/*
* drivers/i2c/chips/lm8323.c
*
* Copyright (C) 2007-2009 Nokia Corporation
*
* Written by Daniel Stone <daniel.stone@nokia.com>
* Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
*
* Updated by Felipe Balbi <felipe.balbi@nokia.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation (version 2 of the License only).
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/leds.h>
#include <linux/pm.h>
#include <linux/i2c/lm8323.h>
#include <linux/slab.h>
/* Commands to send to the chip. */
#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
/* Interrupt status. */
#define INT_KEYPAD 0x01 /* Key event. */
#define INT_ROTATOR 0x02 /* Rotator event. */
#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
#define INT_NOINIT 0x10 /* Lost configuration. */
#define INT_PWM1 0x20 /* PWM1 stopped. */
#define INT_PWM2 0x40 /* PWM2 stopped. */
#define INT_PWM3 0x80 /* PWM3 stopped. */
/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
#define ERR_BADPAR 0x01 /* Bad parameter. */
#define ERR_CMDUNK 0x02 /* Unknown command. */
#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
/* Configuration keys (CMD_{WRITE,READ}_CFG). */
#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
#define CFG_PSIZE 0x20 /* Package size (must be 0). */
#define CFG_ROTEN 0x40 /* Enable rotator. */
/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
#define CLK_RCPWM_INTERNAL 0x00
#define CLK_RCPWM_EXTERNAL 0x03
#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
/* Key event fifo length */
#define LM8323_FIFO_LEN 15
/* Commands for PWM engine; feed in with PWM_WRITE. */
/* Load ramp counter from duty cycle field (range 0 - 0xff). */
#define PWM_SET(v) (0x4000 | ((v) & 0xff))
/* Go to start of script. */
#define PWM_GOTOSTART 0x0000
/*
* Stop engine (generates interrupt). If reset is 1, clear the program
* counter, else leave it.
*/
#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
/*
* Ramp. If s is 1, divide clock by 512, else divide clock by 16.
* Take t clock scales (up to 63) per step, for n steps (up to 126).
* If u is set, ramp up, else ramp down.
*/
#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
((n) & 0x7f) | ((u) ? 0 : 0x80))
/*
* Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
* If cnt is zero, execute until PWM_END is encountered.
*/
#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
((pos) & 0x3f))
/*
* Wait for trigger. Argument is a mask of channels, shifted by the channel
* number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
* from 1, not 0.
*/
#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
struct lm8323_pwm {
int id;
int fade_time;
int brightness;
int desired_brightness;
bool enabled;
bool running;
/* pwm lock */
struct mutex lock;
struct work_struct work;
struct led_classdev cdev;
struct lm8323_chip *chip;
};
struct lm8323_chip {
/* device lock */
struct mutex lock;
struct i2c_client *client;
struct input_dev *idev;
bool kp_enabled;
bool pm_suspend;
unsigned keys_down;
char phys[32];
unsigned short keymap[LM8323_KEYMAP_SIZE];
int size_x;
int size_y;
int debounce_time;
int active_time;
struct lm8323_pwm pwm[LM8323_NUM_PWMS];
};
#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
#define LM8323_MAX_DATA 8
/*
* To write, we just access the chip's address in write mode, and dump the
* command and data out on the bus. The command byte and data are taken as
* sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
*/
static int lm8323_write(struct lm8323_chip *lm, int len, ...)
{
int ret, i;
va_list ap;
u8 data[LM8323_MAX_DATA];
va_start(ap, len);
if (unlikely(len > LM8323_MAX_DATA)) {
dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
va_end(ap);
return 0;
}
for (i = 0; i < len; i++)
data[i] = va_arg(ap, int);
va_end(ap);
/*
* If the host is asleep while we send the data, we can get a NACK
* back while it wakes up, so try again, once.
*/
ret = i2c_master_send(lm->client, data, len);
if (unlikely(ret == -EREMOTEIO))
ret = i2c_master_send(lm->client, data, len);
if (unlikely(ret != len))
dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
len, ret);
return ret;
}
/*
* To read, we first send the command byte to the chip and end the transaction,
* then access the chip in read mode, at which point it will send the data.
*/
static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
{
int ret;
/*
* If the host is asleep while we send the byte, we can get a NACK
* back while it wakes up, so try again, once.
*/
ret = i2c_master_send(lm->client, &cmd, 1);
if (unlikely(ret == -EREMOTEIO))
ret = i2c_master_send(lm->client, &cmd, 1);
if (unlikely(ret != 1)) {
dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
cmd);
return 0;
}
ret = i2c_master_recv(lm->client, buf, len);
if (unlikely(ret != len))
dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
len, ret);
return ret;
}
/*
* Set the chip active time (idle time before it enters halt).
*/
static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
{
lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
}
/*
* The signals are AT-style: the low 7 bits are the keycode, and the top
* bit indicates the state (1 for down, 0 for up).
