0;
	vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK;
	vcpu->cr0 = cr0;
}

static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
       vcpu->cr4 = cr4;
       vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK;
}

static void svm_set_segment(struct kvm_vcpu *vcpu,
			    struct kvm_segment *var, int seg)
{
	struct vmcb_seg *s = svm_seg(vcpu, seg);

	s->base = var->base;
	s->limit = var->limit;
	s->selector = var->selector;
	if (var->unusable)
		s->attrib = 0;
	else {
		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
	}
	if (seg == VCPU_SREG_CS)
		vcpu->svm->vmcb->save.cpl
			= (vcpu->svm->vmcb->save.cs.attrib
			   >> SVM_SELECTOR_DPL_SHIFT) & 3;

}

/* FIXME:

	vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
	vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);

*/

static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
	return -EOPNOTSUPP;
}

static void load_host_msrs(struct kvm_vcpu *vcpu)
{
	int i;

	for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
		wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}

static void save_host_msrs(struct kvm_vcpu *vcpu)
{
	int i;

	for ( i = 0; i < NR_HOST_SAVE_MSRS; i++)
		rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]);
}

static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data)
{
	if (svm_data->next_asid > svm_data->max_asid) {
		++svm_data->asid_generation;
		svm_data->next_asid = 1;
		vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
	}

	vcpu->cpu = svm_data->cpu;
	vcpu->svm->asid_generation = svm_data->asid_generation;
	vcpu->svm->vmcb->control.asid = svm_data->next_asid++;
}

static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
	invlpga(address, vcpu->svm->vmcb->control.asid); // is needed?
}

static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
	return vcpu->svm->db_regs[dr];
}

static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
		       int *exception)
{
	*exception = 0;

	if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) {
		vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
		vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK;
		*exception = DB_VECTOR;
		return;
	}

	switch (dr) {
	case 0 ... 3:
		vcpu->svm->db_regs[dr] = value;
		return;
	case 4 ... 5:
		if (vcpu->cr4 & CR4_DE_MASK) {
			*exception = UD_VECTOR;
			return;
		}
	case 7: {
		if (value & ~((1ULL << 32) - 1)) {
			*exception = GP_VECTOR;
			return;
		}
		vcpu->svm->vmcb->save.dr7 = value;
		return;
	}
	default:
		printk(KERN_DEBUG "%s: unexpected dr %u\n",
		       __FUNCTION__, dr);
		*exception = UD_VECTOR;
		return;
	}
}

static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info;
	u64 fault_address;
	u32 error_code;
	enum emulation_result er;

	if (is_external_interrupt(exit_int_info))
		push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);

	spin_lock(&vcpu->kvm->lock);

	fault_address  = vcpu->svm->vmcb->control.exit_info_2;
	error_code = vcpu->svm->vmcb->control.exit_info_1;
	if (!vcpu->mmu.page_fault(vcpu, fault_address, error_code)) {
		spin_unlock(&vcpu->kvm->lock);
		return 1;
	}
	er = emulate_instruction(vcpu, kvm_run, fault_address, error_code);
	spin_unlock(&vcpu->kvm->lock);

	switch (er) {
	case EMULATE_DONE:
		return 1;
	case EMULATE_DO_MMIO:
		++kvm_stat.mmio_exits;
		kvm_run->exit_reason = KVM_EXIT_MMIO;
		return 0;
	case EMULATE_FAIL:
		vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
		break;
	default:
		BUG();
	}

	kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
	return 0;
}

static int io_get_override(struct kvm_vcpu *vcpu,
			  struct vmcb_seg **seg,
			  int *addr_override)
{
	u8 inst[MAX_INST_SIZE];
	unsigned ins_length;
	gva_t rip;
	int i;

	rip =  vcpu->svm->vmcb->save.rip;
	ins_length = vcpu->svm->next_rip - rip;
	rip += vcpu->svm->vmcb->save.cs.base;

	if (ins_length > MAX_INST_SIZE)
		printk(KERN_DEBUG
		       "%s: inst length err, cs base 0x%llx rip 0x%llx "
		       "next rip 0x%llx ins_length %u\n",
		       __FUNCTION__,
		       vcpu->svm->vmcb->save.cs.base,
		       vcpu->svm->vmcb->save.rip,
		       vcpu->svm->vmcb->control.exit_info_2,
		       ins_length);

	if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length)
		/* #PF */
		return 0;

