summaryrefslogblamecommitdiff
path: root/drivers/iommu/arm-smmu.c
blob: 7243af3b891fe9aa932d1f624eedb98f9688d384 (plain) (tree)
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

























































                                                                             



























                                                                               
                                                             







































































































































                                                                            
                                             


























































                                                               

                                          






















                                                                                 
                                                                            


























































                                                                        





                                                




                                                
                                            
 


                                                          
























































































































































                                                                                           







                                                                              

                                                               

                                          

                                                             




                                
























































                                                                              


                                










                                                                                  
                           















                                                                              
                             





                                                                         
            
                                                                     




























































                                                                               

                                                            
                   
                                                                         
                                                            





















































                                                                                 



































                                                                               

















                                                                      
                           

                              












                                                                             
                                                    








                                                                   







                                                                        
                              




                       




                                                                              
                                                   



                                                                            

































































































                                                                           




                                                                     















































































































































































































































                                                                                                  
                                                                   






















































































































































































































                                                                                 

                                                                     
                                                         

























































































































                                                                               
                                                                              








                                                                                  



                                                                     
































































































































































































































































































































































                                                                                          
                                                               



























































                                                                         
/*
 * IOMMU API for ARM architected SMMU implementations.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) 2013 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver currently supports:
 *	- SMMUv1 and v2 implementations
 *	- Stream-matching and stream-indexing
 *	- v7/v8 long-descriptor format
 *	- Non-secure access to the SMMU
 *	- 4k and 64k pages, with contiguous pte hints.
 *	- Up to 39-bit addressing
 *	- Context fault reporting
 */

#define pr_fmt(fmt) "arm-smmu: " fmt

#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>

#include <linux/amba/bus.h>

#include <asm/pgalloc.h>

/* Maximum number of stream IDs assigned to a single device */
#define MAX_MASTER_STREAMIDS		8

/* Maximum number of context banks per SMMU */
#define ARM_SMMU_MAX_CBS		128

/* Maximum number of mapping groups per SMMU */
#define ARM_SMMU_MAX_SMRS		128

/* SMMU global address space */
#define ARM_SMMU_GR0(smmu)		((smmu)->base)
#define ARM_SMMU_GR1(smmu)		((smmu)->base + (smmu)->pagesize)

/* Page table bits */
#define ARM_SMMU_PTE_PAGE		(((pteval_t)3) << 0)
#define ARM_SMMU_PTE_CONT		(((pteval_t)1) << 52)
#define ARM_SMMU_PTE_AF			(((pteval_t)1) << 10)
#define ARM_SMMU_PTE_SH_NS		(((pteval_t)0) << 8)
#define ARM_SMMU_PTE_SH_OS		(((pteval_t)2) << 8)
#define ARM_SMMU_PTE_SH_IS		(((pteval_t)3) << 8)

#if PAGE_SIZE == SZ_4K
#define ARM_SMMU_PTE_CONT_ENTRIES	16
#elif PAGE_SIZE == SZ_64K
#define ARM_SMMU_PTE_CONT_ENTRIES	32
#else
#define ARM_SMMU_PTE_CONT_ENTRIES	1
#endif

#define ARM_SMMU_PTE_CONT_SIZE		(PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
#define ARM_SMMU_PTE_CONT_MASK		(~(ARM_SMMU_PTE_CONT_SIZE - 1))
#define ARM_SMMU_PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(pte_t))

/* Stage-1 PTE */
#define ARM_SMMU_PTE_AP_UNPRIV		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_AP_RDONLY		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_ATTRINDX_SHIFT	2
#define ARM_SMMU_PTE_nG			(((pteval_t)1) << 11)

/* Stage-2 PTE */
#define ARM_SMMU_PTE_HAP_FAULT		(((pteval_t)0) << 6)
#define ARM_SMMU_PTE_HAP_READ		(((pteval_t)1) << 6)
#define ARM_SMMU_PTE_HAP_WRITE		(((pteval_t)2) << 6)
#define ARM_SMMU_PTE_MEMATTR_OIWB	(((pteval_t)0xf) << 2)
#define ARM_SMMU_PTE_MEMATTR_NC		(((pteval_t)0x5) << 2)
#define ARM_SMMU_PTE_MEMATTR_DEV	(((pteval_t)0x1) << 2)

/* Configuration registers */
#define ARM_SMMU_GR0_sCR0		0x0
#define sCR0_CLIENTPD			(1 << 0)
#define sCR0_GFRE			(1 << 1)
#define sCR0_GFIE			(1 << 2)
#define sCR0_GCFGFRE			(1 << 4)
#define sCR0_GCFGFIE			(1 << 5)
#define sCR0_USFCFG			(1 << 10)
#define sCR0_VMIDPNE			(1 << 11)
#define sCR0_PTM			(1 << 12)
#define sCR0_FB				(1 << 13)
#define sCR0_BSU_SHIFT			14
#define sCR0_BSU_MASK			0x3

/* Identification registers */
#define ARM_SMMU_GR0_ID0		0x20
#define ARM_SMMU_GR0_ID1		0x24
#define ARM_SMMU_GR0_ID2		0x28
#define ARM_SMMU_GR0_ID3		0x2c
#define ARM_SMMU_GR0_ID4		0x30
#define ARM_SMMU_GR0_ID5		0x34
#define ARM_SMMU_GR0_ID6		0x38
#define ARM_SMMU_GR0_ID7		0x3c
#define ARM_SMMU_GR0_sGFSR		0x48
#define ARM_SMMU_GR0_sGFSYNR0		0x50
#define ARM_SMMU_GR0_sGFSYNR1		0x54
#define ARM_SMMU_GR0_sGFSYNR2		0x58
#define ARM_SMMU_GR0_PIDR0		0xfe0
#define ARM_SMMU_GR0_PIDR1		0xfe4
#define ARM_SMMU_GR0_PIDR2		0xfe8

#define ID0_S1TS			(1 << 30)
#define ID0_S2TS			(1 << 29)
#define ID0_NTS				(1 << 28)
#define ID0_SMS				(1 << 27)
#define ID0_PTFS_SHIFT			24
#define ID0_PTFS_MASK			0x2
#define ID0_PTFS_V8_ONLY		0x2
#define ID0_CTTW			(1 << 14)
#define ID0_NUMIRPT_SHIFT		16
#define ID0_NUMIRPT_MASK		0xff
#define ID0_NUMSMRG_SHIFT		0
#define ID0_NUMSMRG_MASK		0xff

#define ID1_PAGESIZE			(1 << 31)
#define ID1_NUMPAGENDXB_SHIFT		28
#define ID1_NUMPAGENDXB_MASK		7
#define ID1_NUMS2CB_SHIFT		16
#define ID1_NUMS2CB_MASK		0xff
#define ID1_NUMCB_SHIFT			0
#define ID1_NUMCB_MASK			0xff

#define ID2_OAS_SHIFT			4
#define ID2_OAS_MASK			0xf
#define ID2_IAS_SHIFT			0
#define ID2_IAS_MASK			0xf
#define ID2_UBS_SHIFT			8
#define ID2_UBS_MASK			0xf
#define ID2_PTFS_4K			(1 << 12)
#define ID2_PTFS_16K			(1 << 13)
#define ID2_PTFS_64K			(1 << 14)