*/
static inline u8 lm8323_whichkey(u8 event)
{
return event & 0x7f;
}
static inline int lm8323_ispress(u8 event)
{
return (event & 0x80) ? 1 : 0;
}
static void process_keys(struct lm8323_chip *lm)
{
u8 event;
u8 key_fifo[LM8323_FIFO_LEN + 1];
int old_keys_down = lm->keys_down;
int ret;
int i = 0;
/*
* Read all key events from the FIFO at once. Next READ_FIFO clears the
* FIFO even if we didn't read all events previously.
*/
ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
if (ret < 0) {
dev_err(&lm->client->dev, "Failed reading fifo \n");
return;
}
key_fifo[ret] = 0;
while ((event = key_fifo[i++])) {
u8 key = lm8323_whichkey(event);
int isdown = lm8323_ispress(event);
unsigned short keycode = lm->keymap[key];
dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
key, isdown ? "down" : "up");
if (lm->kp_enabled) {
input_event(lm->idev, EV_MSC, MSC_SCAN, key);
input_report_key(lm->idev, keycode, isdown);
input_sync(lm->idev);
}
if (isdown)
lm->keys_down++;
else
lm->keys_down--;
}
/*
* Errata: We need to ensure that the chip never enters halt mode
* during a keypress, so set active time to 0. When it's released,
* we can enter halt again, so set the active time back to normal.
*/
if (!old_keys_down && lm->keys_down)
lm8323_set_active_time(lm, 0);
if (old_keys_down && !lm->keys_down)
lm8323_set_active_time(lm, lm->active_time);
}
static void lm8323_process_error(struct lm8323_chip *lm)
{
u8 error;
if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
if (error & ERR_FIFOOVER)
dev_vdbg(&lm->client->dev, "fifo overflow!\n");
if (error & ERR_KEYOVR)
dev_vdbg(&lm->client->dev,
"more than two keys pressed\n");
if (error & ERR_CMDUNK)
dev_vdbg(&lm->client->dev,
"unknown command submitted\n");
if (error & ERR_BADPAR)
dev_vdbg(&lm->client->dev, "bad command parameter\n");
}
}
static void lm8323_reset(struct lm8323_chip *lm)
{
/* The docs say we must pass 0xAA as the data byte. */
lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
}
static int lm8323_configure(struct lm8323_chip *lm)
{
int keysize = (lm->size_x << 4) | lm->size_y;
int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
int debounce = lm->debounce_time >> 2;
int active = lm->active_time >> 2;
/*
* Active time must be greater than the debounce time: if it's
* a close-run thing, give ourselves a 12ms buffer.
*/
if (debounce >= active)
active = debounce + 3;
lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
lm8323_set_active_time(lm, lm->active_time);
lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
/*
* Not much we can do about errors at this point, so just hope
* for the best.
*/
return 0;
}
static void pwm_done(struct lm8323_pwm *pwm)
{
mutex_lock(&pwm->lock);
pwm->running = false;
if (pwm->desired_brightness != pwm->brightness)
schedule_work(&pwm->work);
mutex_unlock(&pwm->lock);
}
/*
* Bottom half: handle the interrupt by posting key events, or dealing with
* errors appropriately.
*/
static irqreturn_t lm8323_irq(int irq, void *_lm)
{
struct lm8323_chip *lm = _lm;
u8 ints;
int i;
mutex_lock(&lm->lock);
while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
if (likely(ints & INT_KEYPAD))
process_keys(lm);
if (ints & INT_ROTATOR) {
/* We don't currently support the rotator. */
dev_vdbg(&lm->client->dev, "rotator fired\n");
}
if (ints & INT_ERROR) {
dev_vdbg(&lm->client->dev, "error!\n");
lm8323_process_error(lm);
}
if (ints & INT_NOINIT) {
dev_err(&lm->client->dev, "chip lost config; "
"reinitialising\n");
lm8323_configure(lm);
}
for (i = 0; i < LM8323_NUM_PWMS; i++) {
if (ints & (1 << (INT_PWM1 + i))) {
dev_vdbg(&lm->client->dev,
"pwm%d engine completed\n", i);
pwm_done(&lm->pwm[i]);
}
}
}
mutex_unlock(&lm->lock);
return IRQ_HANDLED;
}
/*
* Read the chip ID.
*/
static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
{
int bytes;
bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
if (unlikely(bytes != 2))
return -EIO;
return 0;
}
static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
{
lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
(cmd & 0xff00) >> 8, cmd & 0x00ff);
}
/*
* Write a script into a given PWM engine, concluding with PWM_END.
* If 'kill' is nonzero, the engine will be shut down at the end
* of the script, producing a zero output. Otherwise the engine
* will be kept running at the final PWM level indefinitely.
