/*
* Driver for STMicroelectronics STM32 I2C controller
*
* This I2C controller is described in the STM32F429/439 Soc reference manual.
* Please see below a link to the documentation:
* http://www.st.com/resource/en/reference_manual/DM00031020.pdf
*
* Copyright (C) M'boumba Cedric Madianga 2016
* Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
*
* This driver is based on i2c-st.c
*
* License terms: GNU General Public License (GPL), version 2
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* STM32F4 I2C offset registers */
#define STM32F4_I2C_CR1 0x00
#define STM32F4_I2C_CR2 0x04
#define STM32F4_I2C_DR 0x10
#define STM32F4_I2C_SR1 0x14
#define STM32F4_I2C_SR2 0x18
#define STM32F4_I2C_CCR 0x1C
#define STM32F4_I2C_TRISE 0x20
#define STM32F4_I2C_FLTR 0x24
/* STM32F4 I2C control 1*/
#define STM32F4_I2C_CR1_POS BIT(11)
#define STM32F4_I2C_CR1_ACK BIT(10)
#define STM32F4_I2C_CR1_STOP BIT(9)
#define STM32F4_I2C_CR1_START BIT(8)
#define STM32F4_I2C_CR1_PE BIT(0)
/* STM32F4 I2C control 2 */
#define STM32F4_I2C_CR2_FREQ_MASK GENMASK(5, 0)
#define STM32F4_I2C_CR2_FREQ(n) ((n) & STM32F4_I2C_CR2_FREQ_MASK)
#define STM32F4_I2C_CR2_ITBUFEN BIT(10)
#define STM32F4_I2C_CR2_ITEVTEN BIT(9)
#define STM32F4_I2C_CR2_ITERREN BIT(8)
#define STM32F4_I2C_CR2_IRQ_MASK (STM32F4_I2C_CR2_ITBUFEN | \
STM32F4_I2C_CR2_ITEVTEN | \
STM32F4_I2C_CR2_ITERREN)
/* STM32F4 I2C Status 1 */
#define STM32F4_I2C_SR1_AF BIT(10)
#define STM32F4_I2C_SR1_ARLO BIT(9)
#define STM32F4_I2C_SR1_BERR BIT(8)
#define STM32F4_I2C_SR1_TXE BIT(7)
#define STM32F4_I2C_SR1_RXNE BIT(6)
#define STM32F4_I2C_SR1_BTF BIT(2)
#define STM32F4_I2C_SR1_ADDR BIT(1)
#define STM32F4_I2C_SR1_SB BIT(0)
#define STM32F4_I2C_SR1_ITEVTEN_MASK (STM32F4_I2C_SR1_BTF | \
STM32F4_I2C_SR1_ADDR | \
STM32F4_I2C_SR1_SB)
#define STM32F4_I2C_SR1_ITBUFEN_MASK (STM32F4_I2C_SR1_TXE | \
STM32F4_I2C_SR1_RXNE)
#define STM32F4_I2C_SR1_ITERREN_MASK (STM32F4_I2C_SR1_AF | \
STM32F4_I2C_SR1_ARLO | \
STM32F4_I2C_SR1_BERR)
/* STM32F4 I2C Status 2 */
#define STM32F4_I2C_SR2_BUSY BIT(1)
/* STM32F4 I2C Control Clock */
#define STM32F4_I2C_CCR_CCR_MASK GENMASK(11, 0)
#define STM32F4_I2C_CCR_CCR(n) ((n) & STM32F4_I2C_CCR_CCR_MASK)
#define STM32F4_I2C_CCR_FS BIT(15)
#define STM32F4_I2C_CCR_DUTY BIT(14)
/* STM32F4 I2C Trise */
#define STM32F4_I2C_TRISE_VALUE_MASK GENMASK(5, 0)
#define STM32F4_I2C_TRISE_VALUE(n) ((n) & STM32F4_I2C_TRISE_VALUE_MASK)
#define STM32F4_I2C_MIN_STANDARD_FREQ 2U
#define STM32F4_I2C_MIN_FAST_FREQ 6U
#define STM32F4_I2C_MAX_FREQ 46U
#define HZ_TO_MHZ 1000000
enum stm32f4_i2c_speed {
STM32F4_I2C_SPEED_STANDARD, /* 100 kHz */
STM32F4_I2C_SPEED_FAST, /* 400 kHz */
STM32F4_I2C_SPEED_END,
};
/**
* struct stm32f4_i2c_msg - client specific data
* @addr: 8-bit slave addr, including r/w bit
* @count: number of bytes to be transferred
* @buf: data buffer
* @result: result of the transfer
* @stop: last I2C msg to be sent, i.e. STOP to be generated
*/
struct stm32f4_i2c_msg {
