// SPDX-License-Identifier: GPL-2.0-only
/*
* BM1390 ROHM pressure sensor
*
* Copyright (c) 2023, ROHM Semiconductor.
* https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/pressure/bm1390glv-z-e.pdf
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define BM1390_REG_MANUFACT_ID 0x0f
#define BM1390_REG_PART_ID 0x10
#define BM1390_REG_POWER 0x12
#define BM1390_MASK_POWER BIT(0)
#define BM1390_POWER_ON BM1390_MASK_POWER
#define BM1390_POWER_OFF 0x00
#define BM1390_REG_RESET 0x13
#define BM1390_MASK_RESET BIT(0)
#define BM1390_RESET_RELEASE BM1390_MASK_RESET
#define BM1390_RESET 0x00
#define BM1390_REG_MODE_CTRL 0x14
#define BM1390_MASK_MEAS_MODE GENMASK(1, 0)
#define BM1390_MASK_DRDY_EN BIT(4)
#define BM1390_MASK_WMI_EN BIT(2)
#define BM1390_MASK_AVE_NUM GENMASK(7, 5)
/*
* Data-sheet states that when the IIR is used, the AVE_NUM must be set to
* value 110b
*/
#define BM1390_IIR_AVE_NUM 0x06
#define BM1390_REG_FIFO_CTRL 0x15
#define BM1390_MASK_IIR_MODE GENMASK(1, 0)
#define BM1390_IIR_MODE_OFF 0x0
#define BM1390_IIR_MODE_WEAK 0x1
#define BM1390_IIR_MODE_MID 0x2
#define BM1390_IIR_MODE_STRONG 0x3
#define BM1390_MASK_FIFO_LEN BIT(6)
#define BM1390_MASK_FIFO_EN BIT(7)
#define BM1390_WMI_MIN 2
#define BM1390_WMI_MAX 3
#define BM1390_REG_FIFO_LVL 0x18
#define BM1390_MASK_FIFO_LVL GENMASK(2, 0)
#define BM1390_REG_STATUS 0x19
#define BM1390_REG_PRESSURE_BASE 0x1a
#define BM1390_REG_TEMP_HI 0x1d
#define BM1390_REG_TEMP_LO 0x1e
#define BM1390_MAX_REGISTER BM1390_REG_TEMP_LO
#define BM1390_ID 0x34
/* Regmap configs */
static const struct regmap_range bm1390_volatile_ranges[] = {
{
.range_min = BM1390_REG_STATUS,
.range_max = BM1390_REG_STATUS,
},
{
.range_min = BM1390_REG_FIFO_LVL,
.range_max = BM1390_REG_TEMP_LO,
},
};
static const struct regmap_access_table bm1390_volatile_regs = {
.yes_ranges = &bm1390_volatile_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bm1390_volatile_ranges),
};
static const struct regmap_range bm1390_precious_ranges[] = {
{
.range_min = BM1390_REG_STATUS,
.range_max = BM1390_REG_STATUS,
},
};
static const struct regmap_access_table bm1390_precious_regs = {
.yes_ranges = &bm1390_precious_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bm1390_precious_ranges),
};
static const struct regmap_range bm1390_read_only_ranges[] = {
{
.range_min = BM1390_REG_MANUFACT_ID,
.range_max = BM1390_REG_PART_ID,
}, {
.range_min = BM1390_REG_FIFO_LVL,
.range_max = BM1390_REG_TEMP_LO,
},
};
static const struct regmap_access_table bm1390_ro_regs = {
.no_ranges = &bm1390_read_only_ranges[0],
.n_no_ranges = ARRAY_SIZE(bm1390_read_only_ranges),
};
static const struct regmap_range bm1390_noinc_read_ranges[] = {
{
.range_min = BM1390_REG_PRESSURE_BASE,
.range_max = BM1390_REG_TEMP_LO,
},
};
static const struct regmap_access_table bm1390_nir_regs = {
.yes_ranges = &bm1390_noinc_read_ranges[0],
.n_yes_ranges = ARRAY_SIZE(bm1390_noinc_read_ranges),
};
static const struct regmap_config bm1390_regmap = {
.reg_bits = 8,
.val_bits = 8,
.volatile_table = &bm1390_volatile_regs,
.wr_table = &bm1390_ro_regs,
.rd_noinc_table = &bm1390_nir_regs,
.precious_table = &bm1390_precious_regs,
.max_register = BM1390_MAX_REGISTER,
.cache_type = REGCACHE_RBTREE,
.disable_locking = true,
};
enum {
BM1390_STATE_SAMPLE,
BM1390_STATE_FIFO,
};
struct bm1390_data_buf {
u32 pressure;
__be16 temp;
s64 ts __aligned(8);
};
/* BM1390 has FIFO for 4 pressure samples */
#define BM1390_FIFO_LENGTH 4
struct bm1390_data {
s64 timestamp, old_timestamp;
struct iio_trigger *trig;
struct regmap *regmap;
struct device *dev;
struct bm1390_data_buf buf;
int irq;
unsigned int state;
bool trigger_enabled;
u8 watermark;
/* Prevent accessing sensor during FIFO read sequence */
struct mutex mutex;
};
enum {
BM1390_CHAN_PRESSURE,
BM1390_CHAN_TEMP,
};
static const struct iio_chan_spec bm1390_channels[] = {
{
.type = IIO_PRESSURE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
/*
* When IIR is used, we must fix amount of averaged samples.
