/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* Copyright (C) 2006 Qumranet, Inc.
*
* Authors:
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
*/
#include "kvm.h"
#include <linux/kvm.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <asm/processor.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <asm/msr.h>
#include <linux/mm.h>
#include <linux/miscdevice.h>
#include <linux/vmalloc.h>
#include <asm/uaccess.h>
#include <linux/reboot.h>
#include <asm/io.h>
#include <linux/debugfs.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <asm/desc.h>
#include "x86_emulate.h"
#include "segment_descriptor.h"
MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");
struct kvm_arch_ops *kvm_arch_ops;
struct kvm_stat kvm_stat;
EXPORT_SYMBOL_GPL(kvm_stat);
static struct kvm_stats_debugfs_item {
const char *name;
u32 *data;
struct dentry *dentry;
} debugfs_entries[] = {
{ "pf_fixed", &kvm_stat.pf_fixed },
{ "pf_guest", &kvm_stat.pf_guest },
{ "tlb_flush", &kvm_stat.tlb_flush },
{ "invlpg", &kvm_stat.invlpg },
{ "exits", &kvm_stat.exits },
{ "io_exits", &kvm_stat.io_exits },
{ "mmio_exits", &kvm_stat.mmio_exits },
{ "signal_exits", &kvm_stat.signal_exits },
{ "irq_window", &kvm_stat.irq_window_exits },
{ "halt_exits", &kvm_stat.halt_exits },
{ "request_irq", &kvm_stat.request_irq_exits },
{ "irq_exits", &kvm_stat.irq_exits },
{ 0, 0 }
};
static struct dentry *debugfs_dir;
#define MAX_IO_MSRS 256
#define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
#define LMSW_GUEST_MASK 0x0eULL
#define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
#define CR8_RESEVED_BITS (~0x0fULL)
#define EFER_RESERVED_BITS 0xfffffffffffff2fe
#ifdef CONFIG_X86_64
// LDT or TSS descriptor in the GDT. 16 bytes.
struct segment_descriptor_64 {
struct segment_descriptor s;
u32 base_higher;
u32 pad_zero;
};
#endif
unsigned long segment_base(u16 selector)
{
struct descriptor_table gdt;
struct segment_descriptor *d;
unsigned long table_base;
typedef unsigned long ul;
unsigned long v;
if (selector == 0)
return 0;
asm ("sgdt %0" : "=m"(gdt));
table_base = gdt.base;
if (selector & 4) { /* from ldt */
u16 ldt_selector;
asm ("sldt %0" : "=g"(ldt_selector));
table_base = segment_base(ldt_selector);
}
d = (struct segment_descriptor *)(table_base + (selector & ~7));
v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
#ifdef CONFIG_X86_64
if (d->system == 0
&& (d->type == 2 || d->type == 9 || d->type == 11))
v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
#endif
return v;
}
EXPORT_SYMBOL_GPL(segment_base);
static inline int valid_vcpu(int n)
{
return likely(n >= 0 && n < KVM_MAX_VCPUS);
}
int kvm_read_guest(struct kvm_vcpu *vcpu,
gva_t addr,
unsigned long size,
void *dest)
{
unsigned char *host_buf = dest;
unsigned long req_size = size;
while (size) {
hpa_t paddr;
unsigned now;
unsigned offset;
hva_t guest_buf;
paddr = gva_to_hpa(vcpu, addr);
if (is_error_hpa(paddr))
break;
guest_buf = (hva_t)kmap_atomic(
pfn_to_page(paddr >> PAGE_SHIFT),
KM_USER0);
offset = addr & ~PAGE_MASK;
guest_buf |= offset;
now = min(size, PAGE_SIZE - offset);
memcpy(host_buf, (void*)guest_buf, now);
host_buf += now;
addr += now;
size -= now;
kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
}
return req_size - size;
}
EXPORT_SYMBOL_GPL(kvm_read_guest);
int kvm_write_guest(struct kvm_vcpu *vcpu,
gva_t addr,
unsigned long size,
void *data)
{
unsigned char *host_buf = data;
unsigned long req_size = size;
while (size) {
hpa_t paddr;
unsigned now;
unsigned offset;
hva_t guest_buf;
paddr = gva_to_hpa(vcpu, addr);
if (is_error_hpa(paddr))
break;
guest_buf = (hva_t)kmap_atomic(
pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
offset = addr & ~PAGE_MASK;
guest_buf |= offset;
now = min(size, PAGE_SIZE - offset);
memcpy((void*)guest_buf, host_buf, now);
host_buf += now;
addr += now;
size -= now;
kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
}
return req_size - size;
}
EXPORT_SYMBOL_GPL(kvm_write_guest);
static int vcpu_slot(struct kvm_vcpu *vcpu)
{
return vcpu - vcpu->kvm->vcpus;
}
/*
* Switches to specified vcpu, until a matching vcpu_put()
*/
static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
{
struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
mutex_lock(&vcpu->mutex);
if (unlikely(!vcpu->vmcs)) {
mutex_unlock(&vcpu->mutex);
return 0;
}
return kvm_arch_ops->vcpu_load(vcpu);
}
static void vcpu_put(struct kvm_vcpu *vcpu)
{
kvm_arch_ops->vcpu_put(vcpu);
mutex_unlock(&vcpu->mutex);
}
static int kvm_dev_open(struct inode *inode, struct file *filp)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
int i;
if (!kvm)
return -ENOMEM;
spin_lock_init(&kvm->lock);
INIT_LIST_HEAD(&kvm->active_mmu_pages);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
struct kvm_vcpu *vcpu = &kvm->vcpus[i];
mutex_init(&vcpu->mutex);
vcpu->mmu.root_hpa = INVALID_PAGE;
INIT_LIST_HEAD(&vcpu->free_pages);
}
filp->private_data = kvm;
return 0;
}
/*
* Free any memory in @free but not in @dont.
