// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 plane module
*
* Each DRM plane is a layer of pixels being scanned out by the HVS.
*
* At atomic modeset check time, we compute the HVS display element
* state that would be necessary for displaying the plane (giving us a
* chance to figure out if a plane configuration is invalid), then at
* atomic flush time the CRTC will ask us to write our element state
* into the region of the HVS that it has allocated for us.
*/
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_atomic_uapi.h>
#include <drm/drm_blend.h>
#include <drm/drm_fb_dma_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include "uapi/drm/vc4_drm.h"
#include "vc4_drv.h"
#include "vc4_regs.h"
static const struct hvs_format {
u32 drm; /* DRM_FORMAT_* */
u32 hvs; /* HVS_FORMAT_* */
u32 pixel_order;
u32 pixel_order_hvs5;
bool hvs5_only;
} hvs_formats[] = {
{
.drm = DRM_FORMAT_XRGB8888,
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
},
{
.drm = DRM_FORMAT_ARGB8888,
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
},
{
.drm = DRM_FORMAT_ABGR8888,
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ARGB,
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_XBGR8888,
.hvs = HVS_PIXEL_FORMAT_RGBA8888,
.pixel_order = HVS_PIXEL_ORDER_ARGB,
.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_RGB565,
.hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XRGB,
},
{
.drm = DRM_FORMAT_BGR565,
.hvs = HVS_PIXEL_FORMAT_RGB565,
.pixel_order = HVS_PIXEL_ORDER_XBGR,
},
{
.drm = DRM_FORMAT_ARGB1555,
.hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_XRGB1555,
.hvs = HVS_PIXEL_FORMAT_RGBA5551,
.pixel_order = HVS_PIXEL_ORDER_ABGR,
},
{
.drm = DRM_FORMAT_RGB888,
.hvs = HVS_PIXEL_FORMAT_RGB888,
.pixel_order = HVS_PIXEL_ORDER_XRGB,
},
{
.drm = DRM_FORMAT_BGR888,
.hvs = HVS_PIXEL_FORMAT_RGB888,
.pixel_order = HVS_PIXEL_ORDER_XBGR,
},
{
.drm = DRM_FORMAT_YUV422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_YVU422,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_YUV420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_YVU420,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_NV12,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_NV21,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_NV16,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
},
{
.drm = DRM_FORMAT_NV61,
.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
},
{
.drm = DRM_FORMAT_P030,
.hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
.hvs5_only = true,
},
};
static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
{
unsigned i;
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
if (hvs_formats[i].drm == drm_format)
return &hvs_formats[i];
}
return NULL;
}
static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
{
if (dst == src)
return VC4_SCALING_NONE;
if (3 * dst >= 2 * src)
return VC4_SCALING_PPF;
else
return VC4_SCALING_TPZ;
}
static bool plane_enabled(struct drm_plane_state *state)
{
return state->fb && !WARN_ON(!state->crtc);
}
static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
{
struct vc4_plane_state *vc4_state;
if (WARN_ON(!plane->state))
return NULL;
vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return NULL;
memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
vc4_state->dlist_initialized = 0;
__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
if (vc4_state->dlist) {
vc4_state->dlist = kmemdup(vc4_state->dlist,
vc4_state->dlist_count * 4,
GFP_KERNEL);
if (!vc4_state->dlist) {
kfree(vc4_state);
return NULL;
}
vc4_state->dlist_size = vc4_state->dlist_count;
}
return &vc4_state->base;
}
static void vc4_plane_destroy_state(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
if (drm_mm_node_allocated(&vc4_state->lbm)) {
unsigned long irqflags;
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
drm_mm_remove_node(&vc4_state->lbm);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
}
kfree(vc4_state->dlist);
__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
kfree(state);
}
/* Called during init to allocate the plane's atomic state. */
static void vc4_plane_reset(struct drm_plane *plane)
{
struct vc4_plane_state *vc4_state;
WARN_ON(plane->state);
vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
if (!vc4_state)
return;
__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
}
static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
{
if (vc4_state->dlist_count == vc4_state->dlist_size) {
u32 new_size = max(4u, vc4_state->dlist_count * 2);
u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
if (!new_dlist)
return;
memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
kfree(vc4_state->dlist);
vc4_state->dlist = new_dlist;
vc4_state->dlist_size = new_size;
}
vc4_state->dlist_count++;
}
static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
{
unsigned int idx = vc4_state->dlist_count;
vc4_dlist_counter_increment(vc4_state);
vc4_state->dlist[idx] = val;
}
/* Returns the scl0/scl1 field based on whether the dimensions need to
* be up/down/non-scaled.