#define PIDR2_ARCH_SHIFT		4
#define PIDR2_ARCH_MASK			0xf

/* Global TLB invalidation */
#define ARM_SMMU_GR0_STLBIALL		0x60
#define ARM_SMMU_GR0_TLBIVMID		0x64
#define ARM_SMMU_GR0_TLBIALLNSNH	0x68
#define ARM_SMMU_GR0_TLBIALLH		0x6c
#define ARM_SMMU_GR0_sTLBGSYNC		0x70
#define ARM_SMMU_GR0_sTLBGSTATUS	0x74
#define sTLBGSTATUS_GSACTIVE		(1 << 0)
#define TLB_LOOP_TIMEOUT		1000000	/* 1s! */

/* Stream mapping registers */
#define ARM_SMMU_GR0_SMR(n)		(0x800 + ((n) << 2))
#define SMR_VALID			(1 << 31)
#define SMR_MASK_SHIFT			16
#define SMR_MASK_MASK			0x7fff
#define SMR_ID_SHIFT			0
#define SMR_ID_MASK			0x7fff

#define ARM_SMMU_GR0_S2CR(n)		(0xc00 + ((n) << 2))
#define S2CR_CBNDX_SHIFT		0
#define S2CR_CBNDX_MASK			0xff
#define S2CR_TYPE_SHIFT			16
#define S2CR_TYPE_MASK			0x3
#define S2CR_TYPE_TRANS			(0 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_BYPASS		(1 << S2CR_TYPE_SHIFT)
#define S2CR_TYPE_FAULT			(2 << S2CR_TYPE_SHIFT)

/* Context bank attribute registers */
#define ARM_SMMU_GR1_CBAR(n)		(0x0 + ((n) << 2))
#define CBAR_VMID_SHIFT			0
#define CBAR_VMID_MASK			0xff
#define CBAR_S1_MEMATTR_SHIFT		12
#define CBAR_S1_MEMATTR_MASK		0xf
#define CBAR_S1_MEMATTR_WB		0xf
#define CBAR_TYPE_SHIFT			16
#define CBAR_TYPE_MASK			0x3
#define CBAR_TYPE_S2_TRANS		(0 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_BYPASS	(1 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_FAULT	(2 << CBAR_TYPE_SHIFT)
#define CBAR_TYPE_S1_TRANS_S2_TRANS	(3 << CBAR_TYPE_SHIFT)
#define CBAR_IRPTNDX_SHIFT		24
#define CBAR_IRPTNDX_MASK		0xff

#define ARM_SMMU_GR1_CBA2R(n)		(0x800 + ((n) << 2))
#define CBA2R_RW64_32BIT		(0 << 0)
#define CBA2R_RW64_64BIT		(1 << 0)

/* Translation context bank */
#define ARM_SMMU_CB_BASE(smmu)		((smmu)->base + ((smmu)->size >> 1))
#define ARM_SMMU_CB(smmu, n)		((n) * (smmu)->pagesize)

#define ARM_SMMU_CB_SCTLR		0x0
#define ARM_SMMU_CB_RESUME		0x8
#define ARM_SMMU_CB_TTBCR2		0x10
#define ARM_SMMU_CB_TTBR0_LO		0x20
#define ARM_SMMU_CB_TTBR0_HI		0x24
#define ARM_SMMU_CB_TTBCR		0x30
#define ARM_SMMU_CB_S1_MAIR0		0x38
#define ARM_SMMU_CB_FSR			0x58
#define ARM_SMMU_CB_FAR_LO		0x60
#define ARM_SMMU_CB_FAR_HI		0x64
#define ARM_SMMU_CB_FSYNR0		0x68
#define ARM_SMMU_CB_S1_TLBIASID		0x610

#define SCTLR_S1_ASIDPNE		(1 << 12)
#define SCTLR_CFCFG			(1 << 7)
#define SCTLR_CFIE			(1 << 6)
#define SCTLR_CFRE			(1 << 5)
#define SCTLR_E				(1 << 4)
#define SCTLR_AFE			(1 << 2)
#define SCTLR_TRE			(1 << 1)
#define SCTLR_M				(1 << 0)
#define SCTLR_EAE_SBOP			(SCTLR_AFE | SCTLR_TRE)

#define RESUME_RETRY			(0 << 0)
#define RESUME_TERMINATE		(1 << 0)

#define TTBCR_EAE			(1 << 31)

#define TTBCR_PASIZE_SHIFT		16
#define TTBCR_PASIZE_MASK		0x7

#define TTBCR_TG0_4K			(0 << 14)
#define TTBCR_TG0_64K			(1 << 14)

#define TTBCR_SH0_SHIFT			12
#define TTBCR_SH0_MASK			0x3
#define TTBCR_SH_NS			0
#define TTBCR_SH_OS			2
#define TTBCR_SH_IS			3

#define TTBCR_ORGN0_SHIFT		10
#define TTBCR_IRGN0_SHIFT		8
#define TTBCR_RGN_MASK			0x3
#define TTBCR_RGN_NC			0
#define TTBCR_RGN_WBWA			1
#define TTBCR_RGN_WT			2
#define TTBCR_RGN_WB			3

#define TTBCR_SL0_SHIFT			6
#define TTBCR_SL0_MASK			0x3
#define TTBCR_SL0_LVL_2			0
#define TTBCR_SL0_LVL_1			1

#define TTBCR_T1SZ_SHIFT		16
#define TTBCR_T0SZ_SHIFT		0
#define TTBCR_SZ_MASK			0xf

#define TTBCR2_SEP_SHIFT		15
#define TTBCR2_SEP_MASK			0x7

#define TTBCR2_PASIZE_SHIFT		0
#define TTBCR2_PASIZE_MASK		0x7

/* Common definitions for PASize and SEP fields */
#define TTBCR2_ADDR_32			0
#define TTBCR2_ADDR_36			1
#define TTBCR2_ADDR_40			2
#define TTBCR2_ADDR_42			3
#define TTBCR2_ADDR_44			4
#define TTBCR2_ADDR_48			5

#define TTBRn_HI_ASID_SHIFT		16

#define MAIR_ATTR_SHIFT(n)		((n) << 3)
#define MAIR_ATTR_MASK			0xff
#define MAIR_ATTR_DEVICE		0x04
#define MAIR_ATTR_NC			0x44
#define MAIR_ATTR_WBRWA			0xff
#define MAIR_ATTR_IDX_NC		0
#define MAIR_ATTR_IDX_CACHE		1
#define MAIR_ATTR_IDX_DEV		2

#define FSR_MULTI			(1 << 31)
#define FSR_SS				(1 << 30)
#define FSR_UUT				(1 << 8)
#define FSR_ASF				(1 << 7)
#define FSR_TLBLKF			(1 << 6)
#define FSR_TLBMCF			(1 << 5)
#define FSR_EF				(1 << 4)
#define FSR_PF				(1 << 3)
#define FSR_AFF				(1 << 2)
#define FSR_TF				(1 << 1)

