/*
* sbp2.c - SBP-2 protocol driver for IEEE-1394
*
* Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
* jamesg@filanet.com (JSG)
*
* Copyright (C) 2003 Ben Collins <bcollins@debian.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* Brief Description:
*
* This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
* under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
* driver. It also registers as a SCSI lower-level driver in order to accept
* SCSI commands for transport using SBP-2.
*
* You may access any attached SBP-2 storage devices as if they were SCSI
* devices (e.g. mount /dev/sda1, fdisk, mkfs, etc.).
*
* Current Issues:
*
* - Error Handling: SCSI aborts and bus reset requests are handled somewhat
* but the code needs additional debugging.
*/
#include <linux/blkdev.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/stringify.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <asm/byteorder.h>
#include <asm/errno.h>
#include <asm/param.h>
#include <asm/scatterlist.h>
#include <asm/system.h>
#include <asm/types.h>
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
#include <asm/io.h> /* for bus_to_virt */
#endif
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "csr1212.h"
#include "highlevel.h"
#include "hosts.h"
#include "ieee1394.h"
#include "ieee1394_core.h"
#include "ieee1394_hotplug.h"
#include "ieee1394_transactions.h"
#include "ieee1394_types.h"
#include "nodemgr.h"
#include "sbp2.h"
/*
* Module load parameter definitions
*/
/*
* Change max_speed on module load if you have a bad IEEE-1394
* controller that has trouble running 2KB packets at 400mb.
*
* NOTE: On certain OHCI parts I have seen short packets on async transmit
* (probably due to PCI latency/throughput issues with the part). You can
* bump down the speed if you are running into problems.
*/
static int max_speed = IEEE1394_SPEED_MAX;
module_param(max_speed, int, 0644);
MODULE_PARM_DESC(max_speed, "Force max speed (3 = 800mb, 2 = 400mb, 1 = 200mb, 0 = 100mb)");
/*
* Set serialize_io to 1 if you'd like only one scsi command sent
* down to us at a time (debugging). This might be necessary for very
* badly behaved sbp2 devices.
*
* TODO: Make this configurable per device.
*/
static int serialize_io = 1;
module_param(serialize_io, int, 0444);
MODULE_PARM_DESC(serialize_io, "Serialize I/O coming from scsi drivers (default = 1, faster = 0)");
/*
* Bump up max_sectors if you'd like to support very large sized
* transfers. Please note that some older sbp2 bridge chips are broken for
* transfers greater or equal to 128KB. Default is a value of 255
* sectors, or just under 128KB (at 512 byte sector size). I can note that
* the Oxsemi sbp2 chipsets have no problems supporting very large
* transfer sizes.
*/
static int max_sectors = SBP2_MAX_SECTORS;
module_param(max_sectors, int, 0444);
MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported (default = "
__stringify(SBP2_MAX_SECTORS) ")");
/*
* Exclusive login to sbp2 device? In most cases, the sbp2 driver should
* do an exclusive login, as it's generally unsafe to have two hosts
* talking to a single sbp2 device at the same time (filesystem coherency,
* etc.). If you're running an sbp2 device that supports multiple logins,
* and you're either running read-only filesystems or some sort of special
* filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
* File System, or Lustre, then set exclusive_login to zero.
*
* So far only bridges from Oxford Semiconductor are known to support
* concurrent logins. Depending on firmware, four or two concurrent logins
* are possible on OXFW911 and newer Oxsemi bridges.
*/
static int exclusive_login = 1;
module_param(exclusive_login, int, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device (default = 1)");
/*
* If any of the following workarounds is required for your device to work,
* please submit the kernel messages logged by sbp2 to the linux1394-devel
* mailing list.
*
* - 128kB max transfer
* Limit transfer size. Necessary for some old bridges.
*
* - 36 byte inquiry
* When scsi_mod probes the device, let the inquiry command look like that
* from MS Windows.
*
* - skip mode page 8
* Suppress sending of mode_sense for mode page 8 if the device pretends to
* support the SCSI Primary Block commands instead of Reduced Block Commands.
*
* - fix capacity
* Tell sd_mod to correct the last sector number reported by read_capacity.
* Avoids access beyond actual disk limits on devices with an off-by-one bug.
* Don't use this with devices which don't have this bug.
*
* - override internal blacklist
* Instead of adding to the built-in blacklist, use only the workarounds
* specified in the module load parameter.
* Useful if a blacklist entry interfered with a non-broken device.
*/
static int sbp2_default_workarounds;
module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
", or a combination)");
/*
* Export information about protocols/devices supported by this driver.
*/
static struct ieee1394_device_id sbp2_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
.version = SBP2_SW_VERSION_ENTRY & 0xffffff},
{}
};
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
/*
* Debug levels, configured via kernel config, or enable here.
*/
#define CONFIG_IEEE1394_SBP2_DEBUG 0
/* #define CONFIG_IEEE1394_SBP2_DEBUG_ORBS */
/* #define CONFIG_IEEE1394_SBP2_DEBUG_DMA */
/* #define CONFIG_IEEE1394_SBP2_DEBUG 1 */
/* #define CONFIG_IEEE1394_SBP2_DEBUG 2 */
/* #define CONFIG_IEEE1394_SBP2_PACKET_DUMP */
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_ORBS
#define SBP2_ORB_DEBUG(fmt, args...) HPSB_ERR("sbp2(%s): "fmt, __FUNCTION__, ## args)
static u32 global_outstanding_command_orbs = 0;
#define outstanding_orb_incr global_outstanding_command_orbs++
#define outstanding_orb_decr global_outstanding_command_orbs--
#else
#define SBP2_ORB_DEBUG(fmt, args...) do {} while (0)
#define outstanding_orb_incr do {} while (0)
#define outstanding_orb_decr do {} while (0)
#endif
#ifdef CONFIG_IEEE1394_SBP2_DEBUG_DMA
#define SBP2_DMA_ALLOC(fmt, args...) \
HPSB_ERR("sbp2(%s)alloc(%d): "fmt, __FUNCTION__, \
++global_outstanding_dmas, ## args)
#define SBP2_DMA_FREE(fmt, args...) \
HPSB_ERR("sbp2(%s)free(%d): "fmt, __FUNCTION__, \
--global_outstanding_dmas, ## args)
static u32 global_outstanding_dmas = 0;
#else
#define SBP2_DMA_ALLOC(fmt, args...) do {} while (0)
#define SBP2_DMA_FREE(fmt, args...) do {} while (0)
#endif
#if CONFIG_IEEE1394_SBP2_DEBUG >= 2
#define SBP2_DEBUG(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_INFO(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#elif CONFIG_IEEE1394_SBP2_DEBUG == 1
#define SBP2_DEBUG(fmt, args...) HPSB_DEBUG("sbp2: "fmt, ## args)
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
#else
#define SBP2_DEBUG(fmt, args...) do {} while (0)
#define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
#define SBP2_NOTICE(fmt, args...) HPSB_NOTICE("sbp2: "fmt, ## args)
#define SBP2_WARN(fmt, args...) HPSB_WARN("sbp2: "fmt, ## args)
#endif
#define SBP2_ERR(fmt, args...) HPSB_ERR("sbp2: "fmt, ## args)
#define SBP2_DEBUG_ENTER() SBP2_DEBUG("%s", __FUNCTION__)
/*
* Globals
*/
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
u32 status);
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
u32 scsi_status, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *));
static struct scsi_host_template scsi_driver_template;
static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
static void sbp2_host_reset(struct hpsb_host *host);
static int sbp2_probe(struct device *dev);
static int sbp2_remove(struct device *dev);
static int sbp2_update(struct unit_directory *ud);
static struct hpsb_highlevel sbp2_highlevel = {
.name = SBP2_DEVICE_NAME,
.host_reset = sbp2_host_reset,
};
static struct hpsb_address_ops sbp2_ops = {
.write = sbp2_handle_status_write
};
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
static struct hpsb_address_ops sbp2_physdma_ops = {
.read = sbp2_handle_physdma_read,
.write = sbp2_handle_physdma_write,
};
#endif
static struct hpsb_protocol_driver sbp2_driver = {
.name = "SBP2 Driver",
.id_table = sbp2_id_table,
.update = sbp2_update,
.driver = {
.name = SBP2_DEVICE_NAME,
.bus = &ieee1394_bus_type,
.probe = sbp2_probe,
.remove = sbp2_remove,
},
};
/*
* List of devices with known bugs.
*
* The firmware_revision field, masked with 0xffff00, is the best indicator
* for the type of bridge chip of a device. It yields a few false positives
* but this did not break correctly behaving devices so far.
*/
static const struct {
u32 firmware_revision;
u32 model_id;
unsigned workarounds;
} sbp2_workarounds_table[] = {
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
.firmware_revision = 0x002800,
.model_id = 0x001010,
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
SBP2_WORKAROUND_MODE_SENSE_8,
},
/* Initio bridges, actually only needed for some older ones */ {
.firmware_revision = 0x000200,
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
},
/* Symbios bridge */ {
.firmware_revision = 0xa0b800,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/*
* Note about the following Apple iPod blacklist entries:
*
* There are iPods (2nd gen, 3rd gen) with model_id==0. Since our
* matching logic treats 0 as a wildcard, we cannot match this ID
* without rewriting the matching routine. Fortunately these iPods
* do not feature the read_capacity bug according to one report.