*
* This is a replication of a table from the spec.
*/
static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_PPF_V_PPF;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_TPZ_V_PPF;
case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_PPF_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_PPF_V_NONE;
case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
return SCALER_CTL0_SCL_H_NONE_V_PPF;
case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
return SCALER_CTL0_SCL_H_NONE_V_TPZ;
case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
return SCALER_CTL0_SCL_H_TPZ_V_NONE;
default:
case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
/* The unity case is independently handled by
* SCALER_CTL0_UNITY.
*/
return 0;
}
}
static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
{
struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
struct drm_crtc_state *crtc_state;
crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
pstate->crtc);
vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
if (!left && !right && !top && !bottom)
return 0;
if (left + right >= crtc_state->mode.hdisplay ||
top + bottom >= crtc_state->mode.vdisplay)
return -EINVAL;
adjhdisplay = crtc_state->mode.hdisplay - (left + right);
vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
adjhdisplay,
crtc_state->mode.hdisplay);
vc4_pstate->crtc_x += left;
if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
adjvdisplay,
crtc_state->mode.vdisplay);
vc4_pstate->crtc_y += top;
if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
adjhdisplay,
crtc_state->mode.hdisplay);
vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
adjvdisplay,
crtc_state->mode.vdisplay);
if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
return -EINVAL;
return 0;
}
static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb;
struct drm_gem_cma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
int num_planes = fb->format->num_planes;
struct drm_crtc_state *crtc_state;
u32 h_subsample = fb->format->hsub;
u32 v_subsample = fb->format->vsub;
int i, ret;
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
state->crtc);
if (!crtc_state) {
DRM_DEBUG_KMS("Invalid crtc state\n");
return -EINVAL;
}
ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
INT_MAX, true, true);
if (ret)
return ret;
for (i = 0; i < num_planes; i++)
vc4_state->offsets[i] = bo->paddr + fb->offsets[i];
/*
* We don't support subpixel source positioning for scaling,
* but fractional coordinates can be generated by clipping
* so just round for now
*/
vc4_state->src_x = DIV_ROUND_CLOSEST(state->src.x1, 1 << 16);
vc4_state->src_y = DIV_ROUND_CLOSEST(state->src.y1, 1 << 16);
vc4_state->src_w[0] = DIV_ROUND_CLOSEST(state->src.x2, 1 << 16) - vc4_state->src_x;
vc4_state->src_h[0] = DIV_ROUND_CLOSEST(state->src.y2, 1 << 16) - vc4_state->src_y;
vc4_state->crtc_x = state->dst.x1;
vc4_state->crtc_y = state->dst.y1;
vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
ret = vc4_plane_margins_adj(state);
if (ret)
return ret;
vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
vc4_state->crtc_w);
vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
vc4_state->crtc_h);
vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
vc4_state->y_scaling[0] == VC4_SCALING_NONE);
if (num_planes > 1) {
vc4_state->is_yuv = true;
vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
vc4_state->x_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_w[1],
vc4_state->crtc_w);
vc4_state->y_scaling[1] =
vc4_get_scaling_mode(vc4_state->src_h[1],
vc4_state->crtc_h);
/* YUV conversion requires that horizontal scaling be enabled
* on the UV plane even if vc4_get_scaling_mode() returned
* VC4_SCALING_NONE (which can happen when the down-scaling
* ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
* case.