#define FSR_IGN				(FSR_AFF | FSR_ASF | FSR_TLBMCF |	\
					 FSR_TLBLKF)
#define FSR_FAULT			(FSR_MULTI | FSR_SS | FSR_UUT |		\
					 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)

#define FSYNR0_WNR			(1 << 4)

struct arm_smmu_smr {
	u8				idx;
	u16				mask;
	u16				id;
};

struct arm_smmu_master {
	struct device_node		*of_node;

	/*
	 * The following is specific to the master's position in the
	 * SMMU chain.
	 */
	struct rb_node			node;
	int				num_streamids;
	u16				streamids[MAX_MASTER_STREAMIDS];

	/*
	 * We only need to allocate these on the root SMMU, as we
	 * configure unmatched streams to bypass translation.
	 */
	struct arm_smmu_smr		*smrs;
};

struct arm_smmu_device {
	struct device			*dev;
	struct device_node		*parent_of_node;

	void __iomem			*base;
	unsigned long			size;
	unsigned long			pagesize;

#define ARM_SMMU_FEAT_COHERENT_WALK	(1 << 0)
#define ARM_SMMU_FEAT_STREAM_MATCH	(1 << 1)
#define ARM_SMMU_FEAT_TRANS_S1		(1 << 2)
#define ARM_SMMU_FEAT_TRANS_S2		(1 << 3)
#define ARM_SMMU_FEAT_TRANS_NESTED	(1 << 4)
	u32				features;
	int				version;

	u32				num_context_banks;
	u32				num_s2_context_banks;
	DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
	atomic_t			irptndx;

	u32				num_mapping_groups;
	DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);

	unsigned long			input_size;
	unsigned long			s1_output_size;
	unsigned long			s2_output_size;

	u32				num_global_irqs;
	u32				num_context_irqs;
	unsigned int			*irqs;

	struct list_head		list;
	struct rb_root			masters;
};

struct arm_smmu_cfg {
	struct arm_smmu_device		*smmu;
	u8				cbndx;
	u8				irptndx;
	u32				cbar;
	pgd_t				*pgd;
};
#define INVALID_IRPTNDX			0xff

#define ARM_SMMU_CB_ASID(cfg)		((cfg)->cbndx)
#define ARM_SMMU_CB_VMID(cfg)		((cfg)->cbndx + 1)

struct arm_smmu_domain {
	/*
	 * A domain can span across multiple, chained SMMUs and requires
	 * all devices within the domain to follow the same translation
	 * path.
	 */
	struct arm_smmu_device		*leaf_smmu;
	struct arm_smmu_cfg		root_cfg;
	phys_addr_t			output_mask;

	spinlock_t			lock;
};

static DEFINE_SPINLOCK(arm_smmu_devices_lock);
static LIST_HEAD(arm_smmu_devices);

static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
						struct device_node *dev_node)
{
	struct rb_node *node = smmu->masters.rb_node;

	while (node) {
		struct arm_smmu_master *master;
		master = container_of(node, struct arm_smmu_master, node);

		if (dev_node < master->of_node)
			node = node->rb_left;
		else if (dev_node > master->of_node)
			node = node->rb_right;
		else
			return master;
	}

	return NULL;
}

static int insert_smmu_master(struct arm_smmu_device *smmu,
			      struct arm_smmu_master *master)
{
	struct rb_node **new, *parent;

	new = &smmu->masters.rb_node;
	parent = NULL;
	while (*new) {
		struct arm_smmu_master *this;
		this = container_of(*new, struct arm_smmu_master, node);

		parent = *new;
		if (master->of_node < this->of_node)
			new = &((*new)->rb_left);
		else if (master->of_node > this->of_node)
			new = &((*new)->rb_right);
		else
			return -EEXIST;
	}

	rb_link_node(&master->node, parent, new);
	rb_insert_color(&master->node, &smmu->masters);
	return 0;
}

static int register_smmu_master(struct arm_smmu_device *smmu,
				struct device *dev,
				struct of_phandle_args *masterspec)
{
	int i;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu, masterspec->np);
	if (master) {
		dev_err(dev,
			"rejecting multiple registrations for master device %s\n",
			masterspec->np->name);
		return -EBUSY;
	}

	if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
		dev_err(dev,
			"reached maximum number (%d) of stream IDs for master device %s\n",
			MAX_MASTER_STREAMIDS, masterspec->np->name);
		return -ENOSPC;
	}

	master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
	if (!master)
		return -ENOMEM;

	master->of_node		= masterspec->np;
	master->num_streamids	= masterspec->args_count;

	for (i = 0; i < master->num_streamids; ++i)
		master->streamids[i] = masterspec->args[i];

	return insert_smmu_master(smmu, master);
}

static struct arm_smmu_device *find_parent_smmu(struct arm_smmu_device *smmu)
{
	struct arm_smmu_device *parent;

	if (!smmu->parent_of_node)
		return NULL;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(parent, &arm_smmu_devices, list)
		if (parent->dev->of_node == smmu->parent_of_node)
			goto out_unlock;

	parent = NULL;
	dev_warn(smmu->dev,
		 "Failed to find SMMU parent despite parent in DT\n");
out_unlock:
	spin_unlock(&arm_smmu_devices_lock);
	return parent;
}

static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
{
	int idx;

	do {
		idx = find_next_zero_bit(map, end, start);
		if (idx == end)
			return -ENOSPC;
	} while (test_and_set_bit(idx, map));

	return idx;
}

static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
	clear_bit(idx, map);
}

/* Wait for any pending TLB invalidations to complete */
static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
{
	int count = 0;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
	while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
	       & sTLBGSTATUS_GSACTIVE) {
		cpu_relax();
		if (++count == TLB_LOOP_TIMEOUT) {
			dev_err_ratelimited(smmu->dev,
			"TLB sync timed out -- SMMU may be deadlocked\n");
			return;
		}
		udelay(1);
	}
}

static void arm_smmu_tlb_inv_context(struct arm_smmu_cfg *cfg)
{
	struct arm_smmu_device *smmu = cfg->smmu;
	void __iomem *base = ARM_SMMU_GR0(smmu);
	bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;

	if (stage1) {
		base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
		writel_relaxed(ARM_SMMU_CB_ASID(cfg),
			       base + ARM_SMMU_CB_S1_TLBIASID);
	} else {
		base = ARM_SMMU_GR0(smmu);
		writel_relaxed(ARM_SMMU_CB_VMID(cfg),
			       base + ARM_SMMU_GR0_TLBIVMID);
	}

	arm_smmu_tlb_sync(smmu);
}

static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
	int flags, ret;
	u32 fsr, far, fsynr, resume;
	unsigned long iova;
	struct iommu_domain *domain = dev;
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	struct arm_smmu_device *smmu = root_cfg->smmu;
	void __iomem *cb_base;

	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
	fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);

	if (!(fsr & FSR_FAULT))
		return IRQ_NONE;

	if (fsr & FSR_IGN)
		dev_err_ratelimited(smmu->dev,
				    "Unexpected context fault (fsr 0x%u)\n",
				    fsr);

	fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
	flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;

	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
	iova = far;
#ifdef CONFIG_64BIT
	far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
	iova |= ((unsigned long)far << 32);
#endif

	if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
		ret = IRQ_HANDLED;
		resume = RESUME_RETRY;
	} else {
		ret = IRQ_NONE;
		resume = RESUME_TERMINATE;
	}