*/
static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
int i;
if (!dont || free->phys_mem != dont->phys_mem)
if (free->phys_mem) {
for (i = 0; i < free->npages; ++i)
if (free->phys_mem[i])
__free_page(free->phys_mem[i]);
vfree(free->phys_mem);
}
if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
vfree(free->dirty_bitmap);
free->phys_mem = 0;
free->npages = 0;
free->dirty_bitmap = 0;
}
static void kvm_free_physmem(struct kvm *kvm)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i)
kvm_free_physmem_slot(&kvm->memslots[i], 0);
}
static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
{
kvm_arch_ops->vcpu_free(vcpu);
kvm_mmu_destroy(vcpu);
}
static void kvm_free_vcpus(struct kvm *kvm)
{
unsigned int i;
for (i = 0; i < KVM_MAX_VCPUS; ++i)
kvm_free_vcpu(&kvm->vcpus[i]);
}
static int kvm_dev_release(struct inode *inode, struct file *filp)
{
struct kvm *kvm = filp->private_data;
kvm_free_vcpus(kvm);
kvm_free_physmem(kvm);
kfree(kvm);
return 0;
}
static void inject_gp(struct kvm_vcpu *vcpu)
{
kvm_arch_ops->inject_gp(vcpu, 0);
}
/*
* Load the pae pdptrs. Return true is they are all valid.
*/
static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
{
gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
int i;
u64 pdpte;
u64 *pdpt;
int ret;
struct kvm_memory_slot *memslot;
spin_lock(&vcpu->kvm->lock);
memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
/* FIXME: !memslot - emulate? 0xff? */
pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
ret = 1;
for (i = 0; i < 4; ++i) {
pdpte = pdpt[offset + i];
if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
ret = 0;
goto out;
}
}
for (i = 0; i < 4; ++i)
vcpu->pdptrs[i] = pdpt[offset + i];
out:
kunmap_atomic(pdpt, KM_USER0);
spin_unlock(&vcpu->kvm->lock);
return ret;
}
void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
if (cr0 & CR0_RESEVED_BITS) {
printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
cr0, vcpu->cr0);
inject_gp(vcpu);
return;
}
if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
inject_gp(vcpu);
return;
}
if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
"and a clear PE flag\n");
inject_gp(vcpu);
return;
}
if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
#ifdef CONFIG_X86_64
if ((vcpu->shadow_efer & EFER_LME)) {
int cs_db, cs_l;
if (!is_pae(vcpu)) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while PAE is disabled\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
if (cs_l) {
printk(KERN_DEBUG "set_cr0: #GP, start paging "
"in long mode while CS.L == 1\n");
inject_gp(vcpu);
return;
}
} else
#endif
if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
"reserved bits\n");
inject_gp(vcpu);
return;
}
}
kvm_arch_ops->set_cr0(vcpu, cr0);
vcpu->cr0 = cr0;
spin_lock(&vcpu->kvm->lock);
kvm_mmu_reset_context(vcpu);
spin_unlock(&vcpu->kvm->lock);
return;
}
EXPORT_SYMBOL_GPL(set_cr0);
void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
{
kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
}
EXPORT_SYMBOL_GPL(lmsw);
void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
if (cr4 & CR4_RESEVED_BITS) {
printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
if (is_long_mode(vcpu)) {
if (!(cr4 & CR4_PAE_MASK)) {
printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
"in long mode\n");
inject_gp(vcpu);
return;
}
} else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
&& !load_pdptrs(vcpu, vcpu->cr3)) {
printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
inject_gp(vcpu);
}
if (cr4 & CR4_VMXE_MASK) {
printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->set_cr4(vcpu, cr4);
spin_lock(&vcpu->kvm->lock);
kvm_mmu_reset_context(vcpu);
spin_unlock(&vcpu->kvm->lock);
}
EXPORT_SYMBOL_GPL(set_cr4);
void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
{
if (is_long_mode(vcpu)) {
if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
} else {
if (cr3 & CR3_RESEVED_BITS) {
printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
inject_gp(vcpu);
return;
}
if (is_paging(vcpu) && is_pae(vcpu) &&
!load_pdptrs(vcpu, cr3)) {
printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
"reserved bits\n");
inject_gp(vcpu);
return;
}
}
vcpu->cr3 = cr3;
spin_lock(&vcpu->kvm->lock);
vcpu->mmu.new_cr3(vcpu);
spin_unlock(&vcpu->kvm->lock);
}
EXPORT_SYMBOL_GPL(set_cr3);
void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
{
if ( cr8 & CR8_RESEVED_BITS) {
printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
inject_gp(vcpu);
return;
}
vcpu->cr8 = cr8;
}
EXPORT_SYMBOL_GPL(set_cr8);
void fx_init(struct kvm_vcpu *vcpu)
{
struct __attribute__ ((__packed__)) fx_image_s {
u16 control; //fcw
u16 status; //fsw
u16 tag; // ftw
u16 opcode; //fop
u64 ip; // fpu ip
u64 operand;// fpu dp
u32 mxcsr;
u32 mxcsr_mask;
} *fx_image;
fx_save(vcpu->host_fx_image);
fpu_init();
fx_save(vcpu->guest_fx_image);
fx_restore(vcpu->host_fx_image);
fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
fx_image->mxcsr = 0x1f80;
memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
}
EXPORT_SYMBOL_GPL(fx_init);
/*
* Creates some virtual cpus. Good luck creating more than one.