*/
if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
vc4_state->x_scaling[1] = VC4_SCALING_PPF;
} else {
vc4_state->is_yuv = false;
vc4_state->x_scaling[1] = VC4_SCALING_NONE;
vc4_state->y_scaling[1] = VC4_SCALING_NONE;
}
return 0;
}
static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale, recip;
scale = (1 << 16) * src / dst;
/* The specs note that while the reciprocal would be defined
* as (1<<32)/scale, ~0 is close enough.
*/
recip = ~0 / scale;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
}
static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
{
u32 scale = (1 << 16) * src / dst;
vc4_dlist_write(vc4_state,
SCALER_PPF_AGC |
VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
}
static u32 vc4_lbm_size(struct drm_plane_state *state)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
u32 pix_per_line;
u32 lbm;
/* LBM is not needed when there's no vertical scaling. */
if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
vc4_state->y_scaling[1] == VC4_SCALING_NONE)
return 0;
/*
* This can be further optimized in the RGB/YUV444 case if the PPF
* decimation factor is between 0.5 and 1.0 by using crtc_w.
*
* It's not an issue though, since in that case since src_w[0] is going
* to be greater than or equal to crtc_w.
*/
if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
pix_per_line = vc4_state->crtc_w;
else
pix_per_line = vc4_state->src_w[0];
if (!vc4_state->is_yuv) {
if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
lbm = pix_per_line * 8;
else {
/* In special cases, this multiplier might be 12. */
lbm = pix_per_line * 16;
}
} else {
/* There are cases for this going down to a multiplier
* of 2, but according to the firmware source, the
* table in the docs is somewhat wrong.
*/
lbm = pix_per_line * 16;
}
/* Align it to 64 or 128 (hvs5) bytes */
lbm = roundup(lbm, vc4->is_vc5 ? 128 : 64);
/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
lbm /= vc4->is_vc5 ? 4 : 2;
return lbm;
}
static void vc4_write_scaling_parameters(struct drm_plane_state *state,
int channel)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
/* Ch0 H-PPF Word 0: Scaling Parameters */
if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
vc4_write_ppf(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_w[channel], vc4_state->crtc_w);
}
/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
vc4_write_tpz(vc4_state,
vc4_state->src_h[channel], vc4_state->crtc_h);
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
}
static void vc4_plane_calc_load(struct drm_plane_state *state)
{
unsigned int hvs_load_shift, vrefresh, i;
struct drm_framebuffer *fb = state->fb;
struct vc4_plane_state *vc4_state;
struct drm_crtc_state *crtc_state;
unsigned int vscale_factor;
vc4_state = to_vc4_plane_state(state);
crtc_state = drm_atomic_get_existing_crtc_state(state->state,
state->crtc);
vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
/* The HVS is able to process 2 pixels/cycle when scaling the source,
* 4 pixels/cycle otherwise.
* Alpha blending step seems to be pipelined and it's always operating
* at 4 pixels/cycle, so the limiting aspect here seems to be the
* scaler block.
* HVS load is expressed in clk-cycles/sec (AKA Hz).
*/
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE)
hvs_load_shift = 1;
else
hvs_load_shift = 2;
vc4_state->membus_load = 0;
vc4_state->hvs_load = 0;
for (i = 0; i < fb->format->num_planes; i++) {
/* Even if the bandwidth/plane required for a single frame is
*
* vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
*
* when downscaling, we have to read more pixels per line in
* the time frame reserved for a single line, so the bandwidth
* demand can be punctually higher. To account for that, we
* calculate the down-scaling factor and multiply the plane
* load by this number. We're likely over-estimating the read
* demand, but that's better than under-estimating it.
*/
vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
vc4_state->crtc_h);
vc4_state->membus_load += vc4_state->src_w[i] *
vc4_state->src_h[i] * vscale_factor *
fb->format->cpp[i];
vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
}
vc4_state->hvs_load *= vrefresh;
vc4_state->hvs_load >>= hvs_load_shift;
vc4_state->membus_load *= vrefresh;
}
static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
unsigned long irqflags;
u32 lbm_size;
lbm_size = vc4_lbm_size(state);
if (!lbm_size)
return 0;
if (WARN_ON(!vc4_state->lbm_offset))
return -EINVAL;
/* Allocate the LBM memory that the HVS will use for temporary
* storage due to our scaling/format conversion.
