// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright The Asahi Linux Contributors
*
* Based on irq-lpc32xx:
* Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
* Based on irq-bcm2836:
* Copyright 2015 Broadcom
*/
/*
* AIC is a fairly simple interrupt controller with the following features:
*
* - 896 level-triggered hardware IRQs
* - Single mask bit per IRQ
* - Per-IRQ affinity setting
* - Automatic masking on event delivery (auto-ack)
* - Software triggering (ORed with hw line)
* - 2 per-CPU IPIs (meant as "self" and "other", but they are
* interchangeable if not symmetric)
* - Automatic prioritization (single event/ack register per CPU, lower IRQs =
* higher priority)
* - Automatic masking on ack
* - Default "this CPU" register view and explicit per-CPU views
*
* In addition, this driver also handles FIQs, as these are routed to the same
* IRQ vector. These are used for Fast IPIs (TODO), the ARMv8 timer IRQs, and
* performance counters (TODO).
*
* Implementation notes:
*
* - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
* and one for IPIs.
* - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
* and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
* - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
* - DT bindings use 3-cell form (like GIC):
* - <0 nr flags> - hwirq #nr
* - <1 nr flags> - FIQ #nr
* - nr=0 Physical HV timer
* - nr=1 Virtual HV timer
* - nr=2 Physical guest timer
* - nr=3 Virtual guest timer
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cpuhotplug.h>
#include <linux/io.h>
#include <linux/irqchip.h>
#include <linux/irqchip/arm-vgic-info.h>
#include <linux/irqdomain.h>
#include <linux/limits.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <asm/exception.h>
#include <asm/sysreg.h>
#include <asm/virt.h>
#include <dt-bindings/interrupt-controller/apple-aic.h>
/*
* AIC registers (MMIO)
*/
#define AIC_INFO 0x0004
#define AIC_INFO_NR_HW GENMASK(15, 0)
#define AIC_CONFIG 0x0010
#define AIC_WHOAMI 0x2000
#define AIC_EVENT 0x2004
#define AIC_EVENT_TYPE GENMASK(31, 16)
#define AIC_EVENT_NUM GENMASK(15, 0)
#define AIC_EVENT_TYPE_HW 1
#define AIC_EVENT_TYPE_IPI 4
#define AIC_EVENT_IPI_OTHER 1
#define AIC_EVENT_IPI_SELF 2
#define AIC_IPI_SEND 0x2008
#define AIC_IPI_ACK 0x200c
#define AIC_IPI_MASK_SET 0x2024
#define AIC_IPI_MASK_CLR 0x2028
#define AIC_IPI_SEND_CPU(cpu) BIT(cpu)
#define AIC_IPI_OTHER BIT(0)
#define AIC_IPI_SELF BIT(31)
#define AIC_TARGET_CPU 0x3000
#define AIC_SW_SET 0x4000
#define AIC_SW_CLR 0x4080
#define AIC_MASK_SET 0x4100
#define AIC_MASK_CLR 0x4180
#define AIC_CPU_IPI_SET(cpu) (0x5008 + ((cpu) << 7))
#define AIC_CPU_IPI_CLR(cpu) (0x500c + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
#define MASK_REG(x) (4 * ((x) >> 5))
#define MASK_BIT(x) BIT((x) & GENMASK(4, 0))
/*
* IMP-DEF sysregs that control FIQ sources
* Note: sysreg-based IPIs are not supported yet.