* Read_capacity behaviour as well as model_id could change due to
* Apple-supplied firmware updates though.
*/
/* iPod 4th generation */ {
.firmware_revision = 0x0a2700,
.model_id = 0x000021,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model_id = 0x000023,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod Photo */ {
.firmware_revision = 0x0a2700,
.model_id = 0x00007e,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
}
};
/**************************************
* General utility functions
**************************************/
#ifndef __BIG_ENDIAN
/*
* Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
*/
static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = be32_to_cpu(temp[length]);
return;
}
/*
* Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
*/
static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
{
u32 *temp = buffer;
for (length = (length >> 2); length--; )
temp[length] = cpu_to_be32(temp[length]);
return;
}
#else /* BIG_ENDIAN */
/* Why waste the cpu cycles? */
#define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
#define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
#endif
#ifdef CONFIG_IEEE1394_SBP2_PACKET_DUMP
/*
* Debug packet dump routine. Length is in bytes.
*/
static void sbp2util_packet_dump(void *buffer, int length, char *dump_name,
u32 dump_phys_addr)
{
int i;
unsigned char *dump = buffer;
if (!dump || !length || !dump_name)
return;
if (dump_phys_addr)
printk("[%s, 0x%x]", dump_name, dump_phys_addr);
else
printk("[%s]", dump_name);
for (i = 0; i < length; i++) {
if (i > 0x3f) {
printk("\n ...");
break;
}
if ((i & 0x3) == 0)
printk(" ");
if ((i & 0xf) == 0)
printk("\n ");
printk("%02x ", (int)dump[i]);
}
printk("\n");
return;
}
#else
#define sbp2util_packet_dump(w,x,y,z) do {} while (0)
#endif
static DECLARE_WAIT_QUEUE_HEAD(access_wq);
/*
* Waits for completion of an SBP-2 access request.
* Returns nonzero if timed out or prematurely interrupted.
*/
static int sbp2util_access_timeout(struct scsi_id_instance_data *scsi_id,
int timeout)
{
long leftover = wait_event_interruptible_timeout(
access_wq, scsi_id->access_complete, timeout);
scsi_id->access_complete = 0;
return leftover <= 0;
}
/* Frees an allocated packet */
static void sbp2_free_packet(struct hpsb_packet *packet)
{
hpsb_free_tlabel(packet);
hpsb_free_packet(packet);
}
/* This is much like hpsb_node_write(), except it ignores the response
* subaction and returns immediately. Can be used from interrupts.
*/
static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
quadlet_t *buffer, size_t length)
{
struct hpsb_packet *packet;
packet = hpsb_make_writepacket(ne->host, ne->nodeid,
addr, buffer, length);
if (!packet)
return -ENOMEM;
hpsb_set_packet_complete_task(packet,
(void (*)(void *))sbp2_free_packet,
packet);
hpsb_node_fill_packet(ne, packet);
if (hpsb_send_packet(packet) < 0) {
sbp2_free_packet(packet);
return -EIO;
}
return 0;
}
static void sbp2util_notify_fetch_agent(struct scsi_id_instance_data *scsi_id,
u64 offset, quadlet_t *data, size_t len)
{
/*
* There is a small window after a bus reset within which the node
* entry's generation is current but the reconnect wasn't completed.
*/
if (atomic_read(&scsi_id->unfinished_reset))
return;
if (hpsb_node_write(scsi_id->ne,
scsi_id->sbp2_command_block_agent_addr + offset,
data, len))
SBP2_ERR("sbp2util_notify_fetch_agent failed.");
/*
* Now accept new SCSI commands, unless a bus reset happended during
* hpsb_node_write.
*/
if (!atomic_read(&scsi_id->unfinished_reset))
scsi_unblock_requests(scsi_id->scsi_host);
}
static void sbp2util_write_orb_pointer(void *p)
{
quadlet_t data[2];
data[0] = ORB_SET_NODE_ID(
((struct scsi_id_instance_data *)p)->hi->host->node_id);
data[1] = ((struct scsi_id_instance_data *)p)->last_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
sbp2util_notify_fetch_agent(p, SBP2_ORB_POINTER_OFFSET, data, 8);
}
static void sbp2util_write_doorbell(void *p)
{
sbp2util_notify_fetch_agent(p, SBP2_DOORBELL_OFFSET, NULL, 4);
}
/*
* This function is called to create a pool of command orbs used for
* command processing. It is called when a new sbp2 device is detected.
*/
static int sbp2util_create_command_orb_pool(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
int i;
unsigned long flags, orbs;
struct sbp2_command_info *command;
orbs = serialize_io ? 2 : SBP2_MAX_CMDS;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
for (i = 0; i < orbs; i++) {
command = kzalloc(sizeof(*command), GFP_ATOMIC);
if (!command) {
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock,
flags);
return -ENOMEM;
}
command->command_orb_dma =
pci_map_single(hi->host->pdev, &command->command_orb,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
SBP2_DMA_ALLOC("single command orb DMA");
command->sge_dma =
pci_map_single(hi->host->pdev,
&command->scatter_gather_element,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_ALLOC("scatter_gather_element");
INIT_LIST_HEAD(&command->list);
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return 0;
}
/*
* This function is called to delete a pool of command orbs.
*/
static void sbp2util_remove_command_orb_pool(struct scsi_id_instance_data *scsi_id)
{
struct hpsb_host *host = scsi_id->hi->host;
struct list_head *lh, *next;
struct sbp2_command_info *command;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
list_for_each_safe(lh, next, &scsi_id->sbp2_command_orb_completed) {
command = list_entry(lh, struct sbp2_command_info, list);
/* Release our generic DMA's */
pci_unmap_single(host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
SBP2_DMA_FREE("single command orb DMA");
pci_unmap_single(host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_DMA_FREE("scatter_gather_element");
kfree(command);
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return;
}
/*
* This function finds the sbp2_command for a given outstanding command
* orb.Only looks at the inuse list.
*/
static struct sbp2_command_info *sbp2util_find_command_for_orb(
struct scsi_id_instance_data *scsi_id, dma_addr_t orb)
{
struct sbp2_command_info *command;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list) {
if (command->command_orb_dma == orb) {
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return command;
}
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
SBP2_ORB_DEBUG("could not match command orb %x", (unsigned int)orb);
return NULL;
}
/*
* This function finds the sbp2_command for a given outstanding SCpnt.
* Only looks at the inuse list.
* Must be called with scsi_id->sbp2_command_orb_lock held.
*/
static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
struct scsi_id_instance_data *scsi_id, void *SCpnt)
{
struct sbp2_command_info *command;
if (!list_empty(&scsi_id->sbp2_command_orb_inuse))
list_for_each_entry(command, &scsi_id->sbp2_command_orb_inuse, list)
if (command->Current_SCpnt == SCpnt)
return command;
return NULL;
}
/*
* This function allocates a command orb used to send a scsi command.
*/
static struct sbp2_command_info *sbp2util_allocate_command_orb(
struct scsi_id_instance_data *scsi_id,
struct scsi_cmnd *Current_SCpnt,
void (*Current_done)(struct scsi_cmnd *))
{
struct list_head *lh;
struct sbp2_command_info *command = NULL;
unsigned long flags;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (!list_empty(&scsi_id->sbp2_command_orb_completed)) {
lh = scsi_id->sbp2_command_orb_completed.next;
list_del(lh);
command = list_entry(lh, struct sbp2_command_info, list);
command->Current_done = Current_done;
command->Current_SCpnt = Current_SCpnt;
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_inuse);
} else {
SBP2_ERR("%s: no orbs available", __FUNCTION__);
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return command;
}
/* Free our DMA's */
static void sbp2util_free_command_dma(struct sbp2_command_info *command)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)command->Current_SCpnt->device->host->hostdata[0];
struct hpsb_host *host;
if (!scsi_id) {
SBP2_ERR("%s: scsi_id == NULL", __FUNCTION__);
return;
}
host = scsi_id->ud->ne->host;
if (command->cmd_dma) {
if (command->dma_type == CMD_DMA_SINGLE) {
pci_unmap_single(host->pdev, command->cmd_dma,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("single bulk");
} else if (command->dma_type == CMD_DMA_PAGE) {
pci_unmap_page(host->pdev, command->cmd_dma,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("single page");
} /* XXX: Check for CMD_DMA_NONE bug */
command->dma_type = CMD_DMA_NONE;
command->cmd_dma = 0;
}
if (command->sge_buffer) {
pci_unmap_sg(host->pdev, command->sge_buffer,
command->dma_size, command->dma_dir);
SBP2_DMA_FREE("scatter list");
command->sge_buffer = NULL;
}
}
/*
* This function moves a command to the completed orb list.
* Must be called with scsi_id->sbp2_command_orb_lock held.
*/
static void sbp2util_mark_command_completed(
struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command)
{
list_del(&command->list);
sbp2util_free_command_dma(command);
list_add_tail(&command->list, &scsi_id->sbp2_command_orb_completed);
}
/*
* Is scsi_id valid? Is the 1394 node still present?