* Thus we don't allow setting oversampling ratio.
*/
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
.scan_index = BM1390_CHAN_PRESSURE,
.scan_type = {
.sign = 'u',
.realbits = 22,
.storagebits = 32,
.endianness = IIO_LE,
},
},
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
.scan_index = BM1390_CHAN_TEMP,
.scan_type = {
.sign = 's',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_BE,
},
},
IIO_CHAN_SOFT_TIMESTAMP(2),
};
/*
* We can't skip reading the pressure because the watermark IRQ is acked
* only when the pressure data is read from the FIFO.
*/
static const unsigned long bm1390_scan_masks[] = {
BIT(BM1390_CHAN_PRESSURE),
BIT(BM1390_CHAN_PRESSURE) | BIT(BM1390_CHAN_TEMP),
0
};
static int bm1390_read_temp(struct bm1390_data *data, int *temp)
{
__be16 temp_raw;
int ret;
ret = regmap_bulk_read(data->regmap, BM1390_REG_TEMP_HI, &temp_raw,
sizeof(temp_raw));
if (ret)
return ret;
*temp = be16_to_cpu(temp_raw);
return 0;
}
static int bm1390_pressure_read(struct bm1390_data *data, u32 *pressure)
{
/* Pressure data is in 3 8-bit registers */
u8 raw[3];
int ret;
ret = regmap_bulk_read(data->regmap, BM1390_REG_PRESSURE_BASE,
raw, sizeof(raw));
if (ret < 0)
return ret;
*pressure = (u32)(raw[2] >> 2 | raw[1] << 6 | raw[0] << 14);
return 0;
}
/* The enum values map directly to register bits */
enum bm1390_meas_mode {
BM1390_MEAS_MODE_STOP = 0x0,
BM1390_MEAS_MODE_1SHOT = 0x1,
BM1390_MEAS_MODE_CONTINUOUS = 0x2,
};
static int bm1390_meas_set(struct bm1390_data *data, enum bm1390_meas_mode mode)
{
return regmap_update_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_MEAS_MODE, mode);
}
/*
* If the trigger is not used we just wait until the measurement has
* completed. The data-sheet says maximum measurement cycle (regardless
* the AVE_NUM) is 200 mS so let's just sleep at least that long. If speed
* is needed the trigger should be used.
*/
#define BM1390_MAX_MEAS_TIME_MS 205
static int bm1390_read_data(struct bm1390_data *data,
struct iio_chan_spec const *chan, int *val, int *val2)
{
int ret, warn;
mutex_lock(&data->mutex);
/*
* We use 'continuous mode' even for raw read because according to the
* data-sheet an one-shot mode can't be used with IIR filter.
*/
ret = bm1390_meas_set(data, BM1390_MEAS_MODE_CONTINUOUS);
if (ret)
goto unlock_out;
switch (chan->type) {
case IIO_PRESSURE:
msleep(BM1390_MAX_MEAS_TIME_MS);
ret = bm1390_pressure_read(data, val);
break;
case IIO_TEMP:
msleep(BM1390_MAX_MEAS_TIME_MS);
ret = bm1390_read_temp(data, val);
break;
default:
ret = -EINVAL;
}
warn = bm1390_meas_set(data, BM1390_MEAS_MODE_STOP);
if (warn)
dev_warn(data->dev, "Failed to stop measurement (%d)\n", warn);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bm1390_read_raw(struct iio_dev *idev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct bm1390_data *data = iio_priv(idev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (chan->type == IIO_TEMP) {
*val = 31;
*val2 = 250000;
return IIO_VAL_INT_PLUS_MICRO;
} else if (chan->type == IIO_PRESSURE) {
/*
* pressure in hPa is register value divided by 2048.