	*addr_override = 0;
	*seg = 0;
	for (i = 0; i < ins_length; i++)
		switch (inst[i]) {
		case 0xf0:
		case 0xf2:
		case 0xf3:
		case 0x66:
			continue;
		case 0x67:
			*addr_override = 1;
			continue;
		case 0x2e:
			*seg = &vcpu->svm->vmcb->save.cs;
			continue;
		case 0x36:
			*seg = &vcpu->svm->vmcb->save.ss;
			continue;
		case 0x3e:
			*seg = &vcpu->svm->vmcb->save.ds;
			continue;
		case 0x26:
			*seg = &vcpu->svm->vmcb->save.es;
			continue;
		case 0x64:
			*seg = &vcpu->svm->vmcb->save.fs;
			continue;
		case 0x65:
			*seg = &vcpu->svm->vmcb->save.gs;
			continue;
		default:
			return 1;
		}
	printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__);
	return 0;
}

static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address)
{
	unsigned long addr_mask;
	unsigned long *reg;
	struct vmcb_seg *seg;
	int addr_override;
	struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save;
	u16 cs_attrib = save_area->cs.attrib;
	unsigned addr_size = get_addr_size(vcpu);

	if (!io_get_override(vcpu, &seg, &addr_override))
		return 0;

	if (addr_override)
		addr_size = (addr_size == 2) ? 4: (addr_size >> 1);

	if (ins) {
		reg = &vcpu->regs[VCPU_REGS_RDI];
		seg = &vcpu->svm->vmcb->save.es;
	} else {
		reg = &vcpu->regs[VCPU_REGS_RSI];
		seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds;
	}

	addr_mask = ~0ULL >> (64 - (addr_size * 8));

	if ((cs_attrib & SVM_SELECTOR_L_MASK) &&
	    !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) {
		*address = (*reg & addr_mask);
		return addr_mask;
	}

	if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) {
		svm_inject_gp(vcpu, 0);
		return 0;
	}

	*address = (*reg & addr_mask) + seg->base;
	return addr_mask;
}

static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug?
	int _in = io_info & SVM_IOIO_TYPE_MASK;

	++kvm_stat.io_exits;

	vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2;

	kvm_run->exit_reason = KVM_EXIT_IO;
	kvm_run->io.port = io_info >> 16;
	kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
	kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT);
	kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0;
	kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0;

	if (kvm_run->io.string) {
		unsigned addr_mask;

		addr_mask = io_adress(vcpu, _in, &kvm_run->io.address);
		if (!addr_mask) {
			printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__);
			return 1;
		}

		if (kvm_run->io.rep) {
			kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask;
			kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags
						   & X86_EFLAGS_DF) != 0;
		}
	} else {
		kvm_run->io.value = vcpu->svm->vmcb->save.rax;
	}
	return 0;
}


static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	return 1;
}

static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1;
	skip_emulated_instruction(vcpu);
	if (vcpu->irq_summary && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF))
		return 1;

	kvm_run->exit_reason = KVM_EXIT_HLT;
	return 0;
}

static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	inject_ud(vcpu);
	return 1;
}

static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__);
	kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
	return 0;
}

static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
	kvm_run->exit_reason = KVM_EXIT_CPUID;
	return 0;
}

static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	if (emulate_instruction(vcpu, 0, 0, 0) != EMULATE_DONE)
		printk(KERN_ERR "%s: failed\n", __FUNCTION__);
	return 1;
}