*/
static inline int sbp2util_node_is_available(struct scsi_id_instance_data *scsi_id)
{
return scsi_id && scsi_id->ne && !scsi_id->ne->in_limbo;
}
/*********************************************
* IEEE-1394 core driver stack related section
*********************************************/
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud);
static int sbp2_probe(struct device *dev)
{
struct unit_directory *ud;
struct scsi_id_instance_data *scsi_id;
SBP2_DEBUG_ENTER();
ud = container_of(dev, struct unit_directory, device);
/* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
* instead. */
if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
return -ENODEV;
scsi_id = sbp2_alloc_device(ud);
if (!scsi_id)
return -ENOMEM;
sbp2_parse_unit_directory(scsi_id, ud);
return sbp2_start_device(scsi_id);
}
static int sbp2_remove(struct device *dev)
{
struct unit_directory *ud;
struct scsi_id_instance_data *scsi_id;
struct scsi_device *sdev;
SBP2_DEBUG_ENTER();
ud = container_of(dev, struct unit_directory, device);
scsi_id = ud->device.driver_data;
if (!scsi_id)
return 0;
if (scsi_id->scsi_host) {
/* Get rid of enqueued commands if there is no chance to
* send them. */
if (!sbp2util_node_is_available(scsi_id))
sbp2scsi_complete_all_commands(scsi_id, DID_NO_CONNECT);
/* scsi_remove_device() will trigger shutdown functions of SCSI
* highlevel drivers which would deadlock if blocked. */
atomic_set(&scsi_id->unfinished_reset, 0);
scsi_unblock_requests(scsi_id->scsi_host);
}
sdev = scsi_id->sdev;
if (sdev) {
scsi_id->sdev = NULL;
scsi_remove_device(sdev);
}
sbp2_logout_device(scsi_id);
sbp2_remove_device(scsi_id);
return 0;
}
static int sbp2_update(struct unit_directory *ud)
{
struct scsi_id_instance_data *scsi_id = ud->device.driver_data;
SBP2_DEBUG_ENTER();
if (sbp2_reconnect_device(scsi_id)) {
/*
* Ok, reconnect has failed. Perhaps we didn't
* reconnect fast enough. Try doing a regular login, but
* first do a logout just in case of any weirdness.
*/
sbp2_logout_device(scsi_id);
if (sbp2_login_device(scsi_id)) {
/* Login failed too, just fail, and the backend
* will call our sbp2_remove for us */
SBP2_ERR("Failed to reconnect to sbp2 device!");
return -EBUSY;
}
}
/* Set max retries to something large on the device. */
sbp2_set_busy_timeout(scsi_id);
/* Do a SBP-2 fetch agent reset. */
sbp2_agent_reset(scsi_id, 1);
/* Get the max speed and packet size that we can use. */
sbp2_max_speed_and_size(scsi_id);
/* Complete any pending commands with busy (so they get
* retried) and remove them from our queue
*/
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
/* Accept new commands unless there was another bus reset in the
* meantime. */
if (hpsb_node_entry_valid(scsi_id->ne)) {
atomic_set(&scsi_id->unfinished_reset, 0);
scsi_unblock_requests(scsi_id->scsi_host);
}
return 0;
}
/* This functions is called by the sbp2_probe, for each new device. We now
* allocate one scsi host for each scsi_id (unit directory). */
static struct scsi_id_instance_data *sbp2_alloc_device(struct unit_directory *ud)
{
struct sbp2scsi_host_info *hi;
struct Scsi_Host *scsi_host = NULL;
struct scsi_id_instance_data *scsi_id = NULL;
SBP2_DEBUG_ENTER();
scsi_id = kzalloc(sizeof(*scsi_id), GFP_KERNEL);
if (!scsi_id) {
SBP2_ERR("failed to create scsi_id");
goto failed_alloc;
}
scsi_id->ne = ud->ne;
scsi_id->ud = ud;
scsi_id->speed_code = IEEE1394_SPEED_100;
scsi_id->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
scsi_id->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_inuse);
INIT_LIST_HEAD(&scsi_id->sbp2_command_orb_completed);
INIT_LIST_HEAD(&scsi_id->scsi_list);
spin_lock_init(&scsi_id->sbp2_command_orb_lock);
atomic_set(&scsi_id->unfinished_reset, 0);
INIT_WORK(&scsi_id->protocol_work, NULL, NULL);
ud->device.driver_data = scsi_id;
hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
if (!hi) {
hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host, sizeof(*hi));
if (!hi) {
SBP2_ERR("failed to allocate hostinfo");
goto failed_alloc;
}
SBP2_DEBUG("sbp2_alloc_device: allocated hostinfo");
hi->host = ud->ne->host;
INIT_LIST_HEAD(&hi->scsi_ids);
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/* Handle data movement if physical dma is not
* enabled or not supported on host controller */
if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
&sbp2_physdma_ops,
0x0ULL, 0xfffffffcULL)) {
SBP2_ERR("failed to register lower 4GB address range");
goto failed_alloc;
}
#endif
}
/* Prevent unloading of the 1394 host */
if (!try_module_get(hi->host->driver->owner)) {
SBP2_ERR("failed to get a reference on 1394 host driver");
goto failed_alloc;
}
scsi_id->hi = hi;
list_add_tail(&scsi_id->scsi_list, &hi->scsi_ids);
/* Register the status FIFO address range. We could use the same FIFO
* for targets at different nodes. However we need different FIFOs per
* target in order to support multi-unit devices.
* The FIFO is located out of the local host controller's physical range
* but, if possible, within the posted write area. Status writes will
* then be performed as unified transactions. This slightly reduces
* bandwidth usage, and some Prolific based devices seem to require it.
*/
scsi_id->status_fifo_addr = hpsb_allocate_and_register_addrspace(
&sbp2_highlevel, ud->ne->host, &sbp2_ops,
sizeof(struct sbp2_status_block), sizeof(quadlet_t),
ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
if (scsi_id->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
SBP2_ERR("failed to allocate status FIFO address range");
goto failed_alloc;
}
/* Register our host with the SCSI stack. */
scsi_host = scsi_host_alloc(&scsi_driver_template,
sizeof(unsigned long));
if (!scsi_host) {
SBP2_ERR("failed to register scsi host");
goto failed_alloc;
}
scsi_host->hostdata[0] = (unsigned long)scsi_id;
if (!scsi_add_host(scsi_host, &ud->device)) {
scsi_id->scsi_host = scsi_host;
return scsi_id;
}
SBP2_ERR("failed to add scsi host");
scsi_host_put(scsi_host);
failed_alloc:
sbp2_remove_device(scsi_id);
return NULL;
}
static void sbp2_host_reset(struct hpsb_host *host)
{
struct sbp2scsi_host_info *hi;
struct scsi_id_instance_data *scsi_id;
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (hi) {
list_for_each_entry(scsi_id, &hi->scsi_ids, scsi_list) {
atomic_set(&scsi_id->unfinished_reset, 1);
scsi_block_requests(scsi_id->scsi_host);
}
}
}
/*
* This function is where we first pull the node unique ids, and then
* allocate memory and register a SBP-2 device.
*/
static int sbp2_start_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
int error;
SBP2_DEBUG_ENTER();
/* Login FIFO DMA */
scsi_id->login_response =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_login_response),
&scsi_id->login_response_dma);
if (!scsi_id->login_response)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for login FIFO");
/* Query logins ORB DMA */
scsi_id->query_logins_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_orb),
&scsi_id->query_logins_orb_dma);
if (!scsi_id->query_logins_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for query logins ORB");
/* Query logins response DMA */
scsi_id->query_logins_response =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_response),
&scsi_id->query_logins_response_dma);
if (!scsi_id->query_logins_response)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for query logins response");
/* Reconnect ORB DMA */
scsi_id->reconnect_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_reconnect_orb),
&scsi_id->reconnect_orb_dma);
if (!scsi_id->reconnect_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for reconnect ORB");
/* Logout ORB DMA */
scsi_id->logout_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_logout_orb),
&scsi_id->logout_orb_dma);
if (!scsi_id->logout_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for logout ORB");
/* Login ORB DMA */
scsi_id->login_orb =
pci_alloc_consistent(hi->host->pdev,
sizeof(struct sbp2_login_orb),
&scsi_id->login_orb_dma);
if (!scsi_id->login_orb)
goto alloc_fail;
SBP2_DMA_ALLOC("consistent DMA region for login ORB");
SBP2_DEBUG("New SBP-2 device inserted, SCSI ID = %x", scsi_id->ud->id);
/*
* Create our command orb pool
*/
if (sbp2util_create_command_orb_pool(scsi_id)) {
SBP2_ERR("sbp2util_create_command_orb_pool failed!");
sbp2_remove_device(scsi_id);
return -ENOMEM;
}
/* Schedule a timeout here. The reason is that we may be so close
* to a bus reset, that the device is not available for logins.
* This can happen when the bus reset is caused by the host
* connected to the sbp2 device being removed. That host would
* have a certain amount of time to relogin before the sbp2 device
* allows someone else to login instead. One second makes sense. */
if (msleep_interruptible(1000)) {
sbp2_remove_device(scsi_id);
return -EINTR;
}
/*
* Login to the sbp-2 device
*/
if (sbp2_login_device(scsi_id)) {
/* Login failed, just remove the device. */
sbp2_remove_device(scsi_id);
return -EBUSY;
}
/*
* Set max retries to something large on the device
*/
sbp2_set_busy_timeout(scsi_id);
/*
* Do a SBP-2 fetch agent reset
*/
sbp2_agent_reset(scsi_id, 1);
/*
* Get the max speed and packet size that we can use
*/
sbp2_max_speed_and_size(scsi_id);
/* Add this device to the scsi layer now */
error = scsi_add_device(scsi_id->scsi_host, 0, scsi_id->ud->id, 0);
if (error) {
SBP2_ERR("scsi_add_device failed");
sbp2_logout_device(scsi_id);
sbp2_remove_device(scsi_id);
return error;
}
return 0;
alloc_fail:
SBP2_ERR("Could not allocate memory for scsi_id");
sbp2_remove_device(scsi_id);
return -ENOMEM;
}
/*
* This function removes an sbp2 device from the sbp2scsi_host_info struct.