* This means kPa is 1/20480 times the register value,
*/
*val = 1;
*val2 = 2048;
return IIO_VAL_FRACTIONAL;
}
return -EINVAL;
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(idev);
if (ret)
return ret;
ret = bm1390_read_data(data, chan, val, val2);
iio_device_release_direct_mode(idev);
if (ret)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int __bm1390_fifo_flush(struct iio_dev *idev, unsigned int samples,
s64 timestamp)
{
/* BM1390_FIFO_LENGTH is small so we shouldn't run out of stack */
struct bm1390_data_buf buffer[BM1390_FIFO_LENGTH];
struct bm1390_data *data = iio_priv(idev);
int smp_lvl, ret, i, warn, dummy;
u64 sample_period;
__be16 temp = 0;
ret = regmap_read(data->regmap, BM1390_REG_FIFO_LVL, &smp_lvl);
if (ret)
return ret;
smp_lvl = FIELD_GET(BM1390_MASK_FIFO_LVL, smp_lvl);
if (!smp_lvl)
return 0;
if (smp_lvl > BM1390_FIFO_LENGTH) {
/*
* The fifo holds maximum of 4 samples so valid values
* should be 0, 1, 2, 3, 4 - rest are probably bit errors
* in I2C line. Don't overflow if this happens.
*/
dev_err(data->dev, "bad FIFO level %d\n", smp_lvl);
smp_lvl = BM1390_FIFO_LENGTH;
}
sample_period = timestamp - data->old_timestamp;
do_div(sample_period, smp_lvl);
if (samples && smp_lvl > samples)
smp_lvl = samples;
/*
* After some testing it appears that the temperature is not readable
* until the FIFO access has been done after the WMI. Thus, we need
* to read the all pressure values to memory and read the temperature
* only after that.
*/
for (i = 0; i < smp_lvl; i++) {
/*
* When we start reading data from the FIFO the sensor goes to
* special FIFO reading mode. If any other register is accessed
* during the FIFO read, samples can be dropped. Prevent access
* until FIFO_LVL is read. We have mutex locked and we do also
* go performing reading of FIFO_LVL even if this read fails.
*/
if (test_bit(BM1390_CHAN_PRESSURE, idev->active_scan_mask)) {
ret = bm1390_pressure_read(data, &buffer[i].pressure);
if (ret)
break;
}
/*
* Old timestamp is either the previous sample IRQ time,
* previous flush-time or, if this was first sample, the enable
* time. When we add a sample period to that we should get the
* best approximation of the time-stamp we are handling.
*
* Idea is to always keep the "old_timestamp" matching the
* timestamp which we are currently handling.
*/
data->old_timestamp += sample_period;
buffer[i].ts = data->old_timestamp;
}
/* Reading the FIFO_LVL closes the FIFO access sequence */
warn = regmap_read(data->regmap, BM1390_REG_FIFO_LVL, &dummy);
if (warn)
dev_warn(data->dev, "Closing FIFO sequence failed\n");
if (ret)
return ret;
if (test_bit(BM1390_CHAN_TEMP, idev->active_scan_mask)) {
ret = regmap_bulk_read(data->regmap, BM1390_REG_TEMP_HI, &temp,
sizeof(temp));
if (ret)
return ret;
}
if (ret)
return ret;
for (i = 0; i < smp_lvl; i++) {
buffer[i].temp = temp;
iio_push_to_buffers(idev, &buffer[i]);
}
return smp_lvl;
}
static int bm1390_fifo_flush(struct iio_dev *idev, unsigned int samples)
{
struct bm1390_data *data = iio_priv(idev);
s64 timestamp;
int ret;
/*
* If fifo_flush is being called from IRQ handler we know the stored
* timestamp is fairly accurate for the last stored sample. If we are
* called as a result of a read operation from userspace and hence
* before the watermark interrupt was triggered, take a timestamp
* now. We can fall anywhere in between two samples so the error in this
* case is at most one sample period.