	/* Clear the faulting FSR */
	writel(fsr, cb_base + ARM_SMMU_CB_FSR);

	/* Retry or terminate any stalled transactions */
	if (fsr & FSR_SS)
		writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);

	return ret;
}

static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
	u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
	struct arm_smmu_device *smmu = dev;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
	if (!gfsr)
		return IRQ_NONE;

	gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
	gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
	gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);

	dev_err_ratelimited(smmu->dev,
		"Unexpected global fault, this could be serious\n");
	dev_err_ratelimited(smmu->dev,
		"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
		gfsr, gfsynr0, gfsynr1, gfsynr2);

	writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
	return IRQ_HANDLED;
}

static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
{
	u32 reg;
	bool stage1;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	struct arm_smmu_device *smmu = root_cfg->smmu;
	void __iomem *cb_base, *gr0_base, *gr1_base;

	gr0_base = ARM_SMMU_GR0(smmu);
	gr1_base = ARM_SMMU_GR1(smmu);
	stage1 = root_cfg->cbar != CBAR_TYPE_S2_TRANS;
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);

	/* CBAR */
	reg = root_cfg->cbar;
	if (smmu->version == 1)
	      reg |= root_cfg->irptndx << CBAR_IRPTNDX_SHIFT;

	/* Use the weakest memory type, so it is overridden by the pte */
	if (stage1)
		reg |= (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
	else
		reg |= ARM_SMMU_CB_VMID(root_cfg) << CBAR_VMID_SHIFT;
	writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(root_cfg->cbndx));

	if (smmu->version > 1) {
		/* CBA2R */
#ifdef CONFIG_64BIT
		reg = CBA2R_RW64_64BIT;
#else
		reg = CBA2R_RW64_32BIT;
#endif
		writel_relaxed(reg,
			       gr1_base + ARM_SMMU_GR1_CBA2R(root_cfg->cbndx));

		/* TTBCR2 */
		switch (smmu->input_size) {
		case 32:
			reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
			break;
		case 36:
			reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
			break;
		case 39:
			reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
			break;
		case 42:
			reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
			break;
		case 44:
			reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
			break;
		case 48:
			reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
			break;
		}

		switch (smmu->s1_output_size) {
		case 32:
			reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
			break;
		case 36:
			reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
			break;
		case 39:
			reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
			break;
		case 42:
			reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
			break;
		case 44:
			reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
			break;
		case 48:
			reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
			break;
		}

		if (stage1)
			writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
	}

	/* TTBR0 */
	reg = __pa(root_cfg->pgd);
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
	reg = (phys_addr_t)__pa(root_cfg->pgd) >> 32;
	if (stage1)
		reg |= ARM_SMMU_CB_ASID(root_cfg) << TTBRn_HI_ASID_SHIFT;
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);

	/*
	 * TTBCR
	 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
	 */
	if (smmu->version > 1) {
		if (PAGE_SIZE == SZ_4K)
			reg = TTBCR_TG0_4K;
		else
			reg = TTBCR_TG0_64K;

		if (!stage1) {
			switch (smmu->s2_output_size) {
			case 32:
				reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
				break;
			case 36:
				reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
				break;
			case 40:
				reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
				break;
			case 42:
				reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
				break;
			case 44:
				reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
				break;
			case 48:
				reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
				break;
			}
		} else {
			reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
		}
	} else {
		reg = 0;
	}

	reg |= TTBCR_EAE |
	      (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
	      (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT) |
	      (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
	writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);

	/* MAIR0 (stage-1 only) */
	if (stage1) {
		reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
		      (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
		      (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
		writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
	}

	/* SCTLR */
	reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
	if (stage1)
		reg |= SCTLR_S1_ASIDPNE;
#ifdef __BIG_ENDIAN
	reg |= SCTLR_E;
#endif
	writel(reg, cb_base + ARM_SMMU_CB_SCTLR);
}

static int arm_smmu_init_domain_context(struct iommu_domain *domain,
					struct device *dev)
{
	int irq, ret, start;
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	struct arm_smmu_device *smmu, *parent;

	/*
	 * Walk the SMMU chain to find the root device for this chain.
	 * We assume that no masters have translations which terminate
	 * early, and therefore check that the root SMMU does indeed have
	 * a StreamID for the master in question.
	 */
	parent = dev->archdata.iommu;
	smmu_domain->output_mask = -1;
	do {
		smmu = parent;
		smmu_domain->output_mask &= (1ULL << smmu->s2_output_size) - 1;
	} while ((parent = find_parent_smmu(smmu)));

	if (!find_smmu_master(smmu, dev->of_node)) {
		dev_err(dev, "unable to find root SMMU for device\n");
		return -ENODEV;
	}

	if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
		/*
		 * We will likely want to change this if/when KVM gets
		 * involved.
		 */
		root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
	} else if (smmu->features & ARM_SMMU_FEAT_TRANS_S2) {
		root_cfg->cbar = CBAR_TYPE_S2_TRANS;
		start = 0;
	} else {
		root_cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
		start = smmu->num_s2_context_banks;
	}

	ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
				      smmu->num_context_banks);
	if (IS_ERR_VALUE(ret))
		return ret;

	root_cfg->cbndx = ret;
	if (smmu->version == 1) {
		root_cfg->irptndx = atomic_inc_return(&smmu->irptndx);
		root_cfg->irptndx %= smmu->num_context_irqs;
	} else {
		root_cfg->irptndx = root_cfg->cbndx;
	}

	irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
	ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
			  "arm-smmu-context-fault", domain);
	if (IS_ERR_VALUE(ret)) {
		dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
			root_cfg->irptndx, irq);
		root_cfg->irptndx = INVALID_IRPTNDX;
		goto out_free_context;
	}

	root_cfg->smmu = smmu;
	arm_smmu_init_context_bank(smmu_domain);
	return ret;

out_free_context:
	__arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
	return ret;
}

static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	struct arm_smmu_device *smmu = root_cfg->smmu;
	void __iomem *cb_base;
	int irq;

	if (!smmu)
		return;

	/* Disable the context bank and nuke the TLB before freeing it. */
	cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, root_cfg->cbndx);
	writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
	arm_smmu_tlb_inv_context(root_cfg);

	if (root_cfg->irptndx != INVALID_IRPTNDX) {
		irq = smmu->irqs[smmu->num_global_irqs + root_cfg->irptndx];
		free_irq(irq, domain);
	}