static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
	switch (ecx) {
	case MSR_IA32_MC0_CTL:
	case MSR_IA32_MCG_STATUS:
	case MSR_IA32_MCG_CAP:
	case MSR_IA32_MC0_MISC:
	case MSR_IA32_MC0_MISC+4:
	case MSR_IA32_MC0_MISC+8:
	case MSR_IA32_MC0_MISC+12:
	case MSR_IA32_MC0_MISC+16:
	case MSR_IA32_UCODE_REV:
		/* MTRR registers */
	case 0xfe:
	case 0x200 ... 0x2ff:
		*data = 0;
		break;
	case MSR_IA32_TIME_STAMP_COUNTER: {
		u64 tsc;

		rdtscll(tsc);
		*data = vcpu->svm->vmcb->control.tsc_offset + tsc;
		break;
	}
	case MSR_EFER:
		*data = vcpu->shadow_efer;
		break;
	case MSR_IA32_APICBASE:
		*data = vcpu->apic_base;
		break;
	case MSR_K6_STAR:
		*data = vcpu->svm->vmcb->save.star;
		break;
#ifdef CONFIG_X86_64
	case MSR_LSTAR:
		*data = vcpu->svm->vmcb->save.lstar;
		break;
	case MSR_CSTAR:
		*data = vcpu->svm->vmcb->save.cstar;
		break;
	case MSR_KERNEL_GS_BASE:
		*data = vcpu->svm->vmcb->save.kernel_gs_base;
		break;
	case MSR_SYSCALL_MASK:
		*data = vcpu->svm->vmcb->save.sfmask;
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
		*data = vcpu->svm->vmcb->save.sysenter_cs;
		break;
	case MSR_IA32_SYSENTER_EIP:
		*data = vcpu->svm->vmcb->save.sysenter_eip;
		break;
	case MSR_IA32_SYSENTER_ESP:
		*data = vcpu->svm->vmcb->save.sysenter_esp;
		break;
	default:
		printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", ecx);
		return 1;
	}
	return 0;
}

static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u32 ecx = vcpu->regs[VCPU_REGS_RCX];
	u64 data;

	if (svm_get_msr(vcpu, ecx, &data))
		svm_inject_gp(vcpu, 0);
	else {
		vcpu->svm->vmcb->save.rax = data & 0xffffffff;
		vcpu->regs[VCPU_REGS_RDX] = data >> 32;
		vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
		skip_emulated_instruction(vcpu);
	}
	return 1;
}

static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
	switch (ecx) {
#ifdef CONFIG_X86_64
	case MSR_EFER:
		set_efer(vcpu, data);
		break;
#endif
	case MSR_IA32_MC0_STATUS:
		printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n"
			    , __FUNCTION__, data);
		break;
	case MSR_IA32_TIME_STAMP_COUNTER: {
		u64 tsc;

		rdtscll(tsc);
		vcpu->svm->vmcb->control.tsc_offset = data - tsc;
		break;
	}
	case MSR_IA32_UCODE_REV:
	case MSR_IA32_UCODE_WRITE:
	case 0x200 ... 0x2ff: /* MTRRs */
		break;
	case MSR_IA32_APICBASE:
		vcpu->apic_base = data;
		break;
	case MSR_K6_STAR:
		vcpu->svm->vmcb->save.star = data;
		break;
#ifdef CONFIG_X86_64_
	case MSR_LSTAR:
		vcpu->svm->vmcb->save.lstar = data;
		break;
	case MSR_CSTAR:
		vcpu->svm->vmcb->save.cstar = data;
		break;
	case MSR_KERNEL_GS_BASE:
		vcpu->svm->vmcb->save.kernel_gs_base = data;
		break;
	case MSR_SYSCALL_MASK:
		vcpu->svm->vmcb->save.sfmask = data;
		break;
#endif
	case MSR_IA32_SYSENTER_CS:
		vcpu->svm->vmcb->save.sysenter_cs = data;
		break;
	case MSR_IA32_SYSENTER_EIP:
		vcpu->svm->vmcb->save.sysenter_eip = data;
		break;
	case MSR_IA32_SYSENTER_ESP:
		vcpu->svm->vmcb->save.sysenter_esp = data;
		break;
	default:
		printk(KERN_ERR "kvm: unhandled wrmsr: %x\n", ecx);
		return 1;
	}
	return 0;
}