* We need to have the IRQ disabled or we risk of messing-up
* the timestamps. If we are ran from IRQ, then the
* IRQF_ONESHOT has us covered - but if we are ran by the
* user-space read we need to disable the IRQ to be on a safe
* side. We do this usng synchronous disable so that if the
* IRQ thread is being ran on other CPU we wait for it to be
* finished.
*/
timestamp = iio_get_time_ns(idev);
mutex_lock(&data->mutex);
ret = __bm1390_fifo_flush(idev, samples, timestamp);
mutex_unlock(&data->mutex);
return ret;
}
static int bm1390_set_watermark(struct iio_dev *idev, unsigned int val)
{
struct bm1390_data *data = iio_priv(idev);
if (val < BM1390_WMI_MIN || val > BM1390_WMI_MAX)
return -EINVAL;
mutex_lock(&data->mutex);
data->watermark = val;
mutex_unlock(&data->mutex);
return 0;
}
static const struct iio_info bm1390_noirq_info = {
.read_raw = &bm1390_read_raw,
};
static const struct iio_info bm1390_info = {
.read_raw = &bm1390_read_raw,
.hwfifo_set_watermark = bm1390_set_watermark,
.hwfifo_flush_to_buffer = bm1390_fifo_flush,
};
static int bm1390_chip_init(struct bm1390_data *data)
{
int ret;
ret = regmap_write_bits(data->regmap, BM1390_REG_POWER,
BM1390_MASK_POWER, BM1390_POWER_ON);
if (ret)
return ret;
msleep(1);
ret = regmap_write_bits(data->regmap, BM1390_REG_RESET,
BM1390_MASK_RESET, BM1390_RESET);
if (ret)
return ret;
msleep(1);
ret = regmap_write_bits(data->regmap, BM1390_REG_RESET,
BM1390_MASK_RESET, BM1390_RESET_RELEASE);
if (ret)
return ret;
msleep(1);
ret = regmap_reinit_cache(data->regmap, &bm1390_regmap);
if (ret) {
dev_err(data->dev, "Failed to reinit reg cache\n");
return ret;
}
/*
* Default to use IIR filter in "middle" mode. Also the AVE_NUM must
* be fixed when IIR is in use.
*/
ret = regmap_update_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_AVE_NUM, BM1390_IIR_AVE_NUM);
if (ret)
return ret;
return regmap_update_bits(data->regmap, BM1390_REG_FIFO_CTRL,
BM1390_MASK_IIR_MODE, BM1390_IIR_MODE_MID);
}
static int bm1390_fifo_set_wmi(struct bm1390_data *data)
{
u8 regval;
regval = FIELD_PREP(BM1390_MASK_FIFO_LEN,
data->watermark - BM1390_WMI_MIN);
return regmap_update_bits(data->regmap, BM1390_REG_FIFO_CTRL,
BM1390_MASK_FIFO_LEN, regval);
}
static int bm1390_fifo_enable(struct iio_dev *idev)
{
struct bm1390_data *data = iio_priv(idev);
int ret;
/* We can't do buffered stuff without IRQ as we never get WMI */
if (data->irq <= 0)
return -EINVAL;
mutex_lock(&data->mutex);
if (data->trigger_enabled) {
ret = -EBUSY;
goto unlock_out;
}
/* Update watermark to HW */
ret = bm1390_fifo_set_wmi(data);
if (ret)
goto unlock_out;
/* Enable WMI_IRQ */
ret = regmap_set_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_WMI_EN);
if (ret)
goto unlock_out;
/* Enable FIFO */
ret = regmap_set_bits(data->regmap, BM1390_REG_FIFO_CTRL,
BM1390_MASK_FIFO_EN);
if (ret)
goto unlock_out;
data->state = BM1390_STATE_FIFO;
data->old_timestamp = iio_get_time_ns(idev);
ret = bm1390_meas_set(data, BM1390_MEAS_MODE_CONTINUOUS);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bm1390_fifo_disable(struct iio_dev *idev)
{
struct bm1390_data *data = iio_priv(idev);
int ret;
msleep(1);
mutex_lock(&data->mutex);
ret = bm1390_meas_set(data, BM1390_MEAS_MODE_STOP);
if (ret)
goto unlock_out;
/* Disable FIFO */
ret = regmap_clear_bits(data->regmap, BM1390_REG_FIFO_CTRL,
BM1390_MASK_FIFO_EN);
if (ret)
goto unlock_out;
data->state = BM1390_STATE_SAMPLE;
/* Disable WMI_IRQ */
ret = regmap_clear_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_WMI_EN);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static int bm1390_buffer_postenable(struct iio_dev *idev)
{
/*
* If we use data-ready trigger, then the IRQ masks should be handled by
* trigger enable and the hardware buffer is not used but we just update
* results to the IIO FIFO when data-ready triggers.