u8 addr;
u32 count;
u8 *buf;
int result;
bool stop;
};
/**
* struct stm32f4_i2c_dev - private data of the controller
* @adap: I2C adapter for this controller
* @dev: device for this controller
* @base: virtual memory area
* @complete: completion of I2C message
* @clk: hw i2c clock
* @speed: I2C clock frequency of the controller. Standard or Fast are supported
* @parent_rate: I2C clock parent rate in MHz
* @msg: I2C transfer information
*/
struct stm32f4_i2c_dev {
struct i2c_adapter adap;
struct device *dev;
void __iomem *base;
struct completion complete;
struct clk *clk;
int speed;
int parent_rate;
struct stm32f4_i2c_msg msg;
};
static inline void stm32f4_i2c_set_bits(void __iomem *reg, u32 mask)
{
writel_relaxed(readl_relaxed(reg) | mask, reg);
}
static inline void stm32f4_i2c_clr_bits(void __iomem *reg, u32 mask)
{
writel_relaxed(readl_relaxed(reg) & ~mask, reg);
}
static void stm32f4_i2c_disable_irq(struct stm32f4_i2c_dev *i2c_dev)
{
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_IRQ_MASK);
}
static int stm32f4_i2c_set_periph_clk_freq(struct stm32f4_i2c_dev *i2c_dev)
{
u32 freq;
u32 cr2 = 0;
i2c_dev->parent_rate = clk_get_rate(i2c_dev->clk);
freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD) {
/*
* To reach 100 kHz, the parent clk frequency should be between
* a minimum value of 2 MHz and a maximum value of 46 MHz due
* to hardware limitation
*/
if (freq < STM32F4_I2C_MIN_STANDARD_FREQ ||
freq > STM32F4_I2C_MAX_FREQ) {
dev_err(i2c_dev->dev,
"bad parent clk freq for standard mode\n");
return -EINVAL;
}
} else {
/*
* To be as close as possible to 400 kHz, the parent clk
* frequency should be between a minimum value of 6 MHz and a
* maximum value of 46 MHz due to hardware limitation
*/
if (freq < STM32F4_I2C_MIN_FAST_FREQ ||
freq > STM32F4_I2C_MAX_FREQ) {
dev_err(i2c_dev->dev,
"bad parent clk freq for fast mode\n");
return -EINVAL;
}
}
cr2 |= STM32F4_I2C_CR2_FREQ(freq);
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
return 0;
}
static void stm32f4_i2c_set_rise_time(struct stm32f4_i2c_dev *i2c_dev)
{
u32 freq = DIV_ROUND_UP(i2c_dev->parent_rate, HZ_TO_MHZ);
u32 trise;
/*
* These bits must be programmed with the maximum SCL rise time given in
* the I2C bus specification, incremented by 1.
*
* In standard mode, the maximum allowed SCL rise time is 1000 ns.
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
* programmed with 0x9. (1000 ns / 125 ns + 1)
* So, for I2C standard mode TRISE = FREQ[5:0] + 1
*
* In fast mode, the maximum allowed SCL rise time is 300 ns.
* If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to
* 0x08 so period = 125 ns therefore the TRISE[5:0] bits must be
* programmed with 0x3. (300 ns / 125 ns + 1)
* So, for I2C fast mode TRISE = FREQ[5:0] * 300 / 1000 + 1
*
* Function stm32f4_i2c_set_periph_clk_freq made sure that parent rate
* is not higher than 46 MHz . As a result trise is at most 4 bits wide
* and so fits into the TRISE bits [5:0].