*/
/* Core PMC control register */
#define SYS_IMP_APL_PMCR0_EL1 sys_reg(3, 1, 15, 0, 0)
#define PMCR0_IMODE GENMASK(10, 8)
#define PMCR0_IMODE_OFF 0
#define PMCR0_IMODE_PMI 1
#define PMCR0_IMODE_AIC 2
#define PMCR0_IMODE_HALT 3
#define PMCR0_IMODE_FIQ 4
#define PMCR0_IACT BIT(11)
/* IPI request registers */
#define SYS_IMP_APL_IPI_RR_LOCAL_EL1 sys_reg(3, 5, 15, 0, 0)
#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1 sys_reg(3, 5, 15, 0, 1)
#define IPI_RR_CPU GENMASK(7, 0)
/* Cluster only used for the GLOBAL register */
#define IPI_RR_CLUSTER GENMASK(23, 16)
#define IPI_RR_TYPE GENMASK(29, 28)
#define IPI_RR_IMMEDIATE 0
#define IPI_RR_RETRACT 1
#define IPI_RR_DEFERRED 2
#define IPI_RR_NOWAKE 3
/* IPI status register */
#define SYS_IMP_APL_IPI_SR_EL1 sys_reg(3, 5, 15, 1, 1)
#define IPI_SR_PENDING BIT(0)
/* Guest timer FIQ enable register */
#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2 sys_reg(3, 5, 15, 1, 3)
#define VM_TMR_FIQ_ENABLE_V BIT(0)
#define VM_TMR_FIQ_ENABLE_P BIT(1)
/* Deferred IPI countdown register */
#define SYS_IMP_APL_IPI_CR_EL1 sys_reg(3, 5, 15, 3, 1)
/* Uncore PMC control register */
#define SYS_IMP_APL_UPMCR0_EL1 sys_reg(3, 7, 15, 0, 4)
#define UPMCR0_IMODE GENMASK(18, 16)
#define UPMCR0_IMODE_OFF 0
#define UPMCR0_IMODE_AIC 2
#define UPMCR0_IMODE_HALT 3
#define UPMCR0_IMODE_FIQ 4
/* Uncore PMC status register */
#define SYS_IMP_APL_UPMSR_EL1 sys_reg(3, 7, 15, 6, 4)
#define UPMSR_IACT BIT(0)
#define AIC_NR_FIQ 4
#define AIC_NR_SWIPI 32
/*
* FIQ hwirq index definitions: FIQ sources use the DT binding defines
* directly, except that timers are special. At the irqchip level, the
* two timer types are represented by their access method: _EL0 registers
* or _EL02 registers. In the DT binding, the timers are represented
* by their purpose (HV or guest). This mapping is for when the kernel is
* running at EL2 (with VHE). When the kernel is running at EL1, the
* mapping differs and aic_irq_domain_translate() performs the remapping.
*/
#define AIC_TMR_EL0_PHYS AIC_TMR_HV_PHYS
#define AIC_TMR_EL0_VIRT AIC_TMR_HV_VIRT
#define AIC_TMR_EL02_PHYS AIC_TMR_GUEST_PHYS
#define AIC_TMR_EL02_VIRT AIC_TMR_GUEST_VIRT
struct aic_irq_chip {
void __iomem *base;
struct irq_domain *hw_domain;
struct irq_domain *ipi_domain;
int nr_hw;
};
static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
static struct aic_irq_chip *aic_irqc;
static void aic_handle_ipi(struct pt_regs *regs);
static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
{
return readl_relaxed(ic->base + reg);
}
static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
{
writel_relaxed(val, ic->base + reg);
}
/*
* IRQ irqchip
*/
static void aic_irq_mask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
aic_ic_write(ic, AIC_MASK_SET + MASK_REG(irqd_to_hwirq(d)),
MASK_BIT(irqd_to_hwirq(d)));
}
static void aic_irq_unmask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
aic_ic_write(ic, AIC_MASK_CLR + MASK_REG(d->hwirq),
MASK_BIT(irqd_to_hwirq(d)));
}
static void aic_irq_eoi(struct irq_data *d)
{
/*
* Reading the interrupt reason automatically acknowledges and masks
* the IRQ, so we just unmask it here if needed.
*/
if (!irqd_irq_masked(d))
aic_irq_unmask(d);
}
static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
{
struct aic_irq_chip *ic = aic_irqc;
u32 event, type, irq;
do {
/*
* We cannot use a relaxed read here, as reads from DMA buffers
* need to be ordered after the IRQ fires.
*/
event = readl(ic->base + AIC_EVENT);
type = FIELD_GET(AIC_EVENT_TYPE, event);
irq = FIELD_GET(AIC_EVENT_NUM, event);
if (type == AIC_EVENT_TYPE_HW)
generic_handle_domain_irq(aic_irqc->hw_domain, irq);
else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
aic_handle_ipi(regs);
else if (event != 0)
pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
} while (event);
/*
* vGIC maintenance interrupts end up here too, so we need to check
* for them separately. This should never trigger if KVM is working
* properly, because it will have already taken care of clearing it
* on guest exit before this handler runs.