*/
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return bm1390_fifo_enable(idev);
}
static int bm1390_buffer_predisable(struct iio_dev *idev)
{
if (iio_device_get_current_mode(idev) == INDIO_BUFFER_TRIGGERED)
return 0;
return bm1390_fifo_disable(idev);
}
static const struct iio_buffer_setup_ops bm1390_buffer_ops = {
.postenable = bm1390_buffer_postenable,
.predisable = bm1390_buffer_predisable,
};
static irqreturn_t bm1390_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *idev = pf->indio_dev;
struct bm1390_data *data = iio_priv(idev);
int ret, status;
/* DRDY is acked by reading status reg */
ret = regmap_read(data->regmap, BM1390_REG_STATUS, &status);
if (ret || !status)
return IRQ_NONE;
dev_dbg(data->dev, "DRDY trig status 0x%x\n", status);
if (test_bit(BM1390_CHAN_PRESSURE, idev->active_scan_mask)) {
ret = bm1390_pressure_read(data, &data->buf.pressure);
if (ret) {
dev_warn(data->dev, "sample read failed %d\n", ret);
return IRQ_NONE;
}
}
if (test_bit(BM1390_CHAN_TEMP, idev->active_scan_mask)) {
ret = regmap_bulk_read(data->regmap, BM1390_REG_TEMP_HI,
&data->buf.temp, sizeof(data->buf.temp));
if (ret) {
dev_warn(data->dev, "temp read failed %d\n", ret);
return IRQ_HANDLED;
}
}
iio_push_to_buffers_with_timestamp(idev, &data->buf, data->timestamp);
iio_trigger_notify_done(idev->trig);
return IRQ_HANDLED;
}
/* Get timestamps and wake the thread if we need to read data */
static irqreturn_t bm1390_irq_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct bm1390_data *data = iio_priv(idev);
data->timestamp = iio_get_time_ns(idev);
if (data->state == BM1390_STATE_FIFO || data->trigger_enabled)
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
static irqreturn_t bm1390_irq_thread_handler(int irq, void *private)
{
struct iio_dev *idev = private;
struct bm1390_data *data = iio_priv(idev);
int ret = IRQ_NONE;
mutex_lock(&data->mutex);
if (data->trigger_enabled) {
iio_trigger_poll_nested(data->trig);
ret = IRQ_HANDLED;
} else if (data->state == BM1390_STATE_FIFO) {
int ok;
ok = __bm1390_fifo_flush(idev, BM1390_FIFO_LENGTH,
data->timestamp);
if (ok > 0)
ret = IRQ_HANDLED;
}
mutex_unlock(&data->mutex);
return ret;
}
static int bm1390_set_drdy_irq(struct bm1390_data *data, bool en)
{
if (en)
return regmap_set_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_DRDY_EN);
return regmap_clear_bits(data->regmap, BM1390_REG_MODE_CTRL,
BM1390_MASK_DRDY_EN);
}
static int bm1390_trigger_set_state(struct iio_trigger *trig,
bool state)
{
struct bm1390_data *data = iio_trigger_get_drvdata(trig);
int ret = 0;
mutex_lock(&data->mutex);
if (data->trigger_enabled == state)
goto unlock_out;
if (data->state == BM1390_STATE_FIFO) {
dev_warn(data->dev, "Can't set trigger when FIFO enabled\n");
ret = -EBUSY;
goto unlock_out;
}
data->trigger_enabled = state;
if (state) {
ret = bm1390_meas_set(data, BM1390_MEAS_MODE_CONTINUOUS);
if (ret)
goto unlock_out;
} else {
int dummy;
ret = bm1390_meas_set(data, BM1390_MEAS_MODE_STOP);
if (ret)
goto unlock_out;
/*
* We need to read the status register in order to ACK the
* data-ready which may have been generated just before we
* disabled the measurement.