*/
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD)
trise = freq + 1;
else
trise = freq * 3 / 10 + 1;
writel_relaxed(STM32F4_I2C_TRISE_VALUE(trise),
i2c_dev->base + STM32F4_I2C_TRISE);
}
static void stm32f4_i2c_set_speed_mode(struct stm32f4_i2c_dev *i2c_dev)
{
u32 val;
u32 ccr = 0;
if (i2c_dev->speed == STM32F4_I2C_SPEED_STANDARD) {
/*
* In standard mode:
* t_scl_high = t_scl_low = CCR * I2C parent clk period
* So to reach 100 kHz, we have:
* CCR = I2C parent rate / 100 kHz >> 1
*
* For example with parent rate = 2 MHz:
* CCR = 2000000 / (100000 << 1) = 10
* t_scl_high = t_scl_low = 10 * (1 / 2000000) = 5000 ns
* t_scl_high + t_scl_low = 10000 ns so 100 kHz is reached
*
* Function stm32f4_i2c_set_periph_clk_freq made sure that
* parent rate is not higher than 46 MHz . As a result val
* is at most 8 bits wide and so fits into the CCR bits [11:0].
*/
val = i2c_dev->parent_rate / (100000 << 1);
} else {
/*
* In fast mode, we compute CCR with duty = 0 as with low
* frequencies we are not able to reach 400 kHz.
* In that case:
* t_scl_high = CCR * I2C parent clk period
* t_scl_low = 2 * CCR * I2C parent clk period
* So, CCR = I2C parent rate / (400 kHz * 3)
*
* For example with parent rate = 6 MHz:
* CCR = 6000000 / (400000 * 3) = 5
* t_scl_high = 5 * (1 / 6000000) = 833 ns > 600 ns
* t_scl_low = 2 * 5 * (1 / 6000000) = 1667 ns > 1300 ns
* t_scl_high + t_scl_low = 2500 ns so 400 kHz is reached
*
* Function stm32f4_i2c_set_periph_clk_freq made sure that
* parent rate is not higher than 46 MHz . As a result val
* is at most 6 bits wide and so fits into the CCR bits [11:0].
*/
val = DIV_ROUND_UP(i2c_dev->parent_rate, 400000 * 3);
/* Select Fast mode */
ccr |= STM32F4_I2C_CCR_FS;
}
ccr |= STM32F4_I2C_CCR_CCR(val);
writel_relaxed(ccr, i2c_dev->base + STM32F4_I2C_CCR);
}
/**
* stm32f4_i2c_hw_config() - Prepare I2C block
* @i2c_dev: Controller's private data
*/
static int stm32f4_i2c_hw_config(struct stm32f4_i2c_dev *i2c_dev)
{
int ret;
ret = stm32f4_i2c_set_periph_clk_freq(i2c_dev);
if (ret)
return ret;
stm32f4_i2c_set_rise_time(i2c_dev);
stm32f4_i2c_set_speed_mode(i2c_dev);
/* Enable I2C */
writel_relaxed(STM32F4_I2C_CR1_PE, i2c_dev->base + STM32F4_I2C_CR1);
return 0;
}
static int stm32f4_i2c_wait_free_bus(struct stm32f4_i2c_dev *i2c_dev)
{
u32 status;
int ret;
ret = readl_relaxed_poll_timeout(i2c_dev->base + STM32F4_I2C_SR2,
status,
!(status & STM32F4_I2C_SR2_BUSY),
10, 1000);
if (ret) {
dev_dbg(i2c_dev->dev, "bus not free\n");
ret = -EBUSY;
}
return ret;
}
/**
* stm32f4_i2c_write_ byte() - Write a byte in the data register
* @i2c_dev: Controller's private data
* @byte: Data to write in the register
*/
static void stm32f4_i2c_write_byte(struct stm32f4_i2c_dev *i2c_dev, u8 byte)
{
writel_relaxed(byte, i2c_dev->base + STM32F4_I2C_DR);
}
/**
* stm32f4_i2c_write_msg() - Fill the data register in write mode
* @i2c_dev: Controller's private data
*
* This function fills the data register with I2C transfer buffer
*/
static void stm32f4_i2c_write_msg(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
stm32f4_i2c_write_byte(i2c_dev, *msg->buf++);
msg->count--;
}
static void stm32f4_i2c_read_msg(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
u32 rbuf;
rbuf = readl_relaxed(i2c_dev->base + STM32F4_I2C_DR);
*msg->buf++ = rbuf;
msg->count--;
}
static void stm32f4_i2c_terminate_xfer(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
stm32f4_i2c_disable_irq(i2c_dev);
reg = i2c_dev->base + STM32F4_I2C_CR1;
if (msg->stop)
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