*/
static void sbp2_remove_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi;
SBP2_DEBUG_ENTER();
if (!scsi_id)
return;
hi = scsi_id->hi;
/* This will remove our scsi device aswell */
if (scsi_id->scsi_host) {
scsi_remove_host(scsi_id->scsi_host);
scsi_host_put(scsi_id->scsi_host);
}
flush_scheduled_work();
sbp2util_remove_command_orb_pool(scsi_id);
list_del(&scsi_id->scsi_list);
if (scsi_id->login_response) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_login_response),
scsi_id->login_response,
scsi_id->login_response_dma);
SBP2_DMA_FREE("single login FIFO");
}
if (scsi_id->login_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_login_orb),
scsi_id->login_orb,
scsi_id->login_orb_dma);
SBP2_DMA_FREE("single login ORB");
}
if (scsi_id->reconnect_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_reconnect_orb),
scsi_id->reconnect_orb,
scsi_id->reconnect_orb_dma);
SBP2_DMA_FREE("single reconnect orb");
}
if (scsi_id->logout_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_logout_orb),
scsi_id->logout_orb,
scsi_id->logout_orb_dma);
SBP2_DMA_FREE("single logout orb");
}
if (scsi_id->query_logins_orb) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_orb),
scsi_id->query_logins_orb,
scsi_id->query_logins_orb_dma);
SBP2_DMA_FREE("single query logins orb");
}
if (scsi_id->query_logins_response) {
pci_free_consistent(hi->host->pdev,
sizeof(struct sbp2_query_logins_response),
scsi_id->query_logins_response,
scsi_id->query_logins_response_dma);
SBP2_DMA_FREE("single query logins data");
}
if (scsi_id->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
scsi_id->status_fifo_addr);
scsi_id->ud->device.driver_data = NULL;
if (hi)
module_put(hi->host->driver->owner);
SBP2_DEBUG("SBP-2 device removed, SCSI ID = %d", scsi_id->ud->id);
kfree(scsi_id);
}
#ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
/*
* This function deals with physical dma write requests (for adapters that do not support
* physical dma in hardware). Mostly just here for debugging...
*/
static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
int destid, quadlet_t *data, u64 addr,
size_t length, u16 flags)
{
/*
* Manually put the data in the right place.
*/
memcpy(bus_to_virt((u32) addr), data, length);
sbp2util_packet_dump(data, length, "sbp2 phys dma write by device",
(u32) addr);
return RCODE_COMPLETE;
}
/*
* This function deals with physical dma read requests (for adapters that do not support
* physical dma in hardware). Mostly just here for debugging...
*/
static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
quadlet_t *data, u64 addr, size_t length,
u16 flags)
{
/*
* Grab data from memory and send a read response.
*/
memcpy(data, bus_to_virt((u32) addr), length);
sbp2util_packet_dump(data, length, "sbp2 phys dma read by device",
(u32) addr);
return RCODE_COMPLETE;
}
#endif
/**************************************
* SBP-2 protocol related section
**************************************/
/*
* This function queries the device for the maximum concurrent logins it
* supports.
*/
static int sbp2_query_logins(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int max_logins;
int active_logins;
SBP2_DEBUG_ENTER();
scsi_id->query_logins_orb->reserved1 = 0x0;
scsi_id->query_logins_orb->reserved2 = 0x0;
scsi_id->query_logins_orb->query_response_lo = scsi_id->query_logins_response_dma;
scsi_id->query_logins_orb->query_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
scsi_id->query_logins_orb->lun_misc = ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
scsi_id->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
scsi_id->query_logins_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_lun);
scsi_id->query_logins_orb->reserved_resp_length =
ORB_SET_QUERY_LOGINS_RESP_LENGTH(sizeof(struct sbp2_query_logins_response));
scsi_id->query_logins_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->query_logins_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb));
sbp2util_packet_dump(scsi_id->query_logins_orb, sizeof(struct sbp2_query_logins_orb),
"sbp2 query logins orb", scsi_id->query_logins_orb_dma);
memset(scsi_id->query_logins_response, 0, sizeof(struct sbp2_query_logins_response));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->query_logins_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
if (sbp2util_access_timeout(scsi_id, 2*HZ)) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (scsi_id->status_block.ORB_offset_lo != scsi_id->query_logins_orb_dma) {
SBP2_INFO("Error querying logins to SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_INFO("Error querying logins to SBP-2 device - failed");
return -EIO;
}
sbp2util_cpu_to_be32_buffer(scsi_id->query_logins_response, sizeof(struct sbp2_query_logins_response));
SBP2_DEBUG("length_max_logins = %x",
(unsigned int)scsi_id->query_logins_response->length_max_logins);
max_logins = RESPONSE_GET_MAX_LOGINS(scsi_id->query_logins_response->length_max_logins);
SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
active_logins = RESPONSE_GET_ACTIVE_LOGINS(scsi_id->query_logins_response->length_max_logins);
SBP2_INFO("Number of active logins: %d", active_logins);
if (active_logins >= max_logins) {
return -EIO;
}
return 0;
}
/*
* This function is called in order to login to a particular SBP-2 device,
* after a bus reset.
*/
static int sbp2_login_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
SBP2_DEBUG_ENTER();
if (!scsi_id->login_orb) {
SBP2_DEBUG("%s: login_orb not alloc'd!", __FUNCTION__);
return -EIO;
}
if (!exclusive_login) {
if (sbp2_query_logins(scsi_id)) {
SBP2_INFO("Device does not support any more concurrent logins");
return -EIO;
}
}
/* Set-up login ORB, assume no password */
scsi_id->login_orb->password_hi = 0;
scsi_id->login_orb->password_lo = 0;
scsi_id->login_orb->login_response_lo = scsi_id->login_response_dma;
scsi_id->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
scsi_id->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
scsi_id->login_orb->lun_misc |= ORB_SET_RECONNECT(0); /* One second reconnect time */
scsi_id->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(exclusive_login); /* Exclusive access to device */
scsi_id->login_orb->lun_misc |= ORB_SET_NOTIFY(1); /* Notify us of login complete */
scsi_id->login_orb->lun_misc |= ORB_SET_LUN(scsi_id->sbp2_lun);
scsi_id->login_orb->passwd_resp_lengths =
ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
scsi_id->login_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->login_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
sbp2util_cpu_to_be32_buffer(scsi_id->login_orb, sizeof(struct sbp2_login_orb));
sbp2util_packet_dump(scsi_id->login_orb, sizeof(struct sbp2_login_orb),
"sbp2 login orb", scsi_id->login_orb_dma);
memset(scsi_id->login_response, 0, sizeof(struct sbp2_login_response));
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->login_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
hpsb_node_write(scsi_id->ne, scsi_id->sbp2_management_agent_addr, data, 8);
/*
* Wait for login status (up to 20 seconds)...
*/
if (sbp2util_access_timeout(scsi_id, 20*HZ)) {
SBP2_ERR("Error logging into SBP-2 device - timed out");
return -EIO;
}
/*
* Sanity. Make sure status returned matches login orb.
*/
if (scsi_id->status_block.ORB_offset_lo != scsi_id->login_orb_dma) {
SBP2_ERR("Error logging into SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error logging into SBP-2 device - failed");
return -EIO;
}
/*
* Byte swap the login response, for use when reconnecting or
* logging out.
*/
sbp2util_cpu_to_be32_buffer(scsi_id->login_response, sizeof(struct sbp2_login_response));
/*
* Grab our command block agent address from the login response.
*/
SBP2_DEBUG("command_block_agent_hi = %x",
(unsigned int)scsi_id->login_response->command_block_agent_hi);
SBP2_DEBUG("command_block_agent_lo = %x",
(unsigned int)scsi_id->login_response->command_block_agent_lo);
scsi_id->sbp2_command_block_agent_addr =
((u64)scsi_id->login_response->command_block_agent_hi) << 32;
scsi_id->sbp2_command_block_agent_addr |= ((u64)scsi_id->login_response->command_block_agent_lo);
scsi_id->sbp2_command_block_agent_addr &= 0x0000ffffffffffffULL;
SBP2_INFO("Logged into SBP-2 device");
return 0;
}
/*
* This function is called in order to logout from a particular SBP-2
* device, usually called during driver unload.