*/
if (!drm_mm_node_allocated(&vc4_state->lbm)) {
int ret;
spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
&vc4_state->lbm,
lbm_size,
vc4->is_vc5 ? 64 : 32,
0, 0);
spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
if (ret)
return ret;
} else {
WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
}
vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
return 0;
}
/*
* The colorspace conversion matrices are held in 3 entries in the dlist.
* Create an array of them, with entries for each full and limited mode, and
* each supported colorspace.
*/
static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
{
/* Limited range */
{
/* BT601 */
SCALER_CSC0_ITR_R_601_5,
SCALER_CSC1_ITR_R_601_5,
SCALER_CSC2_ITR_R_601_5,
}, {
/* BT709 */
SCALER_CSC0_ITR_R_709_3,
SCALER_CSC1_ITR_R_709_3,
SCALER_CSC2_ITR_R_709_3,
}, {
/* BT2020 */
SCALER_CSC0_ITR_R_2020,
SCALER_CSC1_ITR_R_2020,
SCALER_CSC2_ITR_R_2020,
}
}, {
/* Full range */
{
/* JFIF */
SCALER_CSC0_JPEG_JFIF,
SCALER_CSC1_JPEG_JFIF,
SCALER_CSC2_JPEG_JFIF,
}, {
/* BT709 */
SCALER_CSC0_ITR_R_709_3_FR,
SCALER_CSC1_ITR_R_709_3_FR,
SCALER_CSC2_ITR_R_709_3_FR,
}, {
/* BT2020 */
SCALER_CSC0_ITR_R_2020_FR,
SCALER_CSC1_ITR_R_2020_FR,
SCALER_CSC2_ITR_R_2020_FR,
}
}
};
static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
{
if (!state->fb->format->has_alpha)
return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
SCALER_POS2_ALPHA_MODE);
switch (state->pixel_blend_mode) {
case DRM_MODE_BLEND_PIXEL_NONE:
return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
SCALER_POS2_ALPHA_MODE);
default:
case DRM_MODE_BLEND_PREMULTI:
return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
SCALER_POS2_ALPHA_MODE) |
SCALER_POS2_ALPHA_PREMULT;
case DRM_MODE_BLEND_COVERAGE:
return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
SCALER_POS2_ALPHA_MODE);
}
}
static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
{
if (!state->fb->format->has_alpha)
return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
SCALER5_CTL2_ALPHA_MODE);
switch (state->pixel_blend_mode) {
case DRM_MODE_BLEND_PIXEL_NONE:
return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
SCALER5_CTL2_ALPHA_MODE);
default:
case DRM_MODE_BLEND_PREMULTI:
return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
SCALER5_CTL2_ALPHA_MODE) |
SCALER5_CTL2_ALPHA_PREMULT;
case DRM_MODE_BLEND_COVERAGE:
return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
SCALER5_CTL2_ALPHA_MODE);
}
}
/* Writes out a full display list for an active plane to the plane's
* private dlist state.
*/
static int vc4_plane_mode_set(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
struct drm_framebuffer *fb = state->fb;
u32 ctl0_offset = vc4_state->dlist_count;
const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
int num_planes = fb->format->num_planes;
u32 h_subsample = fb->format->hsub;
u32 v_subsample = fb->format->vsub;
bool mix_plane_alpha;
bool covers_screen;
u32 scl0, scl1, pitch0;
u32 tiling, src_y;
u32 hvs_format = format->hvs;
unsigned int rotation;
int ret, i;
if (vc4_state->dlist_initialized)
return 0;
ret = vc4_plane_setup_clipping_and_scaling(state);
if (ret)
return ret;
/* SCL1 is used for Cb/Cr scaling of planar formats. For RGB
* and 4:4:4, scl1 should be set to scl0 so both channels of
* the scaler do the same thing. For YUV, the Y plane needs
* to be put in channel 1 and Cb/Cr in channel 0, so we swap
* the scl fields here.