static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u32 ecx = vcpu->regs[VCPU_REGS_RCX];
	u64 data = (vcpu->svm->vmcb->save.rax & -1u)
		| ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
	vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2;
	if (svm_set_msr(vcpu, ecx, data))
		svm_inject_gp(vcpu, 0);
	else
		skip_emulated_instruction(vcpu);
	return 1;
}

static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	if (vcpu->svm->vmcb->control.exit_info_1)
		return wrmsr_interception(vcpu, kvm_run);
	else
		return rdmsr_interception(vcpu, kvm_run);
}

static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu,
				      struct kvm_run *kvm_run) = {
	[SVM_EXIT_READ_CR0]           		= emulate_on_interception,
	[SVM_EXIT_READ_CR3]           		= emulate_on_interception,
	[SVM_EXIT_READ_CR4]           		= emulate_on_interception,
	/* for now: */
	[SVM_EXIT_WRITE_CR0]          		= emulate_on_interception,
	[SVM_EXIT_WRITE_CR3]          		= emulate_on_interception,
	[SVM_EXIT_WRITE_CR4]          		= emulate_on_interception,
	[SVM_EXIT_READ_DR0] 			= emulate_on_interception,
	[SVM_EXIT_READ_DR1]			= emulate_on_interception,
	[SVM_EXIT_READ_DR2]			= emulate_on_interception,
	[SVM_EXIT_READ_DR3]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR0]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR1]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR2]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR3]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR5]			= emulate_on_interception,
	[SVM_EXIT_WRITE_DR7]			= emulate_on_interception,
	[SVM_EXIT_EXCP_BASE + PF_VECTOR] 	= pf_interception,
	[SVM_EXIT_INTR] 			= nop_on_interception,
	[SVM_EXIT_NMI]				= nop_on_interception,
	[SVM_EXIT_SMI]				= nop_on_interception,
	[SVM_EXIT_INIT]				= nop_on_interception,
	/* [SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception, */
	[SVM_EXIT_CPUID]			= cpuid_interception,
	[SVM_EXIT_HLT]				= halt_interception,
	[SVM_EXIT_INVLPG]			= emulate_on_interception,
	[SVM_EXIT_INVLPGA]			= invalid_op_interception,
	[SVM_EXIT_IOIO] 		  	= io_interception,
	[SVM_EXIT_MSR]				= msr_interception,
	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
	[SVM_EXIT_VMRUN]			= invalid_op_interception,
	[SVM_EXIT_VMMCALL]			= invalid_op_interception,
	[SVM_EXIT_VMLOAD]			= invalid_op_interception,
	[SVM_EXIT_VMSAVE]			= invalid_op_interception,
	[SVM_EXIT_STGI]				= invalid_op_interception,
	[SVM_EXIT_CLGI]				= invalid_op_interception,
	[SVM_EXIT_SKINIT]			= invalid_op_interception,
};


static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u32 exit_code = vcpu->svm->vmcb->control.exit_code;

	kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;

	if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) &&
	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
		printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
		       "exit_code 0x%x\n",
		       __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info,
		       exit_code);

	if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers)
	    || svm_exit_handlers[exit_code] == 0) {
		kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
		printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n",
		       __FUNCTION__,
		       exit_code,
		       vcpu->svm->vmcb->save.rip,
		       vcpu->cr0,
		       vcpu->svm->vmcb->save.rflags);
		return 0;
	}

	return svm_exit_handlers[exit_code](vcpu, kvm_run);
}

static void reload_tss(struct kvm_vcpu *vcpu)
{
	int cpu = raw_smp_processor_id();

	struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
	svm_data->tss_desc->type = 9; //available 32/64-bit TSS
	load_TR_desc();
}

static void pre_svm_run(struct kvm_vcpu *vcpu)
{
	int cpu = raw_smp_processor_id();

	struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);

	vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
	if (vcpu->cpu != cpu ||
	    vcpu->svm->asid_generation != svm_data->asid_generation)
		new_asid(vcpu, svm_data);
}


static inline void kvm_try_inject_irq(struct kvm_vcpu *vcpu)
{
	struct vmcb_control_area *control;

	if (!vcpu->irq_summary)
		return;

	control = &vcpu->svm->vmcb->control;

	control->int_vector = pop_irq(vcpu);
	control->int_ctl &= ~V_INTR_PRIO_MASK;
	control->int_ctl |= V_IRQ_MASK |
		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}

static void kvm_reput_irq(struct kvm_vcpu *vcpu)
{
	struct vmcb_control_area *control = &vcpu->svm->vmcb->control;

	if (control->int_ctl & V_IRQ_MASK) {
		control->int_ctl &= ~V_IRQ_MASK;
		push_irq(vcpu, control->int_vector);
	}
}

static void save_db_regs(unsigned long *db_regs)
{
	asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
	asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
	asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
	asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
}

static void load_db_regs(unsigned long *db_regs)
{
	asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
	asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
	asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
	asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
}

static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	u16 fs_selector;
	u16 gs_selector;
	u16 ldt_selector;

again:
	kvm_try_inject_irq(vcpu);

	clgi();

	pre_svm_run(vcpu);

	save_host_msrs(vcpu);
	fs_selector = read_fs();
	gs_selector = read_gs();
	ldt_selector = read_ldt();
	vcpu->svm->host_cr2 = kvm_read_cr2();
	vcpu->svm->host_dr6 = read_dr6();
	vcpu->svm->host_dr7 = read_dr7();
	vcpu->svm->vmcb->save.cr2 = vcpu->cr2;

	if (vcpu->svm->vmcb->save.dr7 & 0xff) {
		write_dr7(0);
		save_db_regs(vcpu->svm->host_db_regs);
		load_db_regs(vcpu->svm->db_regs);
	}
	asm volatile (
#ifdef CONFIG_X86_64
		"push %%rbx; push %%rcx; push %%rdx;"
		"push %%rsi; push %%rdi; push %%rbp;"
		"push %%r8;  push %%r9;  push %%r10; push %%r11;"
		"push %%r12; push %%r13; push %%r14; push %%r15;"
#else
		"push %%ebx; push %%ecx; push %%edx;"
		"push %%esi; push %%edi; push %%ebp;"
#endif

#ifdef CONFIG_X86_64
		"mov %c[rbx](%[vcpu]), %%rbx \n\t"
		"mov %c[rcx](%[vcpu]), %%rcx \n\t"
		"mov %c[rdx](%[vcpu]), %%rdx \n\t"
		"mov %c[rsi](%[vcpu]), %%rsi \n\t"
		"mov %c[rdi](%[vcpu]), %%rdi \n\t"
		"mov %c[rbp](%[vcpu]), %%rbp \n\t"
		"mov %c[r8](%[vcpu]),  %%r8  \n\t"
		"mov %c[r9](%[vcpu]),  %%r9  \n\t"
		"mov %c[r10](%[vcpu]), %%r10 \n\t"
		"mov %c[r11](%[vcpu]), %%r11 \n\t"
		"mov %c[r12](%[vcpu]), %%r12 \n\t"
		"mov %c[r13](%[vcpu]), %%r13 \n\t"
		"mov %c[r14](%[vcpu]), %%r14 \n\t"
		"mov %c[r15](%[vcpu]), %%r15 \n\t"
#else
		"mov %c[rbx](%[vcpu]), %%ebx \n\t"
		"mov %c[rcx](%[vcpu]), %%ecx \n\t"
		"mov %c[rdx](%[vcpu]), %%edx \n\t"
		"mov %c[rsi](%[vcpu]), %%esi \n\t"
		"mov %c[rdi](%[vcpu]), %%edi \n\t"
		"mov %c[rbp](%[vcpu]), %%ebp \n\t"
#endif