	__arm_smmu_free_bitmap(smmu->context_map, root_cfg->cbndx);
}

static int arm_smmu_domain_init(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain;
	pgd_t *pgd;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return -ENOMEM;

	pgd = kzalloc(PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
	if (!pgd)
		goto out_free_domain;
	smmu_domain->root_cfg.pgd = pgd;

	spin_lock_init(&smmu_domain->lock);
	domain->priv = smmu_domain;
	return 0;

out_free_domain:
	kfree(smmu_domain);
	return -ENOMEM;
}

static void arm_smmu_free_ptes(pmd_t *pmd)
{
	pgtable_t table = pmd_pgtable(*pmd);
	pgtable_page_dtor(table);
	__free_page(table);
}

static void arm_smmu_free_pmds(pud_t *pud)
{
	int i;
	pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);

	pmd = pmd_base;
	for (i = 0; i < PTRS_PER_PMD; ++i) {
		if (pmd_none(*pmd))
			continue;

		arm_smmu_free_ptes(pmd);
		pmd++;
	}

	pmd_free(NULL, pmd_base);
}

static void arm_smmu_free_puds(pgd_t *pgd)
{
	int i;
	pud_t *pud, *pud_base = pud_offset(pgd, 0);

	pud = pud_base;
	for (i = 0; i < PTRS_PER_PUD; ++i) {
		if (pud_none(*pud))
			continue;

		arm_smmu_free_pmds(pud);
		pud++;
	}

	pud_free(NULL, pud_base);
}

static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
{
	int i;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	pgd_t *pgd, *pgd_base = root_cfg->pgd;

	/*
	 * Recursively free the page tables for this domain. We don't
	 * care about speculative TLB filling, because the TLB will be
	 * nuked next time this context bank is re-allocated and no devices
	 * currently map to these tables.
	 */
	pgd = pgd_base;
	for (i = 0; i < PTRS_PER_PGD; ++i) {
		if (pgd_none(*pgd))
			continue;
		arm_smmu_free_puds(pgd);
		pgd++;
	}

	kfree(pgd_base);
}

static void arm_smmu_domain_destroy(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;

	/*
	 * Free the domain resources. We assume that all devices have
	 * already been detached.
	 */
	arm_smmu_destroy_domain_context(domain);
	arm_smmu_free_pgtables(smmu_domain);
	kfree(smmu_domain);
}

static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
					  struct arm_smmu_master *master)
{
	int i;
	struct arm_smmu_smr *smrs;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
		return 0;

	if (master->smrs)
		return -EEXIST;

	smrs = kmalloc(sizeof(*smrs) * master->num_streamids, GFP_KERNEL);
	if (!smrs) {
		dev_err(smmu->dev, "failed to allocate %d SMRs for master %s\n",
			master->num_streamids, master->of_node->name);
		return -ENOMEM;
	}

	/* Allocate the SMRs on the root SMMU */
	for (i = 0; i < master->num_streamids; ++i) {
		int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
						  smmu->num_mapping_groups);
		if (IS_ERR_VALUE(idx)) {
			dev_err(smmu->dev, "failed to allocate free SMR\n");
			goto err_free_smrs;
		}

		smrs[i] = (struct arm_smmu_smr) {
			.idx	= idx,
			.mask	= 0, /* We don't currently share SMRs */
			.id	= master->streamids[i],
		};
	}

	/* It worked! Now, poke the actual hardware */
	for (i = 0; i < master->num_streamids; ++i) {
		u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
			  smrs[i].mask << SMR_MASK_SHIFT;
		writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
	}

	master->smrs = smrs;
	return 0;

err_free_smrs:
	while (--i >= 0)
		__arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
	kfree(smrs);
	return -ENOSPC;
}

static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
				      struct arm_smmu_master *master)
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	struct arm_smmu_smr *smrs = master->smrs;

	/* Invalidate the SMRs before freeing back to the allocator */
	for (i = 0; i < master->num_streamids; ++i) {
		u8 idx = smrs[i].idx;
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
		__arm_smmu_free_bitmap(smmu->smr_map, idx);
	}

	master->smrs = NULL;
	kfree(smrs);
}

static void arm_smmu_bypass_stream_mapping(struct arm_smmu_device *smmu,
					   struct arm_smmu_master *master)
{
	int i;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	for (i = 0; i < master->num_streamids; ++i) {
		u16 sid = master->streamids[i];
		writel_relaxed(S2CR_TYPE_BYPASS,
			       gr0_base + ARM_SMMU_GR0_S2CR(sid));
	}
}

static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
				      struct arm_smmu_master *master)
{
	int i, ret;
	struct arm_smmu_device *parent, *smmu = smmu_domain->root_cfg.smmu;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);

	ret = arm_smmu_master_configure_smrs(smmu, master);
	if (ret)
		return ret;

	/* Bypass the leaves */
	smmu = smmu_domain->leaf_smmu;
	while ((parent = find_parent_smmu(smmu))) {
		/*
		 * We won't have a StreamID match for anything but the root
		 * smmu, so we only need to worry about StreamID indexing,
		 * where we must install bypass entries in the S2CRs.
		 */
		if (smmu->features & ARM_SMMU_FEAT_STREAM_MATCH)
			continue;

		arm_smmu_bypass_stream_mapping(smmu, master);
		smmu = parent;
	}

	/* Now we're at the root, time to point at our context bank */
	for (i = 0; i < master->num_streamids; ++i) {
		u32 idx, s2cr;
		idx = master->smrs ? master->smrs[i].idx : master->streamids[i];
		s2cr = (S2CR_TYPE_TRANS << S2CR_TYPE_SHIFT) |
		       (smmu_domain->root_cfg.cbndx << S2CR_CBNDX_SHIFT);
		writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
	}

	return 0;
}

static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
					  struct arm_smmu_master *master)
{
	struct arm_smmu_device *smmu = smmu_domain->root_cfg.smmu;

	/*
	 * We *must* clear the S2CR first, because freeing the SMR means
	 * that it can be re-allocated immediately.
	 */
	arm_smmu_bypass_stream_mapping(smmu, master);
	arm_smmu_master_free_smrs(smmu, master);
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = -EINVAL;
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_device *device_smmu = dev->archdata.iommu;
	struct arm_smmu_master *master;

	if (!device_smmu) {
		dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
		return -ENXIO;
	}

	/*
	 * Sanity check the domain. We don't currently support domains
	 * that cross between different SMMU chains.
	 */
	spin_lock(&smmu_domain->lock);
	if (!smmu_domain->leaf_smmu) {
		/* Now that we have a master, we can finalise the domain */
		ret = arm_smmu_init_domain_context(domain, dev);
		if (IS_ERR_VALUE(ret))
			goto err_unlock;

		smmu_domain->leaf_smmu = device_smmu;
	} else if (smmu_domain->leaf_smmu != device_smmu) {
		dev_err(dev,
			"cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
			dev_name(smmu_domain->leaf_smmu->dev),
			dev_name(device_smmu->dev));
		goto err_unlock;
	}
	spin_unlock(&smmu_domain->lock);

	/* Looks ok, so add the device to the domain */
	master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
	if (!master)
		return -ENODEV;

	return arm_smmu_domain_add_master(smmu_domain, master);

err_unlock:
	spin_unlock(&smmu_domain->lock);
	return ret;
}

static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_master *master;

	master = find_smmu_master(smmu_domain->leaf_smmu, dev->of_node);
	if (master)
		arm_smmu_domain_remove_master(smmu_domain, master);
}

static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
				   size_t size)
{
	unsigned long offset = (unsigned long)addr & ~PAGE_MASK;