*/
ret = regmap_read(data->regmap, BM1390_REG_STATUS, &dummy);
if (ret)
dev_warn(data->dev, "status read failed\n");
}
ret = bm1390_set_drdy_irq(data, state);
unlock_out:
mutex_unlock(&data->mutex);
return ret;
}
static const struct iio_trigger_ops bm1390_trigger_ops = {
.set_trigger_state = bm1390_trigger_set_state,
};
static int bm1390_setup_buffer(struct bm1390_data *data, struct iio_dev *idev)
{
int ret;
ret = devm_iio_triggered_buffer_setup(data->dev, idev,
&iio_pollfunc_store_time,
&bm1390_trigger_handler,
&bm1390_buffer_ops);
if (ret)
return dev_err_probe(data->dev, ret,
"iio_triggered_buffer_setup FAIL\n");
idev->available_scan_masks = bm1390_scan_masks;
return 0;
}
static int bm1390_setup_trigger(struct bm1390_data *data, struct iio_dev *idev,
int irq)
{
struct iio_trigger *itrig;
char *name;
int ret;
itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d", idev->name,
iio_device_id(idev));
if (!itrig)
return -ENOMEM;
data->trig = itrig;
itrig->ops = &bm1390_trigger_ops;
iio_trigger_set_drvdata(itrig, data);
name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bm1390",
dev_name(data->dev));
if (name == NULL)
return -ENOMEM;
ret = devm_request_threaded_irq(data->dev, irq, bm1390_irq_handler,
&bm1390_irq_thread_handler,
IRQF_ONESHOT, name, idev);
if (ret)
return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
ret = devm_iio_trigger_register(data->dev, itrig);
if (ret)
return dev_err_probe(data->dev, ret,
"Trigger registration failed\n");
return 0;
}
static int bm1390_probe(struct i2c_client *i2c)
{
struct bm1390_data *data;
struct regmap *regmap;
struct iio_dev *idev;
struct device *dev;
unsigned int part_id;
int ret;
dev = &i2c->dev;
regmap = devm_regmap_init_i2c(i2c, &bm1390_regmap);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"Failed to initialize Regmap\n");
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to get regulator\n");
ret = regmap_read(regmap, BM1390_REG_PART_ID, &part_id);
if (ret)
return dev_err_probe(dev, ret, "Failed to access sensor\n");
if (part_id != BM1390_ID)
dev_warn(dev, "unknown device 0x%x\n", part_id);
idev = devm_iio_device_alloc(dev, sizeof(*data));
if (!idev)
return -ENOMEM;
data = iio_priv(idev);
data->regmap = regmap;
data->dev = dev;
data->irq = i2c->irq;
/*
* For now we just allow BM1390_WMI_MIN to BM1390_WMI_MAX and
* discard every other configuration when triggered mode is not used.
*/
data->watermark = BM1390_WMI_MAX;
mutex_init(&data->mutex);
idev->channels = bm1390_channels;
idev->num_channels = ARRAY_SIZE(bm1390_channels);
idev->name = "bm1390";
idev->modes = INDIO_DIRECT_MODE;
ret = bm1390_chip_init(data);
if (ret)
return dev_err_probe(dev, ret, "sensor init failed\n");
ret = bm1390_setup_buffer(data, idev);
if (ret)
return ret;
/* No trigger if we don't have IRQ for data-ready and WMI */
if (i2c->irq > 0) {
idev->info = &bm1390_info;
idev->modes |= INDIO_BUFFER_SOFTWARE;
ret = bm1390_setup_trigger(data, idev, i2c->irq);
if (ret)
return ret;
} else {
idev->info = &bm1390_noirq_info;
}
ret = devm_iio_device_register(dev, idev);
if (ret < 0)
return dev_err_probe(dev, ret,
"Unable to register iio device\n");
return 0;
}
static const struct of_device_id bm1390_of_match[] = {
{ .compatible = "rohm,bm1390glv-z" },
{}
};
MODULE_DEVICE_TABLE(of, bm1390_of_match);
static const struct i2c_device_id bm1390_id[] = {
{ "bm1390glv-z", },
{}
};
MODULE_DEVICE_TABLE(i2c, bm1390_id);
static struct i2c_driver bm1390_driver = {
.driver = {
.name = "bm1390",
.of_match_table = bm1390_of_match,
/*
* Probing explicitly requires a few millisecond of sleep.
* Enabling the VDD regulator may include ramp up rates.
*/
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
},
.probe = bm1390_probe,
.id_table = bm1390_id,
};
module_i2c_driver(bm1390_driver);
MODULE_AUTHOR("Matti Vaittinen <mazziesaccount@gmail.com>");
MODULE_DESCRIPTION("Driver for ROHM BM1390 pressure sensor");
MODULE_LICENSE("GPL");