*/
static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
int len, const u16 *cmds)
{
int i;
for (i = 0; i < len; i++)
lm8323_write_pwm_one(pwm, i, cmds[i]);
lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
pwm->running = true;
}
static void lm8323_pwm_work(struct work_struct *work)
{
struct lm8323_pwm *pwm = work_to_pwm(work);
int div512, perstep, steps, hz, up, kill;
u16 pwm_cmds[3];
int num_cmds = 0;
mutex_lock(&pwm->lock);
/*
* Do nothing if we're already at the requested level,
* or previous setting is not yet complete. In the latter
* case we will be called again when the previous PWM script
* finishes.
*/
if (pwm->running || pwm->desired_brightness == pwm->brightness)
goto out;
kill = (pwm->desired_brightness == 0);
up = (pwm->desired_brightness > pwm->brightness);
steps = abs(pwm->desired_brightness - pwm->brightness);
/*
* Convert time (in ms) into a divisor (512 or 16 on a refclk of
* 32768Hz), and number of ticks per step.
*/
if ((pwm->fade_time / steps) > (32768 / 512)) {
div512 = 1;
hz = 32768 / 512;
} else {
div512 = 0;
hz = 32768 / 16;
}
perstep = (hz * pwm->fade_time) / (steps * 1000);
if (perstep == 0)
perstep = 1;
else if (perstep > 63)
perstep = 63;
while (steps) {
int s;
s = min(126, steps);
pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
steps -= s;
}
lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
pwm->brightness = pwm->desired_brightness;
out:
mutex_unlock(&pwm->lock);
}
static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
struct lm8323_chip *lm = pwm->chip;
mutex_lock(&pwm->lock);
pwm->desired_brightness = brightness;
mutex_unlock(&pwm->lock);
if (in_interrupt()) {
schedule_work(&pwm->work);
} else {
/*
* Schedule PWM work as usual unless we are going into suspend
*/
mutex_lock(&lm->lock);
if (likely(!lm->pm_suspend))
schedule_work(&pwm->work);
else
lm8323_pwm_work(&pwm->work);
mutex_unlock(&lm->lock);
}
}
static ssize_t lm8323_pwm_show_time(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
return sprintf(buf, "%d\n", pwm->fade_time);
}
static ssize_t lm8323_pwm_store_time(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct led_classdev *led_cdev = dev_get_drvdata(dev);
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
int ret, time;
ret = kstrtoint(buf, 10, &time);
/* Numbers only, please. */
if (ret)
return ret;
pwm->fade_time = time;
return strlen(buf);
}
static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
const char *name)
{
struct lm8323_pwm *pwm;
BUG_ON(id > 3);
pwm = &lm->pwm[id - 1];
pwm->id = id;
pwm->fade_time = 0;
pwm->brightness = 0;
pwm->desired_brightness = 0;
pwm->running = false;
pwm->enabled = false;
INIT_WORK(&pwm->work, lm8323_pwm_work);
mutex_init(&pwm->lock);
pwm->chip = lm;
if (name) {
pwm->cdev.name = name;
pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
if (led_classdev_register(dev, &pwm->cdev) < 0) {
dev_err(dev, "couldn't register PWM %d\n", id);
return -1;
}
if (device_create_file(pwm->cdev.dev,
&dev_attr_time) < 0) {
dev_err(dev, "couldn't register time attribute\n");
led_classdev_unregister(&pwm->cdev);
return -1;
}
pwm->enabled = true;
}
return 0;
}
static struct i2c_driver lm8323_i2c_driver;
static ssize_t lm8323_show_disable(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct lm8323_chip *lm = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", !lm->kp_enabled);
}
static ssize_t lm8323_set_disable(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct lm8323_chip *lm = dev_get_drvdata(dev);
int ret;
unsigned int i;
ret = kstrtouint(buf, 10, &i);
mutex_lock(&lm->lock);
lm->kp_enabled = !i;
mutex_unlock(&lm->lock);
return count;
}
static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
static int lm8323_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct lm8323_platform_data *pdata = client->dev.platform_data;
struct input_dev *idev;
struct lm8323_chip *lm;
int pwm;
int i, err;
unsigned long tmo;
u8 data[2];
if (!pdata || !pdata->size_x || !pdata->size_y) {
dev_err(&client->dev, "missing platform_data\n");
return -EINVAL;
}
if (pdata->size_x > 8) {
dev_err(&client->dev, "invalid x size %d specified\n",
pdata->size_x);
return -EINVAL;
}
if (pdata->size_y > 12) {
dev_err(&client->dev, "invalid y size %d specified\n",
pdata->size_y);
return -EINVAL;
}
lm = kzalloc(sizeof *lm, GFP_KERNEL);
idev = input_allocate_device();
if (!lm || !idev) {
err = -ENOMEM;
goto fail1;
}
lm->client = client;
lm->idev = idev;
mutex_init(&lm->lock);
lm->size_x = pdata->size_x;
lm->size_y = pdata->size_y;
dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
lm->size_x, lm->size_y);
lm->debounce_time = pdata->debounce_time;
lm->active_time = pdata->active_time;
lm8323_reset(lm);
/* Nothing's set up to service the IRQ yet, so just spin for max.