*/
static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
{
int r;
struct kvm_vcpu *vcpu;
r = -EINVAL;
if (!valid_vcpu(n))
goto out;
vcpu = &kvm->vcpus[n];
mutex_lock(&vcpu->mutex);
if (vcpu->vmcs) {
mutex_unlock(&vcpu->mutex);
return -EEXIST;
}
vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
FX_IMAGE_ALIGN);
vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
vcpu->cpu = -1; /* First load will set up TR */
vcpu->kvm = kvm;
r = kvm_arch_ops->vcpu_create(vcpu);
if (r < 0)
goto out_free_vcpus;
r = kvm_mmu_create(vcpu);
if (r < 0)
goto out_free_vcpus;
kvm_arch_ops->vcpu_load(vcpu);
r = kvm_mmu_setup(vcpu);
if (r >= 0)
r = kvm_arch_ops->vcpu_setup(vcpu);
vcpu_put(vcpu);
if (r < 0)
goto out_free_vcpus;
return 0;
out_free_vcpus:
kvm_free_vcpu(vcpu);
mutex_unlock(&vcpu->mutex);
out:
return r;
}
/*
* Allocate some memory and give it an address in the guest physical address
* space.
*
* Discontiguous memory is allowed, mostly for framebuffers.
*/
static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
struct kvm_memory_region *mem)
{
int r;
gfn_t base_gfn;
unsigned long npages;
unsigned long i;
struct kvm_memory_slot *memslot;
struct kvm_memory_slot old, new;
int memory_config_version;
r = -EINVAL;
/* General sanity checks */
if (mem->memory_size & (PAGE_SIZE - 1))
goto out;
if (mem->guest_phys_addr & (PAGE_SIZE - 1))
goto out;
if (mem->slot >= KVM_MEMORY_SLOTS)
goto out;
if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
goto out;
memslot = &kvm->memslots[mem->slot];
base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
npages = mem->memory_size >> PAGE_SHIFT;
if (!npages)
mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
raced:
spin_lock(&kvm->lock);
memory_config_version = kvm->memory_config_version;
new = old = *memslot;
new.base_gfn = base_gfn;
new.npages = npages;
new.flags = mem->flags;
/* Disallow changing a memory slot's size. */
r = -EINVAL;
if (npages && old.npages && npages != old.npages)
goto out_unlock;
/* Check for overlaps */
r = -EEXIST;
for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
struct kvm_memory_slot *s = &kvm->memslots[i];
if (s == memslot)
continue;
if (!((base_gfn + npages <= s->base_gfn) ||
(base_gfn >= s->base_gfn + s->npages)))
goto out_unlock;
}
/*
* Do memory allocations outside lock. memory_config_version will
* detect any races.
*/
spin_unlock(&kvm->lock);
/* Deallocate if slot is being removed */
if (!npages)
new.phys_mem = 0;
/* Free page dirty bitmap if unneeded */
if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
new.dirty_bitmap = 0;
r = -ENOMEM;
/* Allocate if a slot is being created */
if (npages && !new.phys_mem) {
new.phys_mem = vmalloc(npages * sizeof(struct page *));
if (!new.phys_mem)
goto out_free;
memset(new.phys_mem, 0, npages * sizeof(struct page *));
for (i = 0; i < npages; ++i) {
new.phys_mem[i] = alloc_page(GFP_HIGHUSER
| __GFP_ZERO);
if (!new.phys_mem[i])
goto out_free;
new.phys_mem[i]->private = 0;
}
}
/* Allocate page dirty bitmap if needed */
if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
new.dirty_bitmap = vmalloc(dirty_bytes);
if (!new.dirty_bitmap)
goto out_free;
memset(new.dirty_bitmap, 0, dirty_bytes);
}
spin_lock(&kvm->lock);
if (memory_config_version != kvm->memory_config_version) {
spin_unlock(&kvm->lock);
kvm_free_physmem_slot(&new, &old);
goto raced;
}
r = -EAGAIN;
if (kvm->busy)
goto out_unlock;
if (mem->slot >= kvm->nmemslots)
kvm->nmemslots = mem->slot + 1;
*memslot = new;
++kvm->memory_config_version;
spin_unlock(&kvm->lock);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
struct kvm_vcpu *vcpu;
vcpu = vcpu_load(kvm, i);
if (!vcpu)
continue;
kvm_mmu_reset_context(vcpu);
vcpu_put(vcpu);
}
kvm_free_physmem_slot(&old, &new);
return 0;
out_unlock:
spin_unlock(&kvm->lock);
out_free:
kvm_free_physmem_slot(&new, &old);
out:
return r;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
int r, i;
int n;
unsigned long any = 0;
spin_lock(&kvm->lock);
/*
* Prevent changes to guest memory configuration even while the lock
* is not taken.