	/*
	 * If the SMMU can't walk tables in the CPU caches, treat them
	 * like non-coherent DMA since we need to flush the new entries
	 * all the way out to memory. There's no possibility of recursion
	 * here as the SMMU table walker will not be wired through another
	 * SMMU.
	 */
	if (!(smmu->features & ARM_SMMU_FEAT_COHERENT_WALK))
		dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
			     DMA_TO_DEVICE);
}

static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
					     unsigned long end)
{
	return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
		(addr + ARM_SMMU_PTE_CONT_SIZE <= end);
}

static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
				   unsigned long addr, unsigned long end,
				   unsigned long pfn, int flags, int stage)
{
	pte_t *pte, *start;
	pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF;

	if (pmd_none(*pmd)) {
		/* Allocate a new set of tables */
		pgtable_t table = alloc_page(PGALLOC_GFP);
		if (!table)
			return -ENOMEM;

		arm_smmu_flush_pgtable(smmu, page_address(table),
				       ARM_SMMU_PTE_HWTABLE_SIZE);
		pgtable_page_ctor(table);
		pmd_populate(NULL, pmd, table);
		arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
	}

	if (stage == 1) {
		pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
		if (!(flags & IOMMU_WRITE) && (flags & IOMMU_READ))
			pteval |= ARM_SMMU_PTE_AP_RDONLY;

		if (flags & IOMMU_CACHE)
			pteval |= (MAIR_ATTR_IDX_CACHE <<
				   ARM_SMMU_PTE_ATTRINDX_SHIFT);
	} else {
		pteval |= ARM_SMMU_PTE_HAP_FAULT;
		if (flags & IOMMU_READ)
			pteval |= ARM_SMMU_PTE_HAP_READ;
		if (flags & IOMMU_WRITE)
			pteval |= ARM_SMMU_PTE_HAP_WRITE;
		if (flags & IOMMU_CACHE)
			pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
		else
			pteval |= ARM_SMMU_PTE_MEMATTR_NC;
	}

	/* If no access, create a faulting entry to avoid TLB fills */
	if (!(flags & (IOMMU_READ | IOMMU_WRITE)))
		pteval &= ~ARM_SMMU_PTE_PAGE;

	pteval |= ARM_SMMU_PTE_SH_IS;
	start = pmd_page_vaddr(*pmd) + pte_index(addr);
	pte = start;

	/*
	 * Install the page table entries. This is fairly complicated
	 * since we attempt to make use of the contiguous hint in the
	 * ptes where possible. The contiguous hint indicates a series
	 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
	 * contiguous region with the following constraints:
	 *
	 *   - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
	 *   - Each pte in the region has the contiguous hint bit set
	 *
	 * This complicates unmapping (also handled by this code, when
	 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
	 * possible, yet highly unlikely, that a client may unmap only
	 * part of a contiguous range. This requires clearing of the
	 * contiguous hint bits in the range before installing the new
	 * faulting entries.
	 *
	 * Note that re-mapping an address range without first unmapping
	 * it is not supported, so TLB invalidation is not required here
	 * and is instead performed at unmap and domain-init time.
	 */
	do {
		int i = 1;
		pteval &= ~ARM_SMMU_PTE_CONT;

		if (arm_smmu_pte_is_contiguous_range(addr, end)) {
			i = ARM_SMMU_PTE_CONT_ENTRIES;
			pteval |= ARM_SMMU_PTE_CONT;
		} else if (pte_val(*pte) &
			   (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
			int j;
			pte_t *cont_start;
			unsigned long idx = pte_index(addr);

			idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
			cont_start = pmd_page_vaddr(*pmd) + idx;
			for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
				pte_val(*(cont_start + j)) &= ~ARM_SMMU_PTE_CONT;

			arm_smmu_flush_pgtable(smmu, cont_start,
					       sizeof(*pte) *
					       ARM_SMMU_PTE_CONT_ENTRIES);
		}

		do {
			*pte = pfn_pte(pfn, __pgprot(pteval));
		} while (pte++, pfn++, addr += PAGE_SIZE, --i);
	} while (addr != end);

	arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
	return 0;
}

static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
				   unsigned long addr, unsigned long end,
				   phys_addr_t phys, int flags, int stage)
{
	int ret;
	pmd_t *pmd;
	unsigned long next, pfn = __phys_to_pfn(phys);

#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_none(*pud)) {
		pmd = pmd_alloc_one(NULL, addr);
		if (!pmd)
			return -ENOMEM;
	} else
#endif
		pmd = pmd_offset(pud, addr);

	do {
		next = pmd_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, end, pfn,
					      flags, stage);
		pud_populate(NULL, pud, pmd);
		arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
		phys += next - addr;
	} while (pmd++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
				   unsigned long addr, unsigned long end,
				   phys_addr_t phys, int flags, int stage)
{
	int ret = 0;
	pud_t *pud;
	unsigned long next;

#ifndef __PAGETABLE_PUD_FOLDED
	if (pgd_none(*pgd)) {
		pud = pud_alloc_one(NULL, addr);
		if (!pud)
			return -ENOMEM;
	} else
#endif
		pud = pud_offset(pgd, addr);

	do {
		next = pud_addr_end(addr, end);
		ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
					      flags, stage);
		pgd_populate(NULL, pud, pgd);
		arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
		phys += next - addr;
	} while (pud++, addr = next, addr < end);

	return ret;
}

static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
				   unsigned long iova, phys_addr_t paddr,
				   size_t size, int flags)
{
	int ret, stage;
	unsigned long end;
	phys_addr_t input_mask, output_mask;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	pgd_t *pgd = root_cfg->pgd;
	struct arm_smmu_device *smmu = root_cfg->smmu;

	if (root_cfg->cbar == CBAR_TYPE_S2_TRANS) {
		stage = 2;
		output_mask = (1ULL << smmu->s2_output_size) - 1;
	} else {
		stage = 1;
		output_mask = (1ULL << smmu->s1_output_size) - 1;
	}

	if (!pgd)
		return -EINVAL;

	if (size & ~PAGE_MASK)
		return -EINVAL;

	input_mask = (1ULL << smmu->input_size) - 1;
	if ((phys_addr_t)iova & ~input_mask)
		return -ERANGE;

	if (paddr & ~output_mask)
		return -ERANGE;

	spin_lock(&smmu_domain->lock);
	pgd += pgd_index(iova);
	end = iova + size;
	do {
		unsigned long next = pgd_addr_end(iova, end);

		ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
					      flags, stage);
		if (ret)
			goto out_unlock;

		paddr += next - iova;
		iova = next;
	} while (pgd++, iova != end);

out_unlock:
	spin_unlock(&smmu_domain->lock);

	/* Ensure new page tables are visible to the hardware walker */
	if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		dsb();

	return ret;
}

static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
			phys_addr_t paddr, size_t size, int flags)
{
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_device *smmu = smmu_domain->leaf_smmu;

	if (!smmu_domain || !smmu)
		return -ENODEV;