*/
if (num_planes == 1) {
scl0 = vc4_get_scl_field(state, 0);
scl1 = scl0;
} else {
scl0 = vc4_get_scl_field(state, 1);
scl1 = vc4_get_scl_field(state, 0);
}
rotation = drm_rotation_simplify(state->rotation,
DRM_MODE_ROTATE_0 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
/* We must point to the last line when Y reflection is enabled. */
src_y = vc4_state->src_y;
if (rotation & DRM_MODE_REFLECT_Y)
src_y += vc4_state->src_h[0] - 1;
switch (base_format_mod) {
case DRM_FORMAT_MOD_LINEAR:
tiling = SCALER_CTL0_TILING_LINEAR;
pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
/* Adjust the base pointer to the first pixel to be scanned
* out.
*/
for (i = 0; i < num_planes; i++) {
vc4_state->offsets[i] += src_y /
(i ? v_subsample : 1) *
fb->pitches[i];
vc4_state->offsets[i] += vc4_state->src_x /
(i ? h_subsample : 1) *
fb->format->cpp[i];
}
break;
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
u32 tile_size_shift = 12; /* T tiles are 4kb */
/* Whole-tile offsets, mostly for setting the pitch. */
u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
u32 tile_w_mask = (1 << tile_w_shift) - 1;
/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
* the height (in pixels) of a 4k tile.
*/
u32 tile_h_mask = (2 << tile_h_shift) - 1;
/* For T-tiled, the FB pitch is "how many bytes from one row to
* the next, such that
*
* pitch * tile_h == tile_size * tiles_per_row
*/
u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
u32 tiles_l = vc4_state->src_x >> tile_w_shift;
u32 tiles_r = tiles_w - tiles_l;
u32 tiles_t = src_y >> tile_h_shift;
/* Intra-tile offsets, which modify the base address (the
* SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
* base address).
*/
u32 tile_y = (src_y >> 4) & 1;
u32 subtile_y = (src_y >> 2) & 3;
u32 utile_y = src_y & 3;
u32 x_off = vc4_state->src_x & tile_w_mask;
u32 y_off = src_y & tile_h_mask;
/* When Y reflection is requested we must set the
* SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
* after the initial one should be fetched in descending order,
* which makes sense since we start from the last line and go
* backward.
* Don't know why we need y_off = max_y_off - y_off, but it's
* definitely required (I guess it's also related to the "going
* backward" situation).
*/
if (rotation & DRM_MODE_REFLECT_Y) {
y_off = tile_h_mask - y_off;
pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
} else {
pitch0 = 0;
}
tiling = SCALER_CTL0_TILING_256B_OR_T;
pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
vc4_state->offsets[0] += subtile_y << 8;
vc4_state->offsets[0] += utile_y << 4;
/* Rows of tiles alternate left-to-right and right-to-left. */
if (tiles_t & 1) {
pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
vc4_state->offsets[0] += (tiles_w - tiles_l) <<
tile_size_shift;
vc4_state->offsets[0] -= (1 + !tile_y) << 10;
} else {
vc4_state->offsets[0] += tiles_l << tile_size_shift;
vc4_state->offsets[0] += tile_y << 10;
}
break;
}
case DRM_FORMAT_MOD_BROADCOM_SAND64:
case DRM_FORMAT_MOD_BROADCOM_SAND128:
case DRM_FORMAT_MOD_BROADCOM_SAND256: {
uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
if (param > SCALER_TILE_HEIGHT_MASK) {
DRM_DEBUG_KMS("SAND height too large (%d)\n",
param);
return -EINVAL;
}
if (fb->format->format == DRM_FORMAT_P030) {
hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
tiling = SCALER_CTL0_TILING_128B;
} else {
hvs_format = HVS_PIXEL_FORMAT_H264;
switch (base_format_mod) {
case DRM_FORMAT_MOD_BROADCOM_SAND64:
tiling = SCALER_CTL0_TILING_64B;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND128:
tiling = SCALER_CTL0_TILING_128B;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND256:
tiling = SCALER_CTL0_TILING_256B_OR_T;
break;
default:
return -EINVAL;
}
}
/* Adjust the base pointer to the first pixel to be scanned
* out.