*/
++kvm->busy;
spin_unlock(&kvm->lock);
r = -EINVAL;
if (log->slot >= KVM_MEMORY_SLOTS)
goto out;
memslot = &kvm->memslots[log->slot];
r = -ENOENT;
if (!memslot->dirty_bitmap)
goto out;
n = ALIGN(memslot->npages, 8) / 8;
for (i = 0; !any && i < n; ++i)
any = memslot->dirty_bitmap[i];
r = -EFAULT;
if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
goto out;
if (any) {
spin_lock(&kvm->lock);
kvm_mmu_slot_remove_write_access(kvm, log->slot);
spin_unlock(&kvm->lock);
memset(memslot->dirty_bitmap, 0, n);
for (i = 0; i < KVM_MAX_VCPUS; ++i) {
struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
if (!vcpu)
continue;
kvm_arch_ops->tlb_flush(vcpu);
vcpu_put(vcpu);
}
}
r = 0;
out:
spin_lock(&kvm->lock);
--kvm->busy;
spin_unlock(&kvm->lock);
return r;
}
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
{
int i;
for (i = 0; i < kvm->nmemslots; ++i) {
struct kvm_memory_slot *memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages)
return memslot;
}
return 0;
}
EXPORT_SYMBOL_GPL(gfn_to_memslot);
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
{
int i;
struct kvm_memory_slot *memslot = 0;
unsigned long rel_gfn;
for (i = 0; i < kvm->nmemslots; ++i) {
memslot = &kvm->memslots[i];
if (gfn >= memslot->base_gfn
&& gfn < memslot->base_gfn + memslot->npages) {
if (!memslot || !memslot->dirty_bitmap)
return;
rel_gfn = gfn - memslot->base_gfn;
/* avoid RMW */
if (!test_bit(rel_gfn, memslot->dirty_bitmap))
set_bit(rel_gfn, memslot->dirty_bitmap);
return;
}
}
}
static int emulator_read_std(unsigned long addr,
unsigned long *val,
unsigned int bytes,
struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
void *data = val;
while (bytes) {
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
unsigned offset = addr & (PAGE_SIZE-1);
unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
unsigned long pfn;
struct kvm_memory_slot *memslot;
void *page;
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
pfn = gpa >> PAGE_SHIFT;
memslot = gfn_to_memslot(vcpu->kvm, pfn);
if (!memslot)
return X86EMUL_UNHANDLEABLE;
page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
memcpy(data, page + offset, tocopy);
kunmap_atomic(page, KM_USER0);
bytes -= tocopy;
data += tocopy;
addr += tocopy;
}
return X86EMUL_CONTINUE;
}
static int emulator_write_std(unsigned long addr,
unsigned long val,
unsigned int bytes,
struct x86_emulate_ctxt *ctxt)
{
printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
addr, bytes);
return X86EMUL_UNHANDLEABLE;
}
static int emulator_read_emulated(unsigned long addr,
unsigned long *val,
unsigned int bytes,
struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
if (vcpu->mmio_read_completed) {
memcpy(val, vcpu->mmio_data, bytes);
vcpu->mmio_read_completed = 0;
return X86EMUL_CONTINUE;
} else if (emulator_read_std(addr, val, bytes, ctxt)
== X86EMUL_CONTINUE)
return X86EMUL_CONTINUE;
else {
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA)
return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 0;
return X86EMUL_UNHANDLEABLE;
}
}
static int emulator_write_emulated(unsigned long addr,
unsigned long val,
unsigned int bytes,
struct x86_emulate_ctxt *ctxt)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
if (gpa == UNMAPPED_GVA)
return X86EMUL_PROPAGATE_FAULT;
vcpu->mmio_needed = 1;
vcpu->mmio_phys_addr = gpa;
vcpu->mmio_size = bytes;
vcpu->mmio_is_write = 1;
memcpy(vcpu->mmio_data, &val, bytes);
return X86EMUL_CONTINUE;
}
static int emulator_cmpxchg_emulated(unsigned long addr,
unsigned long old,
unsigned long new,
unsigned int bytes,
struct x86_emulate_ctxt *ctxt)
{
static int reported;
if (!reported) {
reported = 1;
printk(KERN_WARNING "kvm: emulating exchange as write\n");
}
return emulator_write_emulated(addr, new, bytes, ctxt);
}
static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
return kvm_arch_ops->get_segment_base(vcpu, seg);
}
int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
{
spin_lock(&vcpu->kvm->lock);
vcpu->mmu.inval_page(vcpu, address);
spin_unlock(&vcpu->kvm->lock);
kvm_arch_ops->invlpg(vcpu, address);
return X86EMUL_CONTINUE;
}
int emulate_clts(struct kvm_vcpu *vcpu)
{
unsigned long cr0;
kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
cr0 = vcpu->cr0 & ~CR0_TS_MASK;
kvm_arch_ops->set_cr0(vcpu, cr0);
return X86EMUL_CONTINUE;
}
int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
{
struct kvm_vcpu *vcpu = ctxt->vcpu;
switch (dr) {
case 0 ... 3:
*dest = kvm_arch_ops->get_dr(vcpu, dr);
return X86EMUL_CONTINUE;
default:
printk(KERN_DEBUG "%s: unexpected dr %u\n",
__FUNCTION__, dr);
return X86EMUL_UNHANDLEABLE;
}
}
int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
{
unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
int exception;
kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
if (exception) {
/* FIXME: better handling */
return X86EMUL_UNHANDLEABLE;
}
return X86EMUL_CONTINUE;
}
static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
{
static int reported;
u8 opcodes[4];
unsigned long rip = ctxt->vcpu->rip;
unsigned long rip_linear;
rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
if (reported)
return;
emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
printk(KERN_ERR "emulation failed but !mmio_needed?"