*/
if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
}
static int aic_irq_set_affinity(struct irq_data *d,
const struct cpumask *mask_val, bool force)
{
irq_hw_number_t hwirq = irqd_to_hwirq(d);
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
int cpu;
if (force)
cpu = cpumask_first(mask_val);
else
cpu = cpumask_any_and(mask_val, cpu_online_mask);
aic_ic_write(ic, AIC_TARGET_CPU + hwirq * 4, BIT(cpu));
irq_data_update_effective_affinity(d, cpumask_of(cpu));
return IRQ_SET_MASK_OK;
}
static int aic_irq_set_type(struct irq_data *d, unsigned int type)
{
/*
* Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
* have a way to find out the type of any given IRQ, so just allow both.
*/
return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
}
static struct irq_chip aic_chip = {
.name = "AIC",
.irq_mask = aic_irq_mask,
.irq_unmask = aic_irq_unmask,
.irq_eoi = aic_irq_eoi,
.irq_set_affinity = aic_irq_set_affinity,
.irq_set_type = aic_irq_set_type,
};
/*
* FIQ irqchip
*/
static unsigned long aic_fiq_get_idx(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
return irqd_to_hwirq(d) - ic->nr_hw;
}
static void aic_fiq_set_mask(struct irq_data *d)
{
/* Only the guest timers have real mask bits, unfortunately. */
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
isb();
break;
default:
break;
}
}
static void aic_fiq_clear_mask(struct irq_data *d)
{
switch (aic_fiq_get_idx(d)) {
case AIC_TMR_EL02_PHYS:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
isb();
break;
case AIC_TMR_EL02_VIRT:
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
isb();
break;
default:
break;
}
}
static void aic_fiq_mask(struct irq_data *d)
{
aic_fiq_set_mask(d);
__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_unmask(struct irq_data *d)
{
aic_fiq_clear_mask(d);
__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
}
static void aic_fiq_eoi(struct irq_data *d)
{
/* We mask to ack (where we can), so we need to unmask at EOI. */
if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
aic_fiq_clear_mask(d);
}
#define TIMER_FIRING(x) \
(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK | \
ARCH_TIMER_CTRL_IT_STAT)) == \
(ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
{
/*
* It would be really nice if we had a system register that lets us get
* the FIQ source state without having to peek down into sources...
* but such a register does not seem to exist.
*
* So, we have these potential sources to test for:
* - Fast IPIs (not yet used)
* - The 4 timers (CNTP, CNTV for each of HV and guest)
* - Per-core PMCs (not yet supported)
* - Per-cluster uncore PMCs (not yet supported)
*
* Since not dealing with any of these results in a FIQ storm,
* we check for everything here, even things we don't support yet.
*/
if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
pr_err_ratelimited("Fast IPI fired. Acking.\n");
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
}
if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL0_PHYS);
if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
generic_handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL0_VIRT);
if (is_kernel_in_hyp_mode()) {
uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL02_PHYS);
if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
generic_handle_domain_irq(aic_irqc->hw_domain,
aic_irqc->nr_hw + AIC_TMR_EL02_VIRT);
}
if ((read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & (PMCR0_IMODE | PMCR0_IACT)) ==
(FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_FIQ) | PMCR0_IACT)) {
/*
* Not supported yet, let's figure out how to handle this when
* we implement these proprietary performance counters. For now,
* just mask it and move on.
*/
pr_err_ratelimited("PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
}
if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
/* Same story with uncore PMCs */
pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
}
}
static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
{
return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
}
static struct irq_chip fiq_chip = {
.name = "AIC-FIQ",
.irq_mask = aic_fiq_mask,
.irq_unmask = aic_fiq_unmask,
.irq_ack = aic_fiq_set_mask,
.irq_eoi = aic_fiq_eoi,
.irq_set_type = aic_fiq_set_type,
};
/*
* Main IRQ domain
*/
static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
irq_hw_number_t hw)
{
struct aic_irq_chip *ic = id->host_data;
if (hw < ic->nr_hw) {
irq_domain_set_info(id, irq, hw, &aic_chip, id->host_data,
handle_fasteoi_irq, NULL, NULL);
irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
} else {
irq_set_percpu_devid(irq);
irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static int aic_irq_domain_translate(struct irq_domain *id,
struct irq_fwspec *fwspec,
unsigned long *hwirq,
unsigned int *type)
{
struct aic_irq_chip *ic = id->host_data;
if (fwspec->param_count != 3 || !is_of_node(fwspec->fwnode))
return -EINVAL;
switch (fwspec->param[0]) {
case AIC_IRQ:
if (fwspec->param[1] >= ic->nr_hw)
return -EINVAL;
*hwirq = fwspec->param[1];
break;
case AIC_FIQ:
if (fwspec->param[1] >= AIC_NR_FIQ)
return -EINVAL;
*hwirq = ic->nr_hw + fwspec->param[1];
/*
* In EL1 the non-redirected registers are the guest's,
* not EL2's, so remap the hwirqs to match.