*/
static int sbp2_logout_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int error;
SBP2_DEBUG_ENTER();
/*
* Set-up logout ORB
*/
scsi_id->logout_orb->reserved1 = 0x0;
scsi_id->logout_orb->reserved2 = 0x0;
scsi_id->logout_orb->reserved3 = 0x0;
scsi_id->logout_orb->reserved4 = 0x0;
scsi_id->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
scsi_id->logout_orb->login_ID_misc |= ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
/* Notify us when complete */
scsi_id->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
scsi_id->logout_orb->reserved5 = 0x0;
scsi_id->logout_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->logout_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
/*
* Byte swap ORB if necessary
*/
sbp2util_cpu_to_be32_buffer(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb));
sbp2util_packet_dump(scsi_id->logout_orb, sizeof(struct sbp2_logout_orb),
"sbp2 logout orb", scsi_id->logout_orb_dma);
/*
* Ok, let's write to the target's management agent register
*/
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->logout_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
error = hpsb_node_write(scsi_id->ne,
scsi_id->sbp2_management_agent_addr, data, 8);
if (error)
return error;
/* Wait for device to logout...1 second. */
if (sbp2util_access_timeout(scsi_id, HZ))
return -EIO;
SBP2_INFO("Logged out of SBP-2 device");
return 0;
}
/*
* This function is called in order to reconnect to a particular SBP-2
* device, after a bus reset.
*/
static int sbp2_reconnect_device(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
quadlet_t data[2];
int error;
SBP2_DEBUG_ENTER();
/*
* Set-up reconnect ORB
*/
scsi_id->reconnect_orb->reserved1 = 0x0;
scsi_id->reconnect_orb->reserved2 = 0x0;
scsi_id->reconnect_orb->reserved3 = 0x0;
scsi_id->reconnect_orb->reserved4 = 0x0;
scsi_id->reconnect_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
scsi_id->reconnect_orb->login_ID_misc |=
ORB_SET_LOGIN_ID(scsi_id->login_response->length_login_ID);
/* Notify us when complete */
scsi_id->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
scsi_id->reconnect_orb->reserved5 = 0x0;
scsi_id->reconnect_orb->status_fifo_hi =
ORB_SET_STATUS_FIFO_HI(scsi_id->status_fifo_addr, hi->host->node_id);
scsi_id->reconnect_orb->status_fifo_lo =
ORB_SET_STATUS_FIFO_LO(scsi_id->status_fifo_addr);
/*
* Byte swap ORB if necessary
*/
sbp2util_cpu_to_be32_buffer(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb));
sbp2util_packet_dump(scsi_id->reconnect_orb, sizeof(struct sbp2_reconnect_orb),
"sbp2 reconnect orb", scsi_id->reconnect_orb_dma);
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = scsi_id->reconnect_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
error = hpsb_node_write(scsi_id->ne,
scsi_id->sbp2_management_agent_addr, data, 8);
if (error)
return error;
/*
* Wait for reconnect status (up to 1 second)...
*/
if (sbp2util_access_timeout(scsi_id, HZ)) {
SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
return -EIO;
}
/*
* Sanity. Make sure status returned matches reconnect orb.
*/
if (scsi_id->status_block.ORB_offset_lo != scsi_id->reconnect_orb_dma) {
SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
return -EIO;
}
if (STATUS_TEST_RDS(scsi_id->status_block.ORB_offset_hi_misc)) {
SBP2_ERR("Error reconnecting to SBP-2 device - failed");
return -EIO;
}
HPSB_DEBUG("Reconnected to SBP-2 device");
return 0;
}
/*
* This function is called in order to set the busy timeout (number of
* retries to attempt) on the sbp2 device.
*/
static int sbp2_set_busy_timeout(struct scsi_id_instance_data *scsi_id)
{
quadlet_t data;
SBP2_DEBUG_ENTER();
data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
if (hpsb_node_write(scsi_id->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
SBP2_ERR("%s error", __FUNCTION__);
return 0;
}
/*
* This function is called to parse sbp2 device's config rom unit
* directory. Used to determine things like sbp2 management agent offset,
* and command set used (SCSI or RBC).
*/
static void sbp2_parse_unit_directory(struct scsi_id_instance_data *scsi_id,
struct unit_directory *ud)
{
struct csr1212_keyval *kv;
struct csr1212_dentry *dentry;
u64 management_agent_addr;
u32 command_set_spec_id, command_set, unit_characteristics,
firmware_revision;
unsigned workarounds;
int i;
SBP2_DEBUG_ENTER();
management_agent_addr = 0x0;
command_set_spec_id = 0x0;
command_set = 0x0;
unit_characteristics = 0x0;
firmware_revision = 0x0;
/* Handle different fields in the unit directory, based on keys */
csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
switch (kv->key.id) {
case CSR1212_KV_ID_DEPENDENT_INFO:
if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET) {
/* Save off the management agent address */
management_agent_addr =
CSR1212_REGISTER_SPACE_BASE +
(kv->value.csr_offset << 2);
SBP2_DEBUG("sbp2_management_agent_addr = %x",
(unsigned int)management_agent_addr);
} else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE) {
scsi_id->sbp2_lun =
ORB_SET_LUN(kv->value.immediate);
}
break;
case SBP2_COMMAND_SET_SPEC_ID_KEY:
/* Command spec organization */
command_set_spec_id = kv->value.immediate;
SBP2_DEBUG("sbp2_command_set_spec_id = %x",
(unsigned int)command_set_spec_id);
break;
case SBP2_COMMAND_SET_KEY:
/* Command set used by sbp2 device */
command_set = kv->value.immediate;
SBP2_DEBUG("sbp2_command_set = %x",
(unsigned int)command_set);
break;
case SBP2_UNIT_CHARACTERISTICS_KEY:
/*
* Unit characterisitcs (orb related stuff
* that I'm not yet paying attention to)
*/
unit_characteristics = kv->value.immediate;
SBP2_DEBUG("sbp2_unit_characteristics = %x",
(unsigned int)unit_characteristics);
break;
case SBP2_FIRMWARE_REVISION_KEY:
/* Firmware revision */
firmware_revision = kv->value.immediate;
SBP2_DEBUG("sbp2_firmware_revision = %x",
(unsigned int)firmware_revision);
break;
default:
break;
}
}
workarounds = sbp2_default_workarounds;
if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
if (sbp2_workarounds_table[i].firmware_revision &&
sbp2_workarounds_table[i].firmware_revision !=
(firmware_revision & 0xffff00))
continue;
if (sbp2_workarounds_table[i].model_id &&
sbp2_workarounds_table[i].model_id != ud->model_id)
continue;
workarounds |= sbp2_workarounds_table[i].workarounds;
break;
}
if (workarounds)
SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
"(firmware_revision 0x%06x, vendor_id 0x%06x,"
" model_id 0x%06x)",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
workarounds, firmware_revision,
ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
ud->model_id);
/* We would need one SCSI host template for each target to adjust
* max_sectors on the fly, therefore warn only. */
if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
(max_sectors * 512) > (128 * 1024))
SBP2_WARN("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
"max transfer size. WARNING: Current max_sectors "
"setting is larger than 128KB (%d sectors)",
NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
max_sectors);
/* If this is a logical unit directory entry, process the parent
* to get the values. */
if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
struct unit_directory *parent_ud =
container_of(ud->device.parent, struct unit_directory, device);
sbp2_parse_unit_directory(scsi_id, parent_ud);
} else {
scsi_id->sbp2_management_agent_addr = management_agent_addr;
scsi_id->sbp2_command_set_spec_id = command_set_spec_id;
scsi_id->sbp2_command_set = command_set;
scsi_id->sbp2_unit_characteristics = unit_characteristics;
scsi_id->sbp2_firmware_revision = firmware_revision;
scsi_id->workarounds = workarounds;
if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
scsi_id->sbp2_lun = ORB_SET_LUN(ud->lun);
}
}
#define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
/*
* This function is called in order to determine the max speed and packet
* size we can use in our ORBs. Note, that we (the driver and host) only
* initiate the transaction. The SBP-2 device actually transfers the data
* (by reading from the DMA area we tell it). This means that the SBP-2
* device decides the actual maximum data it can transfer. We just tell it
* the speed that it needs to use, and the max_rec the host supports, and
* it takes care of the rest.
*/
static int sbp2_max_speed_and_size(struct scsi_id_instance_data *scsi_id)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
u8 payload;
SBP2_DEBUG_ENTER();
scsi_id->speed_code =
hi->host->speed[NODEID_TO_NODE(scsi_id->ne->nodeid)];
/* Bump down our speed if the user requested it */
if (scsi_id->speed_code > max_speed) {
scsi_id->speed_code = max_speed;
SBP2_ERR("Forcing SBP-2 max speed down to %s",
hpsb_speedto_str[scsi_id->speed_code]);
}
/* Payload size is the lesser of what our speed supports and what
* our host supports. */
payload = min(sbp2_speedto_max_payload[scsi_id->speed_code],
(u8) (hi->host->csr.max_rec - 1));
/* If physical DMA is off, work around limitation in ohci1394:
* packet size must not exceed PAGE_SIZE */
if (scsi_id->ne->host->low_addr_space < (1ULL << 32))
while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
payload)
payload--;
HPSB_DEBUG("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
NODE_BUS_ARGS(hi->host, scsi_id->ne->nodeid),
hpsb_speedto_str[scsi_id->speed_code],
SBP2_PAYLOAD_TO_BYTES(payload));
scsi_id->max_payload_size = payload;
return 0;
}
/*
* This function is called in order to perform a SBP-2 agent reset.