" rip %lx %02x %02x %02x %02x\n",
rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
reported = 1;
}
struct x86_emulate_ops emulate_ops = {
.read_std = emulator_read_std,
.write_std = emulator_write_std,
.read_emulated = emulator_read_emulated,
.write_emulated = emulator_write_emulated,
.cmpxchg_emulated = emulator_cmpxchg_emulated,
};
int emulate_instruction(struct kvm_vcpu *vcpu,
struct kvm_run *run,
unsigned long cr2,
u16 error_code)
{
struct x86_emulate_ctxt emulate_ctxt;
int r;
int cs_db, cs_l;
kvm_arch_ops->cache_regs(vcpu);
kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
emulate_ctxt.vcpu = vcpu;
emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
emulate_ctxt.cr2 = cr2;
emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
? X86EMUL_MODE_REAL : cs_l
? X86EMUL_MODE_PROT64 : cs_db
? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
emulate_ctxt.cs_base = 0;
emulate_ctxt.ds_base = 0;
emulate_ctxt.es_base = 0;
emulate_ctxt.ss_base = 0;
} else {
emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
}
emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
vcpu->mmio_is_write = 0;
r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
if ((r || vcpu->mmio_is_write) && run) {
run->mmio.phys_addr = vcpu->mmio_phys_addr;
memcpy(run->mmio.data, vcpu->mmio_data, 8);
run->mmio.len = vcpu->mmio_size;
run->mmio.is_write = vcpu->mmio_is_write;
}
if (r) {
if (!vcpu->mmio_needed) {
report_emulation_failure(&emulate_ctxt);
return EMULATE_FAIL;
}
return EMULATE_DO_MMIO;
}
kvm_arch_ops->decache_regs(vcpu);
kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
if (vcpu->mmio_is_write)
return EMULATE_DO_MMIO;
return EMULATE_DONE;
}
EXPORT_SYMBOL_GPL(emulate_instruction);
static u64 mk_cr_64(u64 curr_cr, u32 new_val)
{
return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
}
void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_arch_ops->set_gdt(vcpu, &dt);
}
void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
{
struct descriptor_table dt = { limit, base };
kvm_arch_ops->set_idt(vcpu, &dt);
}
void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
unsigned long *rflags)
{
lmsw(vcpu, msw);
*rflags = kvm_arch_ops->get_rflags(vcpu);
}
unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
{
kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
switch (cr) {
case 0:
return vcpu->cr0;
case 2:
return vcpu->cr2;
case 3:
return vcpu->cr3;
case 4:
return vcpu->cr4;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
return 0;
}
}
void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
unsigned long *rflags)
{
switch (cr) {
case 0:
set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
*rflags = kvm_arch_ops->get_rflags(vcpu);
break;
case 2:
vcpu->cr2 = val;
break;
case 3:
set_cr3(vcpu, val);
break;
case 4:
set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
break;
default:
vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
}
}
int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
{
u64 data;
switch (msr) {
case 0xc0010010: /* SYSCFG */
case 0xc0010015: /* HWCR */
case MSR_IA32_PLATFORM_ID:
case MSR_IA32_P5_MC_ADDR:
case MSR_IA32_P5_MC_TYPE:
case MSR_IA32_MC0_CTL:
case MSR_IA32_MCG_STATUS:
case MSR_IA32_MCG_CAP:
case MSR_IA32_MC0_MISC:
case MSR_IA32_MC0_MISC+4:
case MSR_IA32_MC0_MISC+8:
case MSR_IA32_MC0_MISC+12:
case MSR_IA32_MC0_MISC+16:
case MSR_IA32_UCODE_REV:
case MSR_IA32_PERF_STATUS:
/* MTRR registers */
case 0xfe:
case 0x200 ... 0x2ff:
data = 0;
break;
case 0xcd: /* fsb frequency */
data = 3;
break;
case MSR_IA32_APICBASE:
data = vcpu->apic_base;
break;
#ifdef CONFIG_X86_64
case MSR_EFER:
data = vcpu->shadow_efer;
break;
#endif
default:
printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
return 1;
}
*pdata = data;
return 0;
}
EXPORT_SYMBOL_GPL(kvm_get_msr_common);
/*
* Reads an msr value (of 'msr_index') into 'pdata'.
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
{
return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
}
#ifdef CONFIG_X86_64
static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
if (efer & EFER_RESERVED_BITS) {
printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
efer);
inject_gp(vcpu);
return;
}
if (is_paging(vcpu)
&& (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
inject_gp(vcpu);
return;
}
kvm_arch_ops->set_efer(vcpu, efer);
efer &= ~EFER_LMA;
efer |= vcpu->shadow_efer & EFER_LMA;
vcpu->shadow_efer = efer;
}
#endif
int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
{
switch (msr) {
#ifdef CONFIG_X86_64
case MSR_EFER:
set_efer(vcpu, data);
break;
#endif
case MSR_IA32_MC0_STATUS:
printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
__FUNCTION__, data);
break;
case MSR_IA32_UCODE_REV:
case MSR_IA32_UCODE_WRITE:
case 0x200 ... 0x2ff: /* MTRRs */
break;
case MSR_IA32_APICBASE:
vcpu->apic_base = data;
break;
default:
printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(kvm_set_msr_common);
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
* Assumes vcpu_load() was already called.