*
* For P030, y_ptr [31:4] is the 128bit word for the start pixel
* y_ptr [3:0] is the pixel (0-11) contained within that 128bit
* word that should be taken as the first pixel.
* Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
* element within the 128bit word, eg for pixel 3 the value
* should be 6.
*/
for (i = 0; i < num_planes; i++) {
u32 tile_w, tile, x_off, pix_per_tile;
if (fb->format->format == DRM_FORMAT_P030) {
/*
* Spec says: bits [31:4] of the given address
* should point to the 128-bit word containing
* the desired starting pixel, and bits[3:0]
* should be between 0 and 11, indicating which
* of the 12-pixels in that 128-bit word is the
* first pixel to be used
*/
u32 remaining_pixels = vc4_state->src_x % 96;
u32 aligned = remaining_pixels / 12;
u32 last_bits = remaining_pixels % 12;
x_off = aligned * 16 + last_bits;
tile_w = 128;
pix_per_tile = 96;
} else {
switch (base_format_mod) {
case DRM_FORMAT_MOD_BROADCOM_SAND64:
tile_w = 64;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND128:
tile_w = 128;
break;
case DRM_FORMAT_MOD_BROADCOM_SAND256:
tile_w = 256;
break;
default:
return -EINVAL;
}
pix_per_tile = tile_w / fb->format->cpp[0];
x_off = (vc4_state->src_x % pix_per_tile) /
(i ? h_subsample : 1) *
fb->format->cpp[i];
}
tile = vc4_state->src_x / pix_per_tile;
vc4_state->offsets[i] += param * tile_w * tile;
vc4_state->offsets[i] += src_y /
(i ? v_subsample : 1) *
tile_w;
vc4_state->offsets[i] += x_off & ~(i ? 1 : 0);
}
pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
break;
}
default:
DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
(long long)fb->modifier);
return -EINVAL;
}
/* Don't waste cycles mixing with plane alpha if the set alpha
* is opaque or there is no per-pixel alpha information.
* In any case we use the alpha property value as the fixed alpha.
*/
mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
fb->format->has_alpha;
if (!vc4->is_vc5) {
/* Control word */
vc4_dlist_write(vc4_state,
SCALER_CTL0_VALID |
(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
/* Position Word 0: Image Positions and Alpha Value */
vc4_state->pos0_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
/* Position Word 1: Scaled Image Dimensions. */
if (!vc4_state->is_unity) {
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(vc4_state->crtc_w,
SCALER_POS1_SCL_WIDTH) |
VC4_SET_FIELD(vc4_state->crtc_h,
SCALER_POS1_SCL_HEIGHT));
}
/* Position Word 2: Source Image Size, Alpha */
vc4_state->pos2_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
vc4_hvs4_get_alpha_blend_mode(state) |
VC4_SET_FIELD(vc4_state->src_w[0],
SCALER_POS2_WIDTH) |
VC4_SET_FIELD(vc4_state->src_h[0],
SCALER_POS2_HEIGHT));
/* Position Word 3: Context. Written by the HVS. */
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
} else {
u32 hvs_pixel_order = format->pixel_order;
if (format->pixel_order_hvs5)
hvs_pixel_order = format->pixel_order_hvs5;
/* Control word */
vc4_dlist_write(vc4_state,
SCALER_CTL0_VALID |
(hvs_pixel_order << SCALER_CTL0_ORDER_SHIFT) |
(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
(vc4_state->is_unity ?