* 100ms until we can configure. */
tmo = jiffies + msecs_to_jiffies(100);
while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
if (data[0] & INT_NOINIT)
break;
if (time_after(jiffies, tmo)) {
dev_err(&client->dev,
"timeout waiting for initialisation\n");
break;
}
msleep(1);
}
lm8323_configure(lm);
/* If a true probe check the device */
if (lm8323_read_id(lm, data) != 0) {
dev_err(&client->dev, "device not found\n");
err = -ENODEV;
goto fail1;
}
for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
err = init_pwm(lm, pwm + 1, &client->dev,
pdata->pwm_names[pwm]);
if (err < 0)
goto fail2;
}
lm->kp_enabled = true;
err = device_create_file(&client->dev, &dev_attr_disable_kp);
if (err < 0)
goto fail2;
idev->name = pdata->name ? : "LM8323 keypad";
snprintf(lm->phys, sizeof(lm->phys),
"%s/input-kp", dev_name(&client->dev));
idev->phys = lm->phys;
idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
__set_bit(MSC_SCAN, idev->mscbit);
for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
__set_bit(pdata->keymap[i], idev->keybit);
lm->keymap[i] = pdata->keymap[i];
}
__clear_bit(KEY_RESERVED, idev->keybit);
if (pdata->repeat)
__set_bit(EV_REP, idev->evbit);
err = input_register_device(idev);
if (err) {
dev_dbg(&client->dev, "error registering input device\n");
goto fail3;
}
err = request_threaded_irq(client->irq, NULL, lm8323_irq,
IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
if (err) {
dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
goto fail4;
}
i2c_set_clientdata(client, lm);
device_init_wakeup(&client->dev, 1);
enable_irq_wake(client->irq);
return 0;
fail4:
input_unregister_device(idev);
idev = NULL;
fail3:
device_remove_file(&client->dev, &dev_attr_disable_kp);
fail2:
while (--pwm >= 0)
if (lm->pwm[pwm].enabled) {
device_remove_file(lm->pwm[pwm].cdev.dev,
&dev_attr_time);
led_classdev_unregister(&lm->pwm[pwm].cdev);
}
fail1:
input_free_device(idev);
kfree(lm);
return err;
}
static int __devexit lm8323_remove(struct i2c_client *client)
{
struct lm8323_chip *lm = i2c_get_clientdata(client);
int i;
disable_irq_wake(client->irq);
free_irq(client->irq, lm);
input_unregister_device(lm->idev);
device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
for (i = 0; i < 3; i++)
if (lm->pwm[i].enabled) {
device_remove_file(lm->pwm[i].cdev.dev, &dev_attr_time);
led_classdev_unregister(&lm->pwm[i].cdev);
}
kfree(lm);
return 0;
}
#ifdef CONFIG_PM_SLEEP
/*
* We don't need to explicitly suspend the chip, as it already switches off
* when there's no activity.
*/
static int lm8323_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm8323_chip *lm = i2c_get_clientdata(client);
int i;
irq_set_irq_wake(client->irq, 0);
disable_irq(client->irq);
mutex_lock(&lm->lock);
lm->pm_suspend = true;
mutex_unlock(&lm->lock);
for (i = 0; i < 3; i++)
if (lm->pwm[i].enabled)
led_classdev_suspend(&lm->pwm[i].cdev);
return 0;
}
static int lm8323_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct lm8323_chip *lm = i2c_get_clientdata(client);
int i;
mutex_lock(&lm->lock);
lm->pm_suspend = false;
mutex_unlock(&lm->lock);
for (i = 0; i < 3; i++)
if (lm->pwm[i].enabled)
led_classdev_resume(&lm->pwm[i].cdev);
enable_irq(client->irq);
irq_set_irq_wake(client->irq, 1);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
static const struct i2c_device_id lm8323_id[] = {
{ "lm8323", 0 },
{ }
};
static struct i2c_driver lm8323_i2c_driver = {
.driver = {
.name = "lm8323",
.pm = &lm8323_pm_ops,
},
.probe = lm8323_probe,
.remove = lm8323_remove,
.id_table = lm8323_id,
};
MODULE_DEVICE_TABLE(i2c, lm8323_id);
module_i2c_driver(lm8323_i2c_driver);
MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
MODULE_AUTHOR("Daniel Stone");
MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
MODULE_DESCRIPTION("LM8323 keypad driver");
MODULE_LICENSE("GPL");