*/
static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
return kvm_arch_ops->set_msr(vcpu, msr_index, data);
}
void kvm_resched(struct kvm_vcpu *vcpu)
{
vcpu_put(vcpu);
cond_resched();
/* Cannot fail - no vcpu unplug yet. */
vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
}
EXPORT_SYMBOL_GPL(kvm_resched);
void load_msrs(struct vmx_msr_entry *e, int n)
{
int i;
for (i = 0; i < n; ++i)
wrmsrl(e[i].index, e[i].data);
}
EXPORT_SYMBOL_GPL(load_msrs);
void save_msrs(struct vmx_msr_entry *e, int n)
{
int i;
for (i = 0; i < n; ++i)
rdmsrl(e[i].index, e[i].data);
}
EXPORT_SYMBOL_GPL(save_msrs);
static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
{
struct kvm_vcpu *vcpu;
int r;
if (!valid_vcpu(kvm_run->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, kvm_run->vcpu);
if (!vcpu)
return -ENOENT;
if (kvm_run->emulated) {
kvm_arch_ops->skip_emulated_instruction(vcpu);
kvm_run->emulated = 0;
}
if (kvm_run->mmio_completed) {
memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
vcpu->mmio_read_completed = 1;
}
vcpu->mmio_needed = 0;
r = kvm_arch_ops->run(vcpu, kvm_run);
vcpu_put(vcpu);
return r;
}
static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
{
struct kvm_vcpu *vcpu;
if (!valid_vcpu(regs->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, regs->vcpu);
if (!vcpu)
return -ENOENT;
kvm_arch_ops->cache_regs(vcpu);
regs->rax = vcpu->regs[VCPU_REGS_RAX];
regs->rbx = vcpu->regs[VCPU_REGS_RBX];
regs->rcx = vcpu->regs[VCPU_REGS_RCX];
regs->rdx = vcpu->regs[VCPU_REGS_RDX];
regs->rsi = vcpu->regs[VCPU_REGS_RSI];
regs->rdi = vcpu->regs[VCPU_REGS_RDI];
regs->rsp = vcpu->regs[VCPU_REGS_RSP];
regs->rbp = vcpu->regs[VCPU_REGS_RBP];
#ifdef CONFIG_X86_64
regs->r8 = vcpu->regs[VCPU_REGS_R8];
regs->r9 = vcpu->regs[VCPU_REGS_R9];
regs->r10 = vcpu->regs[VCPU_REGS_R10];
regs->r11 = vcpu->regs[VCPU_REGS_R11];
regs->r12 = vcpu->regs[VCPU_REGS_R12];
regs->r13 = vcpu->regs[VCPU_REGS_R13];
regs->r14 = vcpu->regs[VCPU_REGS_R14];
regs->r15 = vcpu->regs[VCPU_REGS_R15];
#endif
regs->rip = vcpu->rip;
regs->rflags = kvm_arch_ops->get_rflags(vcpu);
/*
* Don't leak debug flags in case they were set for guest debugging
*/
if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
vcpu_put(vcpu);
return 0;
}
static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
{
struct kvm_vcpu *vcpu;
if (!valid_vcpu(regs->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, regs->vcpu);
if (!vcpu)
return -ENOENT;
vcpu->regs[VCPU_REGS_RAX] = regs->rax;
vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
#ifdef CONFIG_X86_64
vcpu->regs[VCPU_REGS_R8] = regs->r8;
vcpu->regs[VCPU_REGS_R9] = regs->r9;
vcpu->regs[VCPU_REGS_R10] = regs->r10;
vcpu->regs[VCPU_REGS_R11] = regs->r11;
vcpu->regs[VCPU_REGS_R12] = regs->r12;
vcpu->regs[VCPU_REGS_R13] = regs->r13;
vcpu->regs[VCPU_REGS_R14] = regs->r14;
vcpu->regs[VCPU_REGS_R15] = regs->r15;
#endif
vcpu->rip = regs->rip;
kvm_arch_ops->set_rflags(vcpu, regs->rflags);
kvm_arch_ops->decache_regs(vcpu);
vcpu_put(vcpu);
return 0;
}
static void get_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
return kvm_arch_ops->get_segment(vcpu, var, seg);
}
static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
{
struct kvm_vcpu *vcpu;
struct descriptor_table dt;
if (!valid_vcpu(sregs->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, sregs->vcpu);
if (!vcpu)
return -ENOENT;
get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
kvm_arch_ops->get_idt(vcpu, &dt);
sregs->idt.limit = dt.limit;
sregs->idt.base = dt.base;
kvm_arch_ops->get_gdt(vcpu, &dt);
sregs->gdt.limit = dt.limit;
sregs->gdt.base = dt.base;
kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
sregs->cr0 = vcpu->cr0;
sregs->cr2 = vcpu->cr2;
sregs->cr3 = vcpu->cr3;
sregs->cr4 = vcpu->cr4;
sregs->cr8 = vcpu->cr8;
sregs->efer = vcpu->shadow_efer;
sregs->apic_base = vcpu->apic_base;
memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
sizeof sregs->interrupt_bitmap);
vcpu_put(vcpu);
return 0;
}
static void set_segment(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg)
{
return kvm_arch_ops->set_segment(vcpu, var, seg);
}
static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
{
struct kvm_vcpu *vcpu;
int mmu_reset_needed = 0;
int i;
struct descriptor_table dt;
if (!valid_vcpu(sregs->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, sregs->vcpu);
if (!vcpu)
return -ENOENT;
set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
dt.limit = sregs->idt.limit;
dt.base = sregs->idt.base;
kvm_arch_ops->set_idt(vcpu, &dt);
dt.limit = sregs->gdt.limit;
dt.base = sregs->gdt.base;
kvm_arch_ops->set_gdt(vcpu, &dt);
vcpu->cr2 = sregs->cr2;
mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
vcpu->cr3 = sregs->cr3;
vcpu->cr8 = sregs->cr8;
mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
#ifdef CONFIG_X86_64
kvm_arch_ops->set_efer(vcpu, sregs->efer);
#endif
vcpu->apic_base = sregs->apic_base;
kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
if (mmu_reset_needed)
kvm_mmu_reset_context(vcpu);
memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
sizeof vcpu->irq_pending);
vcpu->irq_summary = 0;
for (i = 0; i < NR_IRQ_WORDS; ++i)
if (vcpu->irq_pending[i])
__set_bit(i, &vcpu->irq_summary);
vcpu_put(vcpu);
return 0;
}
/*
* List of msr numbers which we expose to userspace through KVM_GET_MSRS
* and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
*
* This list is modified at module load time to reflect the
* capabilities of the host cpu.