	/* Check for silent address truncation up the SMMU chain. */
	if ((phys_addr_t)iova & ~smmu_domain->output_mask)
		return -ERANGE;

	return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, flags);
}

static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
			     size_t size)
{
	int ret;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
	arm_smmu_tlb_inv_context(&smmu_domain->root_cfg);
	return ret ? ret : size;
}

static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
					 dma_addr_t iova)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;
	struct arm_smmu_domain *smmu_domain = domain->priv;
	struct arm_smmu_cfg *root_cfg = &smmu_domain->root_cfg;
	struct arm_smmu_device *smmu = root_cfg->smmu;

	spin_lock(&smmu_domain->lock);
	pgd = root_cfg->pgd;
	if (!pgd)
		goto err_unlock;

	pgd += pgd_index(iova);
	if (pgd_none_or_clear_bad(pgd))
		goto err_unlock;

	pud = pud_offset(pgd, iova);
	if (pud_none_or_clear_bad(pud))
		goto err_unlock;

	pmd = pmd_offset(pud, iova);
	if (pmd_none_or_clear_bad(pmd))
		goto err_unlock;

	pte = pmd_page_vaddr(*pmd) + pte_index(iova);
	if (pte_none(pte))
		goto err_unlock;

	spin_unlock(&smmu_domain->lock);
	return __pfn_to_phys(pte_pfn(*pte)) | (iova & ~PAGE_MASK);

err_unlock:
	spin_unlock(&smmu_domain->lock);
	dev_warn(smmu->dev,
		 "invalid (corrupt?) page tables detected for iova 0x%llx\n",
		 (unsigned long long)iova);
	return -EINVAL;
}

static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
				   unsigned long cap)
{
	unsigned long caps = 0;
	struct arm_smmu_domain *smmu_domain = domain->priv;

	if (smmu_domain->root_cfg.smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
		caps |= IOMMU_CAP_CACHE_COHERENCY;

	return !!(cap & caps);
}

static int arm_smmu_add_device(struct device *dev)
{
	struct arm_smmu_device *child, *parent, *smmu;
	struct arm_smmu_master *master = NULL;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(parent, &arm_smmu_devices, list) {
		smmu = parent;

		/* Try to find a child of the current SMMU. */
		list_for_each_entry(child, &arm_smmu_devices, list) {
			if (child->parent_of_node == parent->dev->of_node) {
				/* Does the child sit above our master? */
				master = find_smmu_master(child, dev->of_node);
				if (master) {
					smmu = NULL;
					break;
				}
			}
		}

		/* We found some children, so keep searching. */
		if (!smmu) {
			master = NULL;
			continue;
		}

		master = find_smmu_master(smmu, dev->of_node);
		if (master)
			break;
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!master)
		return -ENODEV;

	dev->archdata.iommu = smmu;
	return 0;
}

static void arm_smmu_remove_device(struct device *dev)
{
	dev->archdata.iommu = NULL;
}

static struct iommu_ops arm_smmu_ops = {
	.domain_init	= arm_smmu_domain_init,
	.domain_destroy	= arm_smmu_domain_destroy,
	.attach_dev	= arm_smmu_attach_dev,
	.detach_dev	= arm_smmu_detach_dev,
	.map		= arm_smmu_map,
	.unmap		= arm_smmu_unmap,
	.iova_to_phys	= arm_smmu_iova_to_phys,
	.domain_has_cap	= arm_smmu_domain_has_cap,
	.add_device	= arm_smmu_add_device,
	.remove_device	= arm_smmu_remove_device,
	.pgsize_bitmap	= (SECTION_SIZE |
			   ARM_SMMU_PTE_CONT_SIZE |
			   PAGE_SIZE),
};

static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	void __iomem *sctlr_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB_SCTLR;
	int i = 0;
	u32 scr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sCR0);

	/* Mark all SMRn as invalid and all S2CRn as bypass */
	for (i = 0; i < smmu->num_mapping_groups; ++i) {
		writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(i));
		writel_relaxed(S2CR_TYPE_BYPASS, gr0_base + ARM_SMMU_GR0_S2CR(i));
	}

	/* Make sure all context banks are disabled */
	for (i = 0; i < smmu->num_context_banks; ++i)
		writel_relaxed(0, sctlr_base + ARM_SMMU_CB(smmu, i));

	/* Invalidate the TLB, just in case */
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
	writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);

	/* Enable fault reporting */
	scr0 |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);

	/* Disable TLB broadcasting. */
	scr0 |= (sCR0_VMIDPNE | sCR0_PTM);

	/* Enable client access, but bypass when no mapping is found */
	scr0 &= ~(sCR0_CLIENTPD | sCR0_USFCFG);

	/* Disable forced broadcasting */
	scr0 &= ~sCR0_FB;

	/* Don't upgrade barriers */
	scr0 &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);

	/* Push the button */
	arm_smmu_tlb_sync(smmu);
	writel(scr0, gr0_base + ARM_SMMU_GR0_sCR0);
}

static int arm_smmu_id_size_to_bits(int size)
{
	switch (size) {
	case 0:
		return 32;
	case 1:
		return 36;
	case 2:
		return 40;
	case 3:
		return 42;
	case 4:
		return 44;
	case 5:
	default:
		return 48;
	}
}

static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
	unsigned long size;
	void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
	u32 id;

	dev_notice(smmu->dev, "probing hardware configuration...\n");

	/* Primecell ID */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
	smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
	dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);

	/* ID0 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
#ifndef CONFIG_64BIT
	if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
		dev_err(smmu->dev, "\tno v7 descriptor support!\n");
		return -ENODEV;
	}
#endif
	if (id & ID0_S1TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
		dev_notice(smmu->dev, "\tstage 1 translation\n");
	}

	if (id & ID0_S2TS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
		dev_notice(smmu->dev, "\tstage 2 translation\n");
	}

	if (id & ID0_NTS) {
		smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
		dev_notice(smmu->dev, "\tnested translation\n");
	}

	if (!(smmu->features &
		(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2 |
		 ARM_SMMU_FEAT_TRANS_NESTED))) {
		dev_err(smmu->dev, "\tno translation support!\n");
		return -ENODEV;
	}

	if (id & ID0_CTTW) {
		smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
		dev_notice(smmu->dev, "\tcoherent table walk\n");
	}

	if (id & ID0_SMS) {
		u32 smr, sid, mask;

		smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
		smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
					   ID0_NUMSMRG_MASK;
		if (smmu->num_mapping_groups == 0) {
			dev_err(smmu->dev,
				"stream-matching supported, but no SMRs present!\n");
			return -ENODEV;
		}

		smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
		smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
		writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
		smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));

		mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
		sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
		if ((mask & sid) != sid) {
			dev_err(smmu->dev,
				"SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
				mask, sid);
			return -ENODEV;
		}

		dev_notice(smmu->dev,
			   "\tstream matching with %u register groups, mask 0x%x",
			   smmu->num_mapping_groups, mask);
	}

	/* ID1 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
	smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;

	/* Check that we ioremapped enough */
	size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
	size *= (smmu->pagesize << 1);
	if (smmu->size < size)
		dev_warn(smmu->dev,
			 "device is 0x%lx bytes but only mapped 0x%lx!\n",
			 size, smmu->size);

	smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
				      ID1_NUMS2CB_MASK;
	smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
	if (smmu->num_s2_context_banks > smmu->num_context_banks) {
		dev_err(smmu->dev, "impossible number of S2 context banks!\n");
		return -ENODEV;
	}
	dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
		   smmu->num_context_banks, smmu->num_s2_context_banks);