else
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
complete(&i2c_dev->complete);
}
/**
* stm32f4_i2c_handle_write() - Handle FIFO empty interrupt in case of write
* @i2c_dev: Controller's private data
*/
static void stm32f4_i2c_handle_write(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
if (msg->count) {
stm32f4_i2c_write_msg(i2c_dev);
if (!msg->count) {
/*
* Disable buffer interrupts for RX not empty and TX
* empty events
*/
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
}
} else {
stm32f4_i2c_terminate_xfer(i2c_dev);
}
}
/**
* stm32f4_i2c_handle_read() - Handle FIFO empty interrupt in case of read
* @i2c_dev: Controller's private data
*
* This function is called when a new data is received in data register
*/
static void stm32f4_i2c_handle_read(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR2;
switch (msg->count) {
case 1:
stm32f4_i2c_disable_irq(i2c_dev);
stm32f4_i2c_read_msg(i2c_dev);
complete(&i2c_dev->complete);
break;
/*
* For 2-byte reception, 3-byte reception and for Data N-2, N-1 and N
* for N-byte reception with N > 3, we do not have to read the data
* register when RX not empty event occurs as we have to wait for byte
* transferred finished event before reading data.
* So, here we just disable buffer interrupt in order to avoid another
* system preemption due to RX not empty event.
*/
case 2:
case 3:
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR2_ITBUFEN);
break;
/*
* For N byte reception with N > 3 we directly read data register
* until N-2 data.
*/
default:
stm32f4_i2c_read_msg(i2c_dev);
}
}
/**
* stm32f4_i2c_handle_rx_done() - Handle byte transfer finished interrupt
* in case of read
* @i2c_dev: Controller's private data
*
* This function is called when a new data is received in the shift register
* but data register has not been read yet.
*/
static void stm32f4_i2c_handle_rx_done(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
void __iomem *reg;
u32 mask;
int i;
switch (msg->count) {
case 2:
/*
* In order to correctly send the Stop or Repeated Start
* condition on the I2C bus, the STOP/START bit has to be set
* before reading the last two bytes (data N-1 and N).
* After that, we could read the last two bytes, disable
* remaining interrupts and notify the end of xfer to the
* client
*/
reg = i2c_dev->base + STM32F4_I2C_CR1;
if (msg->stop)
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
else
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
for (i = 2; i > 0; i--)
stm32f4_i2c_read_msg(i2c_dev);
reg = i2c_dev->base + STM32F4_I2C_CR2;
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
stm32f4_i2c_clr_bits(reg, mask);
complete(&i2c_dev->complete);
break;
case 3:
/*
* In order to correctly generate the NACK pulse after the last
* received data byte, we have to enable NACK before reading N-2
* data
*/
reg = i2c_dev->base + STM32F4_I2C_CR1;
stm32f4_i2c_clr_bits(reg, STM32F4_I2C_CR1_ACK);
stm32f4_i2c_read_msg(i2c_dev);
break;
default:
stm32f4_i2c_read_msg(i2c_dev);
}
}
/**
* stm32f4_i2c_handle_rx_addr() - Handle address matched interrupt in case of
* master receiver
* @i2c_dev: Controller's private data
*/
static void stm32f4_i2c_handle_rx_addr(struct stm32f4_i2c_dev *i2c_dev)
{
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
u32 cr1;
switch (msg->count) {
case 0:
stm32f4_i2c_terminate_xfer(i2c_dev);
/* Clear ADDR flag */
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
break;
case 1:
/*
* Single byte reception:
* Enable NACK and reset POS (Acknowledge position).