*/
static int sbp2_agent_reset(struct scsi_id_instance_data *scsi_id, int wait)
{
quadlet_t data;
u64 addr;
int retval;
unsigned long flags;
SBP2_DEBUG_ENTER();
cancel_delayed_work(&scsi_id->protocol_work);
if (wait)
flush_scheduled_work();
data = ntohl(SBP2_AGENT_RESET_DATA);
addr = scsi_id->sbp2_command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
if (wait)
retval = hpsb_node_write(scsi_id->ne, addr, &data, 4);
else
retval = sbp2util_node_write_no_wait(scsi_id->ne, addr, &data, 4);
if (retval < 0) {
SBP2_ERR("hpsb_node_write failed.\n");
return -EIO;
}
/*
* Need to make sure orb pointer is written on next command
*/
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
scsi_id->last_orb = NULL;
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return 0;
}
static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
struct sbp2scsi_host_info *hi,
struct sbp2_command_info *command,
unsigned int scsi_use_sg,
struct scatterlist *sgpnt,
u32 orb_direction,
enum dma_data_direction dma_dir)
{
command->dma_dir = dma_dir;
orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
orb->misc |= ORB_SET_DIRECTION(orb_direction);
/* Special case if only one element (and less than 64KB in size) */
if ((scsi_use_sg == 1) &&
(sgpnt[0].length <= SBP2_MAX_SG_ELEMENT_LENGTH)) {
SBP2_DEBUG("Only one s/g element");
command->dma_size = sgpnt[0].length;
command->dma_type = CMD_DMA_PAGE;
command->cmd_dma = pci_map_page(hi->host->pdev,
sgpnt[0].page,
sgpnt[0].offset,
command->dma_size,
command->dma_dir);
SBP2_DMA_ALLOC("single page scatter element");
orb->data_descriptor_lo = command->cmd_dma;
orb->misc |= ORB_SET_DATA_SIZE(command->dma_size);
} else {
struct sbp2_unrestricted_page_table *sg_element =
&command->scatter_gather_element[0];
u32 sg_count, sg_len;
dma_addr_t sg_addr;
int i, count = pci_map_sg(hi->host->pdev, sgpnt, scsi_use_sg,
dma_dir);
SBP2_DMA_ALLOC("scatter list");
command->dma_size = scsi_use_sg;
command->sge_buffer = sgpnt;
/* use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
orb->data_descriptor_lo = command->sge_dma;
/*
* Loop through and fill out our sbp-2 page tables
* (and split up anything too large)
*/
for (i = 0, sg_count = 0 ; i < count; i++, sgpnt++) {
sg_len = sg_dma_len(sgpnt);
sg_addr = sg_dma_address(sgpnt);
while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
} else {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
sg_len = 0;
}
sg_count++;
}
}
/* Number of page table (s/g) elements */
orb->misc |= ORB_SET_DATA_SIZE(sg_count);
sbp2util_packet_dump(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
"sbp2 s/g list", command->sge_dma);
/* Byte swap page tables if necessary */
sbp2util_cpu_to_be32_buffer(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) *
sg_count);
}
}
static void sbp2_prep_command_orb_no_sg(struct sbp2_command_orb *orb,
struct sbp2scsi_host_info *hi,
struct sbp2_command_info *command,
struct scatterlist *sgpnt,
u32 orb_direction,
unsigned int scsi_request_bufflen,
void *scsi_request_buffer,
enum dma_data_direction dma_dir)
{
command->dma_dir = dma_dir;
command->dma_size = scsi_request_bufflen;
command->dma_type = CMD_DMA_SINGLE;
command->cmd_dma = pci_map_single(hi->host->pdev, scsi_request_buffer,
command->dma_size, command->dma_dir);
orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
orb->misc |= ORB_SET_DIRECTION(orb_direction);
SBP2_DMA_ALLOC("single bulk");
/*
* Handle case where we get a command w/o s/g enabled (but
* check for transfers larger than 64K)
*/
if (scsi_request_bufflen <= SBP2_MAX_SG_ELEMENT_LENGTH) {
orb->data_descriptor_lo = command->cmd_dma;
orb->misc |= ORB_SET_DATA_SIZE(scsi_request_bufflen);
} else {
struct sbp2_unrestricted_page_table *sg_element =
&command->scatter_gather_element[0];
u32 sg_count, sg_len;
dma_addr_t sg_addr;
/*
* Need to turn this into page tables, since the
* buffer is too large.
*/
orb->data_descriptor_lo = command->sge_dma;
/* Use page tables (s/g) */
orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
/*
* fill out our sbp-2 page tables (and split up
* the large buffer)
*/
sg_count = 0;
sg_len = scsi_request_bufflen;
sg_addr = command->cmd_dma;
while (sg_len) {
sg_element[sg_count].segment_base_lo = sg_addr;
if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
} else {
sg_element[sg_count].length_segment_base_hi =
PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
sg_len = 0;
}
sg_count++;
}
/* Number of page table (s/g) elements */
orb->misc |= ORB_SET_DATA_SIZE(sg_count);
sbp2util_packet_dump(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) * sg_count,
"sbp2 s/g list", command->sge_dma);
/* Byte swap page tables if necessary */
sbp2util_cpu_to_be32_buffer(sg_element,
(sizeof(struct sbp2_unrestricted_page_table)) *
sg_count);
}
}
/*
* This function is called to create the actual command orb and s/g list
* out of the scsi command itself.
*/
static void sbp2_create_command_orb(struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command,
unchar *scsi_cmd,
unsigned int scsi_use_sg,
unsigned int scsi_request_bufflen,
void *scsi_request_buffer,
enum dma_data_direction dma_dir)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct scatterlist *sgpnt = (struct scatterlist *)scsi_request_buffer;
struct sbp2_command_orb *command_orb = &command->command_orb;
u32 orb_direction;
/*
* Set-up our command ORB..
*
* NOTE: We're doing unrestricted page tables (s/g), as this is
* best performance (at least with the devices I have). This means
* that data_size becomes the number of s/g elements, and
* page_size should be zero (for unrestricted).
*/
command_orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
command_orb->next_ORB_lo = 0x0;
command_orb->misc = ORB_SET_MAX_PAYLOAD(scsi_id->max_payload_size);
command_orb->misc |= ORB_SET_SPEED(scsi_id->speed_code);
command_orb->misc |= ORB_SET_NOTIFY(1); /* Notify us when complete */
if (dma_dir == DMA_NONE)
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
else {
SBP2_WARN("Falling back to DMA_NONE");
orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
}
/* Set-up our pagetable stuff */
if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
SBP2_DEBUG("No data transfer");
command_orb->data_descriptor_hi = 0x0;
command_orb->data_descriptor_lo = 0x0;
command_orb->misc |= ORB_SET_DIRECTION(1);
} else if (scsi_use_sg) {
SBP2_DEBUG("Use scatter/gather");
sbp2_prep_command_orb_sg(command_orb, hi, command, scsi_use_sg,
sgpnt, orb_direction, dma_dir);
} else {
SBP2_DEBUG("No scatter/gather");
sbp2_prep_command_orb_no_sg(command_orb, hi, command, sgpnt,
orb_direction, scsi_request_bufflen,
scsi_request_buffer, dma_dir);
}
/* Byte swap command ORB if necessary */
sbp2util_cpu_to_be32_buffer(command_orb, sizeof(struct sbp2_command_orb));
/* Put our scsi command in the command ORB */
memset(command_orb->cdb, 0, 12);
memcpy(command_orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
}
/*
* This function is called in order to begin a regular SBP-2 command.
*/
static void sbp2_link_orb_command(struct scsi_id_instance_data *scsi_id,
struct sbp2_command_info *command)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct sbp2_command_orb *command_orb = &command->command_orb;
struct sbp2_command_orb *last_orb;
dma_addr_t last_orb_dma;
u64 addr = scsi_id->sbp2_command_block_agent_addr;
quadlet_t data[2];
size_t length;
unsigned long flags;
outstanding_orb_incr;
SBP2_ORB_DEBUG("sending command orb %p, total orbs = %x",
command_orb, global_outstanding_command_orbs);
pci_dma_sync_single_for_device(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_device(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
/*
* Check to see if there are any previous orbs to use
*/
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
last_orb = scsi_id->last_orb;
last_orb_dma = scsi_id->last_orb_dma;
if (!last_orb) {
/*
* last_orb == NULL means: We know that the target's fetch agent
* is not active right now.
*/
addr += SBP2_ORB_POINTER_OFFSET;
data[0] = ORB_SET_NODE_ID(hi->host->node_id);
data[1] = command->command_orb_dma;
sbp2util_cpu_to_be32_buffer(data, 8);
length = 8;
} else {
/*
* last_orb != NULL means: We know that the target's fetch agent
* is (very probably) not dead or in reset state right now.
* We have an ORB already sent that we can append a new one to.
* The target's fetch agent may or may not have read this
* previous ORB yet.
*/
pci_dma_sync_single_for_cpu(hi->host->pdev, last_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
last_orb->next_ORB_lo = cpu_to_be32(command->command_orb_dma);
wmb();
/* Tells hardware that this pointer is valid */
last_orb->next_ORB_hi = 0;
pci_dma_sync_single_for_device(hi->host->pdev, last_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
addr += SBP2_DOORBELL_OFFSET;
data[0] = 0;
length = 4;
}
scsi_id->last_orb = command_orb;
scsi_id->last_orb_dma = command->command_orb_dma;
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
SBP2_ORB_DEBUG("write to %s register, command orb %p",
last_orb ? "DOORBELL" : "ORB_POINTER", command_orb);
if (sbp2util_node_write_no_wait(scsi_id->ne, addr, data, length)) {
/*
* sbp2util_node_write_no_wait failed. We certainly ran out
* of transaction labels, perhaps just because there were no
* context switches which gave khpsbpkt a chance to collect
* free tlabels. Try again in non-atomic context. If necessary,
* the workqueue job will sleep to guaranteedly get a tlabel.