	/* ID2 */
	id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
	size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);

	/*
	 * Stage-1 output limited by stage-2 input size due to pgd
	 * allocation (PTRS_PER_PGD).
	 */
#ifdef CONFIG_64BIT
	/* Current maximum output size of 39 bits */
	smmu->s1_output_size = min(39UL, size);
#else
	smmu->s1_output_size = min(32UL, size);
#endif

	/* The stage-2 output mask is also applied for bypass */
	size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
	smmu->s2_output_size = min((unsigned long)PHYS_MASK_SHIFT, size);

	if (smmu->version == 1) {
		smmu->input_size = 32;
	} else {
#ifdef CONFIG_64BIT
		size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
		size = min(39, arm_smmu_id_size_to_bits(size));
#else
		size = 32;
#endif
		smmu->input_size = size;

		if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
		    (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
		    (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
			dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
				PAGE_SIZE);
			return -ENODEV;
		}
	}

	dev_notice(smmu->dev,
		   "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
		   smmu->input_size, smmu->s1_output_size, smmu->s2_output_size);
	return 0;
}

static int arm_smmu_device_dt_probe(struct platform_device *pdev)
{
	struct resource *res;
	struct arm_smmu_device *smmu;
	struct device_node *dev_node;
	struct device *dev = &pdev->dev;
	struct rb_node *node;
	struct of_phandle_args masterspec;
	int num_irqs, i, err;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu) {
		dev_err(dev, "failed to allocate arm_smmu_device\n");
		return -ENOMEM;
	}
	smmu->dev = dev;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(dev, "missing base address/size\n");
		return -ENODEV;
	}

	smmu->size = resource_size(res);
	smmu->base = devm_request_and_ioremap(dev, res);
	if (!smmu->base)
		return -EADDRNOTAVAIL;

	if (of_property_read_u32(dev->of_node, "#global-interrupts",
				 &smmu->num_global_irqs)) {
		dev_err(dev, "missing #global-interrupts property\n");
		return -ENODEV;
	}

	num_irqs = 0;
	while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
		num_irqs++;
		if (num_irqs > smmu->num_global_irqs)
			smmu->num_context_irqs++;
	}

	if (num_irqs < smmu->num_global_irqs) {
		dev_warn(dev, "found %d interrupts but expected at least %d\n",
			 num_irqs, smmu->num_global_irqs);
		smmu->num_global_irqs = num_irqs;
	}
	smmu->num_context_irqs = num_irqs - smmu->num_global_irqs;

	smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
				  GFP_KERNEL);
	if (!smmu->irqs) {
		dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
		return -ENOMEM;
	}

	for (i = 0; i < num_irqs; ++i) {
		int irq = platform_get_irq(pdev, i);
		if (irq < 0) {
			dev_err(dev, "failed to get irq index %d\n", i);
			return -ENODEV;
		}
		smmu->irqs[i] = irq;
	}

	i = 0;
	smmu->masters = RB_ROOT;
	while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
					   "#stream-id-cells", i,
					   &masterspec)) {
		err = register_smmu_master(smmu, dev, &masterspec);
		if (err) {
			dev_err(dev, "failed to add master %s\n",
				masterspec.np->name);
			goto out_put_masters;
		}

		i++;
	}
	dev_notice(dev, "registered %d master devices\n", i);

	if ((dev_node = of_parse_phandle(dev->of_node, "smmu-parent", 0)))
		smmu->parent_of_node = dev_node;

	err = arm_smmu_device_cfg_probe(smmu);
	if (err)
		goto out_put_parent;

	if (smmu->version > 1 &&
	    smmu->num_context_banks != smmu->num_context_irqs) {
		dev_err(dev,
			"found only %d context interrupt(s) but %d required\n",
			smmu->num_context_irqs, smmu->num_context_banks);
		goto out_put_parent;
	}

	arm_smmu_device_reset(smmu);

	for (i = 0; i < smmu->num_global_irqs; ++i) {
		err = request_irq(smmu->irqs[i],
				  arm_smmu_global_fault,
				  IRQF_SHARED,
				  "arm-smmu global fault",
				  smmu);
		if (err) {
			dev_err(dev, "failed to request global IRQ %d (%u)\n",
				i, smmu->irqs[i]);
			goto out_free_irqs;
		}
	}

	INIT_LIST_HEAD(&smmu->list);
	spin_lock(&arm_smmu_devices_lock);
	list_add(&smmu->list, &arm_smmu_devices);
	spin_unlock(&arm_smmu_devices_lock);
	return 0;

out_free_irqs:
	while (i--)
		free_irq(smmu->irqs[i], smmu);

out_put_parent:
	if (smmu->parent_of_node)
		of_node_put(smmu->parent_of_node);

out_put_masters:
	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
		struct arm_smmu_master *master;
		master = container_of(node, struct arm_smmu_master, node);
		of_node_put(master->of_node);
	}

	return err;
}

static int arm_smmu_device_remove(struct platform_device *pdev)
{
	int i;
	struct device *dev = &pdev->dev;
	struct arm_smmu_device *curr, *smmu = NULL;
	struct rb_node *node;

	spin_lock(&arm_smmu_devices_lock);
	list_for_each_entry(curr, &arm_smmu_devices, list) {
		if (curr->dev == dev) {
			smmu = curr;
			list_del(&smmu->list);
			break;
		}
	}
	spin_unlock(&arm_smmu_devices_lock);

	if (!smmu)
		return -ENODEV;

	if (smmu->parent_of_node)
		of_node_put(smmu->parent_of_node);

	for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
		struct arm_smmu_master *master;
		master = container_of(node, struct arm_smmu_master, node);
		of_node_put(master->of_node);
	}

	if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
		dev_err(dev, "removing device with active domains!\n");

	for (i = 0; i < smmu->num_global_irqs; ++i)
		free_irq(smmu->irqs[i], smmu);

	/* Turn the thing off */
	writel(sCR0_CLIENTPD, ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_sCR0);
	return 0;
}

#ifdef CONFIG_OF
static struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v1", },
	{ .compatible = "arm,smmu-v2", },
	{ .compatible = "arm,mmu-400", },
	{ .compatible = "arm,mmu-500", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#endif

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.owner		= THIS_MODULE,
		.name		= "arm-smmu",
		.of_match_table	= of_match_ptr(arm_smmu_of_match),
	},
	.probe	= arm_smmu_device_dt_probe,
	.remove	= arm_smmu_device_remove,
};

static int __init arm_smmu_init(void)
{
	int ret;

	ret = platform_driver_register(&arm_smmu_driver);
	if (ret)
		return ret;

	/* Oh, for a proper bus abstraction */
	if (!iommu_present(&platform_bus_type));
		bus_set_iommu(&platform_bus_type, &arm_smmu_ops);

	if (!iommu_present(&amba_bustype));
		bus_set_iommu(&amba_bustype, &arm_smmu_ops);

	return 0;
}

static void __exit arm_smmu_exit(void)
{
	return platform_driver_unregister(&arm_smmu_driver);
}

module_init(arm_smmu_init);
module_exit(arm_smmu_exit);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
MODULE_LICENSE("GPL v2");