*/
if (!is_kernel_in_hyp_mode()) {
switch (fwspec->param[1]) {
case AIC_TMR_GUEST_PHYS:
*hwirq = ic->nr_hw + AIC_TMR_EL0_PHYS;
break;
case AIC_TMR_GUEST_VIRT:
*hwirq = ic->nr_hw + AIC_TMR_EL0_VIRT;
break;
case AIC_TMR_HV_PHYS:
case AIC_TMR_HV_VIRT:
return -ENOENT;
default:
break;
}
}
break;
default:
return -EINVAL;
}
*type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
return 0;
}
static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *arg)
{
unsigned int type = IRQ_TYPE_NONE;
struct irq_fwspec *fwspec = arg;
irq_hw_number_t hwirq;
int i, ret;
ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++) {
ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
if (ret)
return ret;
}
return 0;
}
static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++) {
struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
irq_set_handler(virq + i, NULL);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops aic_irq_domain_ops = {
.translate = aic_irq_domain_translate,
.alloc = aic_irq_domain_alloc,
.free = aic_irq_domain_free,
};
/*
* IPI irqchip
*/
static void aic_ipi_mask(struct irq_data *d)
{
u32 irq_bit = BIT(irqd_to_hwirq(d));
/* No specific ordering requirements needed here. */
atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
}
static void aic_ipi_unmask(struct irq_data *d)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
/*
* The atomic_or() above must complete before the atomic_read()
* below to avoid racing aic_ipi_send_mask().
*/
smp_mb__after_atomic();
/*
* If a pending vIPI was unmasked, raise a HW IPI to ourselves.
* No barriers needed here since this is a self-IPI.
*/
if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit)
aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
}
static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
{
struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
u32 irq_bit = BIT(irqd_to_hwirq(d));
u32 send = 0;
int cpu;
unsigned long pending;
for_each_cpu(cpu, mask) {
/*
* This sequence is the mirror of the one in aic_ipi_unmask();
* see the comment there. Additionally, release semantics
* ensure that the vIPI flag set is ordered after any shared
* memory accesses that precede it. This therefore also pairs
* with the atomic_fetch_andnot in aic_handle_ipi().
*/
pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
/*
* The atomic_fetch_or_release() above must complete before the
* atomic_read() below to avoid racing aic_ipi_unmask().
*/
smp_mb__after_atomic();
if (!(pending & irq_bit) &&
(atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit))
send |= AIC_IPI_SEND_CPU(cpu);
}
/*
* The flag writes must complete before the physical IPI is issued
* to another CPU. This is implied by the control dependency on
* the result of atomic_read_acquire() above, which is itself
* already ordered after the vIPI flag write.
*/
if (send)
aic_ic_write(ic, AIC_IPI_SEND, send);
}
static struct irq_chip ipi_chip = {
.name = "AIC-IPI",
.irq_mask = aic_ipi_mask,
.irq_unmask = aic_ipi_unmask,
.ipi_send_mask = aic_ipi_send_mask,
};
/*
* IPI IRQ domain
*/
static void aic_handle_ipi(struct pt_regs *regs)
{
int i;
unsigned long enabled, firing;
/*
* Ack the IPI. We need to order this after the AIC event read, but
* that is enforced by normal MMIO ordering guarantees.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
/*
* The mask read does not need to be ordered. Only we can change
* our own mask anyway, so no races are possible here, as long as
* we are properly in the interrupt handler (which is covered by
* the barrier that is part of the top-level AIC handler's readl()).
*/
enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
/*
* Clear the IPIs we are about to handle. This pairs with the
* atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
* ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
* before IPI handling code (to avoid races handling vIPIs before they
* are signaled). The former is taken care of by the release semantics
* of the write portion, while the latter is taken care of by the
* acquire semantics of the read portion.