* We do not accept new commands until the job is over.
*/
scsi_block_requests(scsi_id->scsi_host);
PREPARE_WORK(&scsi_id->protocol_work,
last_orb ? sbp2util_write_doorbell:
sbp2util_write_orb_pointer,
scsi_id);
schedule_work(&scsi_id->protocol_work);
}
}
/*
* This function is called in order to begin a regular SBP-2 command.
*/
static int sbp2_send_command(struct scsi_id_instance_data *scsi_id,
struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
unchar *cmd = (unchar *) SCpnt->cmnd;
unsigned int request_bufflen = SCpnt->request_bufflen;
struct sbp2_command_info *command;
SBP2_DEBUG_ENTER();
SBP2_DEBUG("SCSI transfer size = %x", request_bufflen);
SBP2_DEBUG("SCSI s/g elements = %x", (unsigned int)SCpnt->use_sg);
/*
* Allocate a command orb and s/g structure
*/
command = sbp2util_allocate_command_orb(scsi_id, SCpnt, done);
if (!command) {
return -EIO;
}
/*
* Now actually fill in the comamnd orb and sbp2 s/g list
*/
sbp2_create_command_orb(scsi_id, command, cmd, SCpnt->use_sg,
request_bufflen, SCpnt->request_buffer,
SCpnt->sc_data_direction);
sbp2util_packet_dump(&command->command_orb, sizeof(struct sbp2_command_orb),
"sbp2 command orb", command->command_orb_dma);
/*
* Link up the orb, and ring the doorbell if needed
*/
sbp2_link_orb_command(scsi_id, command);
return 0;
}
/*
* Translates SBP-2 status into SCSI sense data for check conditions
*/
static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status, unchar *sense_data)
{
SBP2_DEBUG_ENTER();
/*
* Ok, it's pretty ugly... ;-)
*/
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[9];
sense_data[3] = sbp2_status[12];
sense_data[4] = sbp2_status[13];
sense_data[5] = sbp2_status[14];
sense_data[6] = sbp2_status[15];
sense_data[7] = 10;
sense_data[8] = sbp2_status[16];
sense_data[9] = sbp2_status[17];
sense_data[10] = sbp2_status[18];
sense_data[11] = sbp2_status[19];
sense_data[12] = sbp2_status[10];
sense_data[13] = sbp2_status[11];
sense_data[14] = sbp2_status[20];
sense_data[15] = sbp2_status[21];
return sbp2_status[8] & 0x3f; /* return scsi status */
}
/*
* This function deals with status writes from the SBP-2 device
*/
static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
int destid, quadlet_t *data, u64 addr,
size_t length, u16 fl)
{
struct sbp2scsi_host_info *hi;
struct scsi_id_instance_data *scsi_id = NULL, *scsi_id_tmp;
struct scsi_cmnd *SCpnt = NULL;
struct sbp2_status_block *sb;
u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
struct sbp2_command_info *command;
unsigned long flags;
SBP2_DEBUG_ENTER();
sbp2util_packet_dump(data, length, "sbp2 status write by device", (u32)addr);
if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
SBP2_ERR("Wrong size of status block");
return RCODE_ADDRESS_ERROR;
}
if (unlikely(!host)) {
SBP2_ERR("host is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
if (unlikely(!hi)) {
SBP2_ERR("host info is NULL - this is bad!");
return RCODE_ADDRESS_ERROR;
}
/*
* Find our scsi_id structure by looking at the status fifo address
* written to by the sbp2 device.
*/
list_for_each_entry(scsi_id_tmp, &hi->scsi_ids, scsi_list) {
if (scsi_id_tmp->ne->nodeid == nodeid &&
scsi_id_tmp->status_fifo_addr == addr) {
scsi_id = scsi_id_tmp;
break;
}
}
if (unlikely(!scsi_id)) {
SBP2_ERR("scsi_id is NULL - device is gone?");
return RCODE_ADDRESS_ERROR;
}
/*
* Put response into scsi_id status fifo buffer. The first two bytes
* come in big endian bit order. Often the target writes only a
* truncated status block, minimally the first two quadlets. The rest
* is implied to be zeros.
*/
sb = &scsi_id->status_block;
memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
memcpy(sb, data, length);
sbp2util_be32_to_cpu_buffer(sb, 8);
/*
* Ignore unsolicited status. Handle command ORB status.
*/
if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
command = NULL;
else
command = sbp2util_find_command_for_orb(scsi_id,
sb->ORB_offset_lo);
if (command) {
SBP2_DEBUG("Found status for command ORB");
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
SBP2_ORB_DEBUG("matched command orb %p", &command->command_orb);
outstanding_orb_decr;
/*
* Matched status with command, now grab scsi command pointers
* and check status.
*/
/*
* FIXME: If the src field in the status is 1, the ORB DMA must
* not be reused until status for a subsequent ORB is received.
*/
SCpnt = command->Current_SCpnt;
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
sbp2util_mark_command_completed(scsi_id, command);
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
if (SCpnt) {
u32 h = sb->ORB_offset_hi_misc;
u32 r = STATUS_GET_RESP(h);
if (r != RESP_STATUS_REQUEST_COMPLETE) {
SBP2_WARN("resp 0x%x, sbp_status 0x%x",
r, STATUS_GET_SBP_STATUS(h));
scsi_status =
r == RESP_STATUS_TRANSPORT_FAILURE ?
SBP2_SCSI_STATUS_BUSY :
SBP2_SCSI_STATUS_COMMAND_TERMINATED;
}
/*
* See if the target stored any scsi status information.
*/
if (STATUS_GET_LEN(h) > 1) {
SBP2_DEBUG("CHECK CONDITION");
scsi_status = sbp2_status_to_sense_data(
(unchar *)sb, SCpnt->sense_buffer);
}
/*
* Check to see if the dead bit is set. If so, we'll
* have to initiate a fetch agent reset.
*/
if (STATUS_TEST_DEAD(h)) {
SBP2_DEBUG("Dead bit set - "
"initiating fetch agent reset");
sbp2_agent_reset(scsi_id, 0);
}
SBP2_ORB_DEBUG("completing command orb %p", &command->command_orb);
}
/*
* Check here to see if there are no commands in-use. If there
* are none, we know that the fetch agent left the active state
* _and_ that we did not reactivate it yet. Therefore clear
* last_orb so that next time we write directly to the
* ORB_POINTER register. That way the fetch agent does not need
* to refetch the next_ORB.
*/
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
if (list_empty(&scsi_id->sbp2_command_orb_inuse))
scsi_id->last_orb = NULL;
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
} else {
/*
* It's probably a login/logout/reconnect status.
*/
if ((sb->ORB_offset_lo == scsi_id->reconnect_orb_dma) ||
(sb->ORB_offset_lo == scsi_id->login_orb_dma) ||
(sb->ORB_offset_lo == scsi_id->query_logins_orb_dma) ||
(sb->ORB_offset_lo == scsi_id->logout_orb_dma)) {
scsi_id->access_complete = 1;
wake_up_interruptible(&access_wq);
}
}
if (SCpnt) {
SBP2_DEBUG("Completing SCSI command");
sbp2scsi_complete_command(scsi_id, scsi_status, SCpnt,
command->Current_done);
SBP2_ORB_DEBUG("command orb completed");
}
return RCODE_COMPLETE;
}
/**************************************
* SCSI interface related section
**************************************/
/*
* This routine is the main request entry routine for doing I/O. It is
* called from the scsi stack directly.
*/
static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
struct sbp2scsi_host_info *hi;
int result = DID_NO_CONNECT << 16;
SBP2_DEBUG_ENTER();
#if (CONFIG_IEEE1394_SBP2_DEBUG >= 2) || defined(CONFIG_IEEE1394_SBP2_PACKET_DUMP)
scsi_print_command(SCpnt);
#endif
if (!sbp2util_node_is_available(scsi_id))
goto done;
hi = scsi_id->hi;
if (!hi) {
SBP2_ERR("sbp2scsi_host_info is NULL - this is bad!");
goto done;
}
/*
* Until we handle multiple luns, just return selection time-out
* to any IO directed at non-zero LUNs
*/
if (SCpnt->device->lun)
goto done;
/*
* Check for request sense command, and handle it here
* (autorequest sense)
*/
if (SCpnt->cmnd[0] == REQUEST_SENSE) {
SBP2_DEBUG("REQUEST_SENSE");
memcpy(SCpnt->request_buffer, SCpnt->sense_buffer, SCpnt->request_bufflen);
memset(SCpnt->sense_buffer, 0, sizeof(SCpnt->sense_buffer));
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_GOOD, SCpnt, done);
return 0;
}
/*
* Check to see if we are in the middle of a bus reset.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)) {
SBP2_ERR("Bus reset in progress - rejecting command");
result = DID_BUS_BUSY << 16;
goto done;
}
/*
* Bidirectional commands are not yet implemented,
* and unknown transfer direction not handled.