* Then, clear ADDR flag and set STOP or RepSTART.
* In that way, the NACK and STOP or RepStart pulses will be
* sent as soon as the byte will be received in shift register
*/
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
cr1 &= ~(STM32F4_I2C_CR1_ACK | STM32F4_I2C_CR1_POS);
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
if (msg->stop)
cr1 |= STM32F4_I2C_CR1_STOP;
else
cr1 |= STM32F4_I2C_CR1_START;
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
break;
case 2:
/*
* 2-byte reception:
* Enable NACK, set POS (NACK position) and clear ADDR flag.
* In that way, NACK will be sent for the next byte which will
* be received in the shift register instead of the current
* one.
*/
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
cr1 &= ~STM32F4_I2C_CR1_ACK;
cr1 |= STM32F4_I2C_CR1_POS;
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
break;
default:
/*
* N-byte reception:
* Enable ACK, reset POS (ACK postion) and clear ADDR flag.
* In that way, ACK will be sent as soon as the current byte
* will be received in the shift register
*/
cr1 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR1);
cr1 |= STM32F4_I2C_CR1_ACK;
cr1 &= ~STM32F4_I2C_CR1_POS;
writel_relaxed(cr1, i2c_dev->base + STM32F4_I2C_CR1);
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
break;
}
}
/**
* stm32f4_i2c_isr_event() - Interrupt routine for I2C bus event
* @irq: interrupt number
* @data: Controller's private data
*/
static irqreturn_t stm32f4_i2c_isr_event(int irq, void *data)
{
struct stm32f4_i2c_dev *i2c_dev = data;
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
u32 possible_status = STM32F4_I2C_SR1_ITEVTEN_MASK;
u32 status, ien, event, cr2;
cr2 = readl_relaxed(i2c_dev->base + STM32F4_I2C_CR2);
ien = cr2 & STM32F4_I2C_CR2_IRQ_MASK;
/* Update possible_status if buffer interrupt is enabled */
if (ien & STM32F4_I2C_CR2_ITBUFEN)
possible_status |= STM32F4_I2C_SR1_ITBUFEN_MASK;
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
event = status & possible_status;
if (!event) {
dev_dbg(i2c_dev->dev,
"spurious evt irq (status=0x%08x, ien=0x%08x)\n",
status, ien);
return IRQ_NONE;
}
/* Start condition generated */
if (event & STM32F4_I2C_SR1_SB)
stm32f4_i2c_write_byte(i2c_dev, msg->addr);
/* I2C Address sent */
if (event & STM32F4_I2C_SR1_ADDR) {
if (msg->addr & I2C_M_RD)
stm32f4_i2c_handle_rx_addr(i2c_dev);
else
readl_relaxed(i2c_dev->base + STM32F4_I2C_SR2);
/*
* Enable buffer interrupts for RX not empty and TX empty
* events
*/
cr2 |= STM32F4_I2C_CR2_ITBUFEN;
writel_relaxed(cr2, i2c_dev->base + STM32F4_I2C_CR2);
}
/* TX empty */
if ((event & STM32F4_I2C_SR1_TXE) && !(msg->addr & I2C_M_RD))
stm32f4_i2c_handle_write(i2c_dev);
/* RX not empty */
if ((event & STM32F4_I2C_SR1_RXNE) && (msg->addr & I2C_M_RD))
stm32f4_i2c_handle_read(i2c_dev);
/*
* The BTF (Byte Transfer finished) event occurs when:
* - in reception : a new byte is received in the shift register
* but the previous byte has not been read yet from data register
* - in transmission: a new byte should be sent but the data register
* has not been written yet
*/
if (event & STM32F4_I2C_SR1_BTF) {
if (msg->addr & I2C_M_RD)
stm32f4_i2c_handle_rx_done(i2c_dev);
else
stm32f4_i2c_handle_write(i2c_dev);
}
return IRQ_HANDLED;
}
/**
* stm32f4_i2c_isr_error() - Interrupt routine for I2C bus error
* @irq: interrupt number
* @data: Controller's private data
*/
static irqreturn_t stm32f4_i2c_isr_error(int irq, void *data)
{
struct stm32f4_i2c_dev *i2c_dev = data;
struct stm32f4_i2c_msg *msg = &i2c_dev->msg;
void __iomem *reg;
u32 status;
status = readl_relaxed(i2c_dev->base + STM32F4_I2C_SR1);
/* Arbitration lost */
if (status & STM32F4_I2C_SR1_ARLO) {
status &= ~STM32F4_I2C_SR1_ARLO;
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
msg->result = -EAGAIN;
}
/*
* Acknowledge failure:
* In master transmitter mode a Stop must be generated by software
*/
if (status & STM32F4_I2C_SR1_AF) {
if (!(msg->addr & I2C_M_RD)) {
reg = i2c_dev->base + STM32F4_I2C_CR1;
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_STOP);
}
status &= ~STM32F4_I2C_SR1_AF;
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
msg->result = -EIO;
}
/* Bus error */
if (status & STM32F4_I2C_SR1_BERR) {
status &= ~STM32F4_I2C_SR1_BERR;
writel_relaxed(status, i2c_dev->base + STM32F4_I2C_SR1);
msg->result = -EIO;
}
stm32f4_i2c_disable_irq(i2c_dev);
complete(&i2c_dev->complete);
return IRQ_HANDLED;
}
/**
* stm32f4_i2c_xfer_msg() - Transfer a single I2C message
* @i2c_dev: Controller's private data
* @msg: I2C message to transfer
* @is_first: first message of the sequence
* @is_last: last message of the sequence
*/
static int stm32f4_i2c_xfer_msg(struct stm32f4_i2c_dev *i2c_dev,
struct i2c_msg *msg, bool is_first,
bool is_last)
{
struct stm32f4_i2c_msg *f4_msg = &i2c_dev->msg;
void __iomem *reg = i2c_dev->base + STM32F4_I2C_CR1;
unsigned long timeout;
u32 mask;
int ret;
f4_msg->addr = i2c_8bit_addr_from_msg(msg);
f4_msg->buf = msg->buf;
f4_msg->count = msg->len;
f4_msg->result = 0;
f4_msg->stop = is_last;
reinit_completion(&i2c_dev->complete);
/* Enable events and errors interrupts */
mask = STM32F4_I2C_CR2_ITEVTEN | STM32F4_I2C_CR2_ITERREN;
stm32f4_i2c_set_bits(i2c_dev->base + STM32F4_I2C_CR2, mask);
if (is_first) {
ret = stm32f4_i2c_wait_free_bus(i2c_dev);
if (ret)
return ret;
/* START generation */
stm32f4_i2c_set_bits(reg, STM32F4_I2C_CR1_START);
}
timeout = wait_for_completion_timeout(&i2c_dev->complete,
i2c_dev->adap.timeout);
ret = f4_msg->result;
if (!timeout)
ret = -ETIMEDOUT;
return ret;
}
/**
* stm32f4_i2c_xfer() - Transfer combined I2C message
* @i2c_adap: Adapter pointer to the controller
* @msgs: Pointer to data to be written.