*/
static u32 msrs_to_save[] = {
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
MSR_K6_STAR,
#ifdef CONFIG_X86_64
MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
#endif
MSR_IA32_TIME_STAMP_COUNTER,
};
static unsigned num_msrs_to_save;
static __init void kvm_init_msr_list(void)
{
u32 dummy[2];
unsigned i, j;
for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
continue;
if (j < i)
msrs_to_save[j] = msrs_to_save[i];
j++;
}
num_msrs_to_save = j;
}
/*
* Adapt set_msr() to msr_io()'s calling convention
*/
static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
{
return set_msr(vcpu, index, *data);
}
/*
* Read or write a bunch of msrs. All parameters are kernel addresses.
*
* @return number of msrs set successfully.
*/
static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
struct kvm_msr_entry *entries,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data))
{
struct kvm_vcpu *vcpu;
int i;
if (!valid_vcpu(msrs->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, msrs->vcpu);
if (!vcpu)
return -ENOENT;
for (i = 0; i < msrs->nmsrs; ++i)
if (do_msr(vcpu, entries[i].index, &entries[i].data))
break;
vcpu_put(vcpu);
return i;
}
/*
* Read or write a bunch of msrs. Parameters are user addresses.
*
* @return number of msrs set successfully.
*/
static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
int (*do_msr)(struct kvm_vcpu *vcpu,
unsigned index, u64 *data),
int writeback)
{
struct kvm_msrs msrs;
struct kvm_msr_entry *entries;
int r, n;
unsigned size;
r = -EFAULT;
if (copy_from_user(&msrs, user_msrs, sizeof msrs))
goto out;
r = -E2BIG;
if (msrs.nmsrs >= MAX_IO_MSRS)
goto out;
r = -ENOMEM;
size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
entries = vmalloc(size);
if (!entries)
goto out;
r = -EFAULT;
if (copy_from_user(entries, user_msrs->entries, size))
goto out_free;
r = n = __msr_io(kvm, &msrs, entries, do_msr);
if (r < 0)
goto out_free;
r = -EFAULT;
if (writeback && copy_to_user(user_msrs->entries, entries, size))
goto out_free;
r = n;
out_free:
vfree(entries);
out:
return r;
}
/*
* Translate a guest virtual address to a guest physical address.
*/
static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
{
unsigned long vaddr = tr->linear_address;
struct kvm_vcpu *vcpu;
gpa_t gpa;
vcpu = vcpu_load(kvm, tr->vcpu);
if (!vcpu)
return -ENOENT;
spin_lock(&kvm->lock);
gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
tr->physical_address = gpa;
tr->valid = gpa != UNMAPPED_GVA;
tr->writeable = 1;
tr->usermode = 0;
spin_unlock(&kvm->lock);
vcpu_put(vcpu);
return 0;
}
static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
{
struct kvm_vcpu *vcpu;
if (!valid_vcpu(irq->vcpu))
return -EINVAL;
if (irq->irq < 0 || irq->irq >= 256)
return -EINVAL;
vcpu = vcpu_load(kvm, irq->vcpu);
if (!vcpu)
return -ENOENT;
set_bit(irq->irq, vcpu->irq_pending);
set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
vcpu_put(vcpu);
return 0;
}
static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
struct kvm_debug_guest *dbg)
{
struct kvm_vcpu *vcpu;
int r;
if (!valid_vcpu(dbg->vcpu))
return -EINVAL;
vcpu = vcpu_load(kvm, dbg->vcpu);
if (!vcpu)
return -ENOENT;
r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
vcpu_put(vcpu);
return r;
}
static long kvm_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
struct kvm *kvm = filp->private_data;
int r = -EINVAL;
switch (ioctl) {
case KVM_GET_API_VERSION:
r = KVM_API_VERSION;
break;
case KVM_CREATE_VCPU: {
r = kvm_dev_ioctl_create_vcpu(kvm, arg);
if (r)
goto out;
break;
}
case KVM_RUN: {
struct kvm_run kvm_run;
r = -EFAULT;
if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
goto out;
r = kvm_dev_ioctl_run(kvm, &kvm_run);
if (r < 0 && r != -EINTR)
goto out;
if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
r = -EFAULT;
goto out;
}
break;
}
case KVM_GET_REGS: {
struct kvm_regs kvm_regs;
r = -EFAULT;
if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
goto out;
r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
goto out;
r = 0;
break;
}
case KVM_SET_REGS: {
struct kvm_regs kvm_regs;
r = -EFAULT;
if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
goto out;
r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
if (r)
goto out;
r = 0;
break;
}
case KVM_GET_SREGS: {
struct kvm_sregs kvm_sregs;
r = -EFAULT;
if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
goto out;
r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
goto out;
r = 0;
break;
}
case KVM_SET_SREGS: {
struct kvm_sregs kvm_sregs;
r = -EFAULT;
if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
goto out;
r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
if (r)
goto out;
r = 0;
break;
}
case KVM_TRANSLATE: {
struct kvm_translation tr;
r = -EFAULT;
if (copy_from_user(&tr, (void *)arg, sizeof tr))
goto out;
r = kvm_dev_ioctl_translate(kvm, &tr);
if (r)
goto out;
r = -EFAULT;
if (copy_to_user((void *)arg, &tr, sizeof tr))
goto out;
r = 0;