*/
if (SCpnt->sc_data_direction == DMA_BIDIRECTIONAL) {
SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
result = DID_ERROR << 16;
goto done;
}
/*
* Try and send our SCSI command
*/
if (sbp2_send_command(scsi_id, SCpnt, done)) {
SBP2_ERR("Error sending SCSI command");
sbp2scsi_complete_command(scsi_id, SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
SCpnt, done);
}
return 0;
done:
SCpnt->result = result;
done(SCpnt);
return 0;
}
/*
* This function is called in order to complete all outstanding SBP-2
* commands (in case of resets, etc.).
*/
static void sbp2scsi_complete_all_commands(struct scsi_id_instance_data *scsi_id,
u32 status)
{
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct list_head *lh;
struct sbp2_command_info *command;
unsigned long flags;
SBP2_DEBUG_ENTER();
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
while (!list_empty(&scsi_id->sbp2_command_orb_inuse)) {
SBP2_DEBUG("Found pending command to complete");
lh = scsi_id->sbp2_command_orb_inuse.next;
command = list_entry(lh, struct sbp2_command_info, list);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_cpu(hi->host->pdev, command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
sbp2util_mark_command_completed(scsi_id, command);
if (command->Current_SCpnt) {
command->Current_SCpnt->result = status << 16;
command->Current_done(command->Current_SCpnt);
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
return;
}
/*
* This function is called in order to complete a regular SBP-2 command.
*
* This can be called in interrupt context.
*/
static void sbp2scsi_complete_command(struct scsi_id_instance_data *scsi_id,
u32 scsi_status, struct scsi_cmnd *SCpnt,
void (*done)(struct scsi_cmnd *))
{
SBP2_DEBUG_ENTER();
/*
* Sanity
*/
if (!SCpnt) {
SBP2_ERR("SCpnt is NULL");
return;
}
/*
* If a bus reset is in progress and there was an error, don't
* complete the command, just let it get retried at the end of the
* bus reset.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)
&& (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
SBP2_ERR("Bus reset in progress - retry command later");
return;
}
/*
* Switch on scsi status
*/
switch (scsi_status) {
case SBP2_SCSI_STATUS_GOOD:
SCpnt->result = DID_OK << 16;
break;
case SBP2_SCSI_STATUS_BUSY:
SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
SCpnt->result = DID_BUS_BUSY << 16;
break;
case SBP2_SCSI_STATUS_CHECK_CONDITION:
SBP2_DEBUG("SBP2_SCSI_STATUS_CHECK_CONDITION");
SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
#if CONFIG_IEEE1394_SBP2_DEBUG >= 1
scsi_print_command(SCpnt);
scsi_print_sense(SBP2_DEVICE_NAME, SCpnt);
#endif
break;
case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
SCpnt->result = DID_NO_CONNECT << 16;
scsi_print_command(SCpnt);
break;
case SBP2_SCSI_STATUS_CONDITION_MET:
case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
SBP2_ERR("Bad SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
scsi_print_command(SCpnt);
break;
default:
SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
SCpnt->result = DID_ERROR << 16;
}
/*
* If a bus reset is in progress and there was an error, complete
* the command as busy so that it will get retried.
*/
if (!hpsb_node_entry_valid(scsi_id->ne)
&& (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
SBP2_ERR("Completing command with busy (bus reset)");
SCpnt->result = DID_BUS_BUSY << 16;
}
/*
* If a unit attention occurs, return busy status so it gets
* retried... it could have happened because of a 1394 bus reset
* or hot-plug...
* XXX DID_BUS_BUSY is actually a bad idea because it will defy
* the scsi layer's retry logic.
*/
#if 0
if ((scsi_status == SBP2_SCSI_STATUS_CHECK_CONDITION) &&
(SCpnt->sense_buffer[2] == UNIT_ATTENTION)) {
SBP2_DEBUG("UNIT ATTENTION - return busy");
SCpnt->result = DID_BUS_BUSY << 16;
}
#endif
/*
* Tell scsi stack that we're done with this command
*/
done(SCpnt);
}
static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)sdev->host->hostdata[0];
scsi_id->sdev = sdev;
if (scsi_id->workarounds & SBP2_WORKAROUND_INQUIRY_36)
sdev->inquiry_len = 36;
return 0;
}
static int sbp2scsi_slave_configure(struct scsi_device *sdev)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)sdev->host->hostdata[0];
blk_queue_dma_alignment(sdev->request_queue, (512 - 1));
sdev->use_10_for_rw = 1;
sdev->use_10_for_ms = 1;
if (sdev->type == TYPE_DISK &&
scsi_id->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
sdev->skip_ms_page_8 = 1;
if (scsi_id->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
sdev->fix_capacity = 1;
if (scsi_id->ne->guid_vendor_id == 0x0010b9 && /* Maxtor's OUI */
(sdev->type == TYPE_DISK || sdev->type == TYPE_RBC))
sdev->allow_restart = 1;
return 0;
}
static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
{
((struct scsi_id_instance_data *)sdev->host->hostdata[0])->sdev = NULL;
return;
}
/*
* Called by scsi stack when something has really gone wrong. Usually
* called when a command has timed-out for some reason.
*/
static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
struct sbp2scsi_host_info *hi = scsi_id->hi;
struct sbp2_command_info *command;
unsigned long flags;
SBP2_ERR("aborting sbp2 command");
scsi_print_command(SCpnt);
if (sbp2util_node_is_available(scsi_id)) {
/*
* Right now, just return any matching command structures
* to the free pool.
*/
spin_lock_irqsave(&scsi_id->sbp2_command_orb_lock, flags);
command = sbp2util_find_command_for_SCpnt(scsi_id, SCpnt);
if (command) {
SBP2_DEBUG("Found command to abort");
pci_dma_sync_single_for_cpu(hi->host->pdev,
command->command_orb_dma,
sizeof(struct sbp2_command_orb),
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_cpu(hi->host->pdev,
command->sge_dma,
sizeof(command->scatter_gather_element),
PCI_DMA_BIDIRECTIONAL);
sbp2util_mark_command_completed(scsi_id, command);
if (command->Current_SCpnt) {
command->Current_SCpnt->result = DID_ABORT << 16;
command->Current_done(command->Current_SCpnt);
}
}
spin_unlock_irqrestore(&scsi_id->sbp2_command_orb_lock, flags);
/*
* Initiate a fetch agent reset.
*/
sbp2_agent_reset(scsi_id, 1);
sbp2scsi_complete_all_commands(scsi_id, DID_BUS_BUSY);
}
return SUCCESS;
}
/*
* Called by scsi stack when something has really gone wrong.
*/
static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
{
struct scsi_id_instance_data *scsi_id =
(struct scsi_id_instance_data *)SCpnt->device->host->hostdata[0];
SBP2_ERR("reset requested");
if (sbp2util_node_is_available(scsi_id)) {
SBP2_ERR("Generating sbp2 fetch agent reset");
sbp2_agent_reset(scsi_id, 1);
}
return SUCCESS;
}
static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct scsi_device *sdev;
struct scsi_id_instance_data *scsi_id;
int lun;
if (!(sdev = to_scsi_device(dev)))
return 0;
if (!(scsi_id = (struct scsi_id_instance_data *)sdev->host->hostdata[0]))
return 0;
lun = ORB_SET_LUN(scsi_id->sbp2_lun);
return sprintf(buf, "%016Lx:%d:%d\n", (unsigned long long)scsi_id->ne->guid,
scsi_id->ud->id, lun);
}
static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
&dev_attr_ieee1394_id,
NULL
};
MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
MODULE_LICENSE("GPL");
/* SCSI host template */
static struct scsi_host_template scsi_driver_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = SBP2_DEVICE_NAME,
.queuecommand = sbp2scsi_queuecommand,
.eh_abort_handler = sbp2scsi_abort,
.eh_device_reset_handler = sbp2scsi_reset,
.slave_alloc = sbp2scsi_slave_alloc,
.slave_configure = sbp2scsi_slave_configure,
.slave_destroy = sbp2scsi_slave_destroy,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = SBP2_MAX_CMDS,
.can_queue = SBP2_MAX_CMDS,
.emulated = 1,
.sdev_attrs = sbp2_sysfs_sdev_attrs,
};
static int sbp2_module_init(void)
{
int ret;
SBP2_DEBUG_ENTER();
/* Module load debug option to force one command at a time (serializing I/O) */
if (serialize_io) {
SBP2_INFO("Driver forced to serialize I/O (serialize_io=1)");
SBP2_INFO("Try serialize_io=0 for better performance");
scsi_driver_template.can_queue = 1;
scsi_driver_template.cmd_per_lun = 1;
}
if (sbp2_default_workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
(max_sectors * 512) > (128 * 1024))
max_sectors = 128 * 1024 / 512;
scsi_driver_template.max_sectors = max_sectors;
/* Register our high level driver with 1394 stack */
hpsb_register_highlevel(&sbp2_highlevel);
ret = hpsb_register_protocol(&sbp2_driver);
if (ret) {
SBP2_ERR("Failed to register protocol");
hpsb_unregister_highlevel(&sbp2_highlevel);
return ret;
}
return 0;
}
static void __exit sbp2_module_exit(void)
{
SBP2_DEBUG_ENTER();
hpsb_unregister_protocol(&sbp2_driver);
hpsb_unregister_highlevel(&sbp2_highlevel);
}
module_init(sbp2_module_init);
module_exit(sbp2_module_exit);