*/
firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
for_each_set_bit(i, &firing, AIC_NR_SWIPI)
generic_handle_domain_irq(aic_irqc->ipi_domain, i);
/*
* No ordering needed here; at worst this just changes the timing of
* when the next IPI will be delivered.
*/
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
}
static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
unsigned int nr_irqs, void *args)
{
int i;
for (i = 0; i < nr_irqs; i++) {
irq_set_percpu_devid(virq + i);
irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
handle_percpu_devid_irq, NULL, NULL);
}
return 0;
}
static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
{
/* Not freeing IPIs */
}
static const struct irq_domain_ops aic_ipi_domain_ops = {
.alloc = aic_ipi_alloc,
.free = aic_ipi_free,
};
static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
{
struct irq_domain *ipi_domain;
int base_ipi;
ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
&aic_ipi_domain_ops, irqc);
if (WARN_ON(!ipi_domain))
return -ENODEV;
ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
NUMA_NO_NODE, NULL, false, NULL);
if (WARN_ON(!base_ipi)) {
irq_domain_remove(ipi_domain);
return -ENODEV;
}
set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
irqc->ipi_domain = ipi_domain;
return 0;
}
static int aic_init_cpu(unsigned int cpu)
{
/* Mask all hard-wired per-CPU IRQ/FIQ sources */
/* Pending Fast IPI FIQs */
write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
/* Timer FIQs */
sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
/* EL2-only (VHE mode) IRQ sources */
if (is_kernel_in_hyp_mode()) {
/* Guest timers */
sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
/* vGIC maintenance IRQ */
sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
}
/* PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
/* Uncore PMC FIQ */
sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
/* Commit all of the above */
isb();
/*
* Make sure the kernel's idea of logical CPU order is the same as AIC's
* If we ever end up with a mismatch here, we will have to introduce
* a mapping table similar to what other irqchip drivers do.
*/
WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
/*
* Always keep IPIs unmasked at the hardware level (except auto-masking
* by AIC during processing). We manage masks at the vIPI level.
*/
aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
/* Initialize the local mask state */
__this_cpu_write(aic_fiq_unmasked, 0);
return 0;
}
static struct gic_kvm_info vgic_info __initdata = {
.type = GIC_V3,
.no_maint_irq_mask = true,
.no_hw_deactivation = true,
};
static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
{
int i;
void __iomem *regs;
u32 info;
struct aic_irq_chip *irqc;
regs = of_iomap(node, 0);
if (WARN_ON(!regs))
return -EIO;
irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
if (!irqc)
return -ENOMEM;
aic_irqc = irqc;
irqc->base = regs;
info = aic_ic_read(irqc, AIC_INFO);
irqc->nr_hw = FIELD_GET(AIC_INFO_NR_HW, info);
irqc->hw_domain = irq_domain_create_linear(of_node_to_fwnode(node),
irqc->nr_hw + AIC_NR_FIQ,
&aic_irq_domain_ops, irqc);
if (WARN_ON(!irqc->hw_domain)) {
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
if (aic_init_smp(irqc, node)) {
irq_domain_remove(irqc->hw_domain);
iounmap(irqc->base);
kfree(irqc);
return -ENODEV;
}
set_handle_irq(aic_handle_irq);
set_handle_fiq(aic_handle_fiq);
for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
aic_ic_write(irqc, AIC_MASK_SET + i * 4, U32_MAX);
for (i = 0; i < BITS_TO_U32(irqc->nr_hw); i++)
aic_ic_write(irqc, AIC_SW_CLR + i * 4, U32_MAX);
for (i = 0; i < irqc->nr_hw; i++)
aic_ic_write(irqc, AIC_TARGET_CPU + i * 4, 1);
if (!is_kernel_in_hyp_mode())
pr_info("Kernel running in EL1, mapping interrupts");
cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
"irqchip/apple-aic/ipi:starting",
aic_init_cpu, NULL);
vgic_set_kvm_info(&vgic_info);
pr_info("Initialized with %d IRQs, %d FIQs, %d vIPIs\n",
irqc->nr_hw, AIC_NR_FIQ, AIC_NR_SWIPI);
return 0;
}
IRQCHIP_DECLARE(apple_m1_aic, "apple,aic", aic_of_ic_init);