#ifdef CONFIG_X86_64
		/* Enter guest mode */
		"push %%rax \n\t"
		"mov %c[svm](%[vcpu]), %%rax \n\t"
		"mov %c[vmcb](%%rax), %%rax \n\t"
		SVM_VMLOAD "\n\t"
		SVM_VMRUN "\n\t"
		SVM_VMSAVE "\n\t"
		"pop %%rax \n\t"
#else
		/* Enter guest mode */
		"push %%eax \n\t"
		"mov %c[svm](%[vcpu]), %%eax \n\t"
		"mov %c[vmcb](%%eax), %%eax \n\t"
		SVM_VMLOAD "\n\t"
		SVM_VMRUN "\n\t"
		SVM_VMSAVE "\n\t"
		"pop %%eax \n\t"
#endif

		/* Save guest registers, load host registers */
#ifdef CONFIG_X86_64
		"mov %%rbx, %c[rbx](%[vcpu]) \n\t"
		"mov %%rcx, %c[rcx](%[vcpu]) \n\t"
		"mov %%rdx, %c[rdx](%[vcpu]) \n\t"
		"mov %%rsi, %c[rsi](%[vcpu]) \n\t"
		"mov %%rdi, %c[rdi](%[vcpu]) \n\t"
		"mov %%rbp, %c[rbp](%[vcpu]) \n\t"
		"mov %%r8,  %c[r8](%[vcpu]) \n\t"
		"mov %%r9,  %c[r9](%[vcpu]) \n\t"
		"mov %%r10, %c[r10](%[vcpu]) \n\t"
		"mov %%r11, %c[r11](%[vcpu]) \n\t"
		"mov %%r12, %c[r12](%[vcpu]) \n\t"
		"mov %%r13, %c[r13](%[vcpu]) \n\t"
		"mov %%r14, %c[r14](%[vcpu]) \n\t"
		"mov %%r15, %c[r15](%[vcpu]) \n\t"

		"pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
		"pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
		"pop  %%rbp; pop  %%rdi; pop  %%rsi;"
		"pop  %%rdx; pop  %%rcx; pop  %%rbx; \n\t"
#else
		"mov %%ebx, %c[rbx](%[vcpu]) \n\t"
		"mov %%ecx, %c[rcx](%[vcpu]) \n\t"
		"mov %%edx, %c[rdx](%[vcpu]) \n\t"
		"mov %%esi, %c[rsi](%[vcpu]) \n\t"
		"mov %%edi, %c[rdi](%[vcpu]) \n\t"
		"mov %%ebp, %c[rbp](%[vcpu]) \n\t"

		"pop  %%ebp; pop  %%edi; pop  %%esi;"
		"pop  %%edx; pop  %%ecx; pop  %%ebx; \n\t"
#endif
		:
		: [vcpu]"a"(vcpu),
		  [svm]"i"(offsetof(struct kvm_vcpu, svm)),
		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
		  [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
		  [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
		  [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
		  [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
		  [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
		  [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
		  ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
		  [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
		  [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
		  [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
		  [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
		  [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
		  [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
		  [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15]))
#endif
		: "cc", "memory" );

	if ((vcpu->svm->vmcb->save.dr7 & 0xff))
		load_db_regs(vcpu->svm->host_db_regs);

	vcpu->cr2 = vcpu->svm->vmcb->save.cr2;

	write_dr6(vcpu->svm->host_dr6);
	write_dr7(vcpu->svm->host_dr7);
	kvm_write_cr2(vcpu->svm->host_cr2);