break;
}
case KVM_INTERRUPT: {
struct kvm_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, (void *)arg, sizeof irq))
goto out;
r = kvm_dev_ioctl_interrupt(kvm, &irq);
if (r)
goto out;
r = 0;
break;
}
case KVM_DEBUG_GUEST: {
struct kvm_debug_guest dbg;
r = -EFAULT;
if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
goto out;
r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
if (r)
goto out;
r = 0;
break;
}
case KVM_SET_MEMORY_REGION: {
struct kvm_memory_region kvm_mem;
r = -EFAULT;
if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
goto out;
r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
if (r)
goto out;
break;
}
case KVM_GET_DIRTY_LOG: {
struct kvm_dirty_log log;
r = -EFAULT;
if (copy_from_user(&log, (void *)arg, sizeof log))
goto out;
r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
if (r)
goto out;
break;
}
case KVM_GET_MSRS:
r = msr_io(kvm, (void __user *)arg, get_msr, 1);
break;
case KVM_SET_MSRS:
r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
break;
case KVM_GET_MSR_INDEX_LIST: {
struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
struct kvm_msr_list msr_list;
unsigned n;
r = -EFAULT;
if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
goto out;
n = msr_list.nmsrs;
msr_list.nmsrs = num_msrs_to_save;
if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
goto out;
r = -E2BIG;
if (n < num_msrs_to_save)
goto out;
r = -EFAULT;
if (copy_to_user(user_msr_list->indices, &msrs_to_save,
num_msrs_to_save * sizeof(u32)))
goto out;
r = 0;
}
default:
;
}
out:
return r;
}
static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
struct kvm *kvm = vma->vm_file->private_data;
unsigned long pgoff;
struct kvm_memory_slot *slot;
struct page *page;
*type = VM_FAULT_MINOR;
pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
slot = gfn_to_memslot(kvm, pgoff);
if (!slot)
return NOPAGE_SIGBUS;
page = gfn_to_page(slot, pgoff);
if (!page)
return NOPAGE_SIGBUS;
get_page(page);
return page;
}
static struct vm_operations_struct kvm_dev_vm_ops = {
.nopage = kvm_dev_nopage,
};
static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_ops = &kvm_dev_vm_ops;
return 0;
}
static struct file_operations kvm_chardev_ops = {
.open = kvm_dev_open,
.release = kvm_dev_release,
.unlocked_ioctl = kvm_dev_ioctl,
.compat_ioctl = kvm_dev_ioctl,
.mmap = kvm_dev_mmap,
};
static struct miscdevice kvm_dev = {
MISC_DYNAMIC_MINOR,
"kvm",
&kvm_chardev_ops,
};
static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
void *v)
{
if (val == SYS_RESTART) {
/*
* Some (well, at least mine) BIOSes hang on reboot if
* in vmx root mode.
*/
printk(KERN_INFO "kvm: exiting hardware virtualization\n");
on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
}
return NOTIFY_OK;
}
static struct notifier_block kvm_reboot_notifier = {
.notifier_call = kvm_reboot,
.priority = 0,
};
static __init void kvm_init_debug(void)
{
struct kvm_stats_debugfs_item *p;
debugfs_dir = debugfs_create_dir("kvm", 0);
for (p = debugfs_entries; p->name; ++p)
p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
p->data);
}
static void kvm_exit_debug(void)
{
struct kvm_stats_debugfs_item *p;
for (p = debugfs_entries; p->name; ++p)
debugfs_remove(p->dentry);
debugfs_remove(debugfs_dir);
}
hpa_t bad_page_address;
int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
{
int r;
if (kvm_arch_ops) {
printk(KERN_ERR "kvm: already loaded the other module\n");
return -EEXIST;
}
if (!ops->cpu_has_kvm_support()) {
printk(KERN_ERR "kvm: no hardware support\n");
return -EOPNOTSUPP;
}
if (ops->disabled_by_bios()) {
printk(KERN_ERR "kvm: disabled by bios\n");
return -EOPNOTSUPP;
}
kvm_arch_ops = ops;
r = kvm_arch_ops->hardware_setup();
if (r < 0)
return r;
on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
register_reboot_notifier(&kvm_reboot_notifier);
kvm_chardev_ops.owner = module;
r = misc_register(&kvm_dev);
if (r) {
printk (KERN_ERR "kvm: misc device register failed\n");
goto out_free;
}
return r;
out_free:
unregister_reboot_notifier(&kvm_reboot_notifier);
on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
kvm_arch_ops->hardware_unsetup();
return r;
}
void kvm_exit_arch(void)
{
misc_deregister(&kvm_dev);
unregister_reboot_notifier(&kvm_reboot_notifier);
on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
kvm_arch_ops->hardware_unsetup();
kvm_arch_ops = NULL;
}
static __init int kvm_init(void)
{
static struct page *bad_page;
int r = 0;
kvm_init_debug();
kvm_init_msr_list();
if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
r = -ENOMEM;
goto out;
}
bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
memset(__va(bad_page_address), 0, PAGE_SIZE);
return r;
out:
kvm_exit_debug();
return r;
}
static __exit void kvm_exit(void)
{
kvm_exit_debug();
__free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
}
module_init(kvm_init)
module_exit(kvm_exit)
EXPORT_SYMBOL_GPL(kvm_init_arch);
EXPORT_SYMBOL_GPL(kvm_exit_arch);