* @num: Number of messages to be executed
*/
static int stm32f4_i2c_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[],
int num)
{
struct stm32f4_i2c_dev *i2c_dev = i2c_get_adapdata(i2c_adap);
int ret, i;
ret = clk_enable(i2c_dev->clk);
if (ret) {
dev_err(i2c_dev->dev, "Failed to enable clock\n");
return ret;
}
for (i = 0; i < num && !ret; i++)
ret = stm32f4_i2c_xfer_msg(i2c_dev, &msgs[i], i == 0,
i == num - 1);
clk_disable(i2c_dev->clk);
return (ret < 0) ? ret : num;
}
static u32 stm32f4_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm stm32f4_i2c_algo = {
.master_xfer = stm32f4_i2c_xfer,
.functionality = stm32f4_i2c_func,
};
static int stm32f4_i2c_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct stm32f4_i2c_dev *i2c_dev;
struct resource *res;
u32 irq_event, irq_error, clk_rate;
struct i2c_adapter *adap;
struct reset_control *rst;
int ret;
i2c_dev = devm_kzalloc(&pdev->dev, sizeof(*i2c_dev), GFP_KERNEL);
if (!i2c_dev)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c_dev->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(i2c_dev->base))
return PTR_ERR(i2c_dev->base);
irq_event = irq_of_parse_and_map(np, 0);
if (!irq_event) {
dev_err(&pdev->dev, "IRQ event missing or invalid\n");
return -EINVAL;
}
irq_error = irq_of_parse_and_map(np, 1);
if (!irq_error) {
dev_err(&pdev->dev, "IRQ error missing or invalid\n");
return -EINVAL;
}
i2c_dev->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(i2c_dev->clk)) {
dev_err(&pdev->dev, "Error: Missing controller clock\n");
return PTR_ERR(i2c_dev->clk);
}
ret = clk_prepare_enable(i2c_dev->clk);
if (ret) {
dev_err(i2c_dev->dev, "Failed to prepare_enable clock\n");
return ret;
}
rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(rst)) {
dev_err(&pdev->dev, "Error: Missing controller reset\n");
ret = PTR_ERR(rst);
goto clk_free;
}
reset_control_assert(rst);
udelay(2);
reset_control_deassert(rst);
i2c_dev->speed = STM32F4_I2C_SPEED_STANDARD;
ret = of_property_read_u32(np, "clock-frequency", &clk_rate);
if (!ret && clk_rate >= 400000)
i2c_dev->speed = STM32F4_I2C_SPEED_FAST;
i2c_dev->dev = &pdev->dev;
ret = devm_request_irq(&pdev->dev, irq_event, stm32f4_i2c_isr_event, 0,
pdev->name, i2c_dev);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq event %i\n",
irq_event);
goto clk_free;
}
ret = devm_request_irq(&pdev->dev, irq_error, stm32f4_i2c_isr_error, 0,
pdev->name, i2c_dev);
if (ret) {
dev_err(&pdev->dev, "Failed to request irq error %i\n",
irq_error);
goto clk_free;
}
ret = stm32f4_i2c_hw_config(i2c_dev);
if (ret)
goto clk_free;
adap = &i2c_dev->adap;
i2c_set_adapdata(adap, i2c_dev);
snprintf(adap->name, sizeof(adap->name), "STM32 I2C(%pa)", &res->start);
adap->owner = THIS_MODULE;
adap->timeout = 2 * HZ;
adap->retries = 0;
adap->algo = &stm32f4_i2c_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
init_completion(&i2c_dev->complete);
ret = i2c_add_adapter(adap);
if (ret)
goto clk_free;
platform_set_drvdata(pdev, i2c_dev);
clk_disable(i2c_dev->clk);
dev_info(i2c_dev->dev, "STM32F4 I2C driver registered\n");
return 0;
clk_free:
clk_disable_unprepare(i2c_dev->clk);
return ret;
}
static int stm32f4_i2c_remove(struct platform_device *pdev)
{
struct stm32f4_i2c_dev *i2c_dev = platform_get_drvdata(pdev);
i2c_del_adapter(&i2c_dev->adap);
clk_unprepare(i2c_dev->clk);
return 0;
}
static const struct of_device_id stm32f4_i2c_match[] = {
{ .compatible = "st,stm32f4-i2c", },
{},
};
MODULE_DEVICE_TABLE(of, stm32f4_i2c_match);
static struct platform_driver stm32f4_i2c_driver = {
.driver = {
.name = "stm32f4-i2c",
.of_match_table = stm32f4_i2c_match,
},
.probe = stm32f4_i2c_probe,
.remove = stm32f4_i2c_remove,
};
module_platform_driver(stm32f4_i2c_driver);
MODULE_AUTHOR("M'boumba Cedric Madianga <cedric.madianga@gmail.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32F4 I2C driver");
MODULE_LICENSE("GPL v2");