	load_fs(fs_selector);
	load_gs(gs_selector);
	load_ldt(ldt_selector);
	load_host_msrs(vcpu);

	reload_tss(vcpu);

	stgi();

	kvm_reput_irq(vcpu);

	vcpu->svm->next_rip = 0;

	if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
		kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
		kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code;
		return 0;
	}

	if (handle_exit(vcpu, kvm_run)) {
		if (signal_pending(current)) {
			++kvm_stat.signal_exits;
			return -EINTR;
		}
		kvm_resched(vcpu);
		goto again;
	}
	return 0;
}

static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
	force_new_asid(vcpu);
}

static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
	vcpu->svm->vmcb->save.cr3 = root;
	force_new_asid(vcpu);
}

static void svm_inject_page_fault(struct kvm_vcpu *vcpu,
				  unsigned long  addr,
				  uint32_t err_code)
{
	uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info;

	++kvm_stat.pf_guest;

	if (is_page_fault(exit_int_info)) {

		vcpu->svm->vmcb->control.event_inj_err = 0;
		vcpu->svm->vmcb->control.event_inj = 	SVM_EVTINJ_VALID |
							SVM_EVTINJ_VALID_ERR |
							SVM_EVTINJ_TYPE_EXEPT |
							DF_VECTOR;
		return;
	}
	vcpu->cr2 = addr;
	vcpu->svm->vmcb->save.cr2 = addr;
	vcpu->svm->vmcb->control.event_inj = 	SVM_EVTINJ_VALID |
						SVM_EVTINJ_VALID_ERR |
						SVM_EVTINJ_TYPE_EXEPT |
						PF_VECTOR;
	vcpu->svm->vmcb->control.event_inj_err = err_code;
}


static int is_disabled(void)
{
	return 0;
}

static struct kvm_arch_ops svm_arch_ops = {
	.cpu_has_kvm_support = has_svm,
	.disabled_by_bios = is_disabled,
	.hardware_setup = svm_hardware_setup,
	.hardware_unsetup = svm_hardware_unsetup,
	.hardware_enable = svm_hardware_enable,
	.hardware_disable = svm_hardware_disable,

	.vcpu_create = svm_create_vcpu,
	.vcpu_free = svm_free_vcpu,

	.vcpu_load = svm_vcpu_load,
	.vcpu_put = svm_vcpu_put,

	.set_guest_debug = svm_guest_debug,
	.get_msr = svm_get_msr,
	.set_msr = svm_set_msr,
	.get_segment_base = svm_get_segment_base,
	.get_segment = svm_get_segment,
	.set_segment = svm_set_segment,
	.is_long_mode = svm_is_long_mode,
	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
	.set_cr0 = svm_set_cr0,
	.set_cr0_no_modeswitch = svm_set_cr0,
	.set_cr3 = svm_set_cr3,
	.set_cr4 = svm_set_cr4,
	.set_efer = svm_set_efer,
	.get_idt = svm_get_idt,
	.set_idt = svm_set_idt,
	.get_gdt = svm_get_gdt,
	.set_gdt = svm_set_gdt,
	.get_dr = svm_get_dr,
	.set_dr = svm_set_dr,
	.cache_regs = svm_cache_regs,
	.decache_regs = svm_decache_regs,
	.get_rflags = svm_get_rflags,
	.set_rflags = svm_set_rflags,

	.invlpg = svm_invlpg,
	.tlb_flush = svm_flush_tlb,
	.inject_page_fault = svm_inject_page_fault,

	.inject_gp = svm_inject_gp,

	.run = svm_vcpu_run,
	.skip_emulated_instruction = skip_emulated_instruction,
	.vcpu_setup = svm_vcpu_setup,
};

static int __init svm_init(void)
{
	return kvm_init_arch(&svm_arch_ops, THIS_MODULE);
}

static void __exit svm_exit(void)
{
	kvm_exit_arch();
}

module_init(svm_init)
module_exit(svm_exit)