SCALER5_CTL0_UNITY : 0) |
VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
SCALER5_CTL0_ALPHA_EXPAND |
SCALER5_CTL0_RGB_EXPAND);
/* Position Word 0: Image Positions and Alpha Value */
vc4_state->pos0_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
(rotation & DRM_MODE_REFLECT_Y ?
SCALER5_POS0_VFLIP : 0) |
VC4_SET_FIELD(vc4_state->crtc_x,
SCALER_POS0_START_X) |
(rotation & DRM_MODE_REFLECT_X ?
SCALER5_POS0_HFLIP : 0) |
VC4_SET_FIELD(vc4_state->crtc_y,
SCALER5_POS0_START_Y)
);
/* Control Word 2 */
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(state->alpha >> 4,
SCALER5_CTL2_ALPHA) |
vc4_hvs5_get_alpha_blend_mode(state) |
(mix_plane_alpha ?
SCALER5_CTL2_ALPHA_MIX : 0)
);
/* Position Word 1: Scaled Image Dimensions. */
if (!vc4_state->is_unity) {
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(vc4_state->crtc_w,
SCALER5_POS1_SCL_WIDTH) |
VC4_SET_FIELD(vc4_state->crtc_h,
SCALER5_POS1_SCL_HEIGHT));
}
/* Position Word 2: Source Image Size */
vc4_state->pos2_offset = vc4_state->dlist_count;
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(vc4_state->src_w[0],
SCALER5_POS2_WIDTH) |
VC4_SET_FIELD(vc4_state->src_h[0],
SCALER5_POS2_HEIGHT));
/* Position Word 3: Context. Written by the HVS. */
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
}
/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
*
* The pointers may be any byte address.
*/
vc4_state->ptr0_offset = vc4_state->dlist_count;
for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
/* Pointer Context Word 0/1/2: Written by the HVS */
for (i = 0; i < num_planes; i++)
vc4_dlist_write(vc4_state, 0xc0c0c0c0);
/* Pitch word 0 */
vc4_dlist_write(vc4_state, pitch0);
/* Pitch word 1/2 */
for (i = 1; i < num_planes; i++) {
if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
vc4_dlist_write(vc4_state,
VC4_SET_FIELD(fb->pitches[i],
SCALER_SRC_PITCH));
} else {
vc4_dlist_write(vc4_state, pitch0);
}
}
/* Colorspace conversion words */
if (vc4_state->is_yuv) {
enum drm_color_encoding color_encoding = state->color_encoding;
enum drm_color_range color_range = state->color_range;
const u32 *ccm;
if (color_encoding >= DRM_COLOR_ENCODING_MAX)
color_encoding = DRM_COLOR_YCBCR_BT601;
if (color_range >= DRM_COLOR_RANGE_MAX)
color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
ccm = colorspace_coeffs[color_range][color_encoding];
vc4_dlist_write(vc4_state, ccm[0]);
vc4_dlist_write(vc4_state, ccm[1]);
vc4_dlist_write(vc4_state, ccm[2]);
}
vc4_state->lbm_offset = 0;
if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
/* Reserve a slot for the LBM Base Address. The real value will
* be set when calling vc4_plane_allocate_lbm().
*/
if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
vc4_state->lbm_offset = vc4_state->dlist_count;
vc4_dlist_counter_increment(vc4_state);
}
if (num_planes > 1) {
/* Emit Cb/Cr as channel 0 and Y as channel
* 1. This matches how we set up scl0/scl1
* above.
*/
vc4_write_scaling_parameters(state, 1);
}
vc4_write_scaling_parameters(state, 0);
/* If any PPF setup was done, then all the kernel
* pointers get uploaded.
*/
if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
SCALER_PPF_KERNEL_OFFSET);
/* HPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 0 */
vc4_dlist_write(vc4_state, kernel);
/* HPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
/* VPPF plane 1 */
vc4_dlist_write(vc4_state, kernel);
}
}
vc4_state->dlist[ctl0_offset] |=
VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
/* crtc_* are already clipped coordinates. */
covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
vc4_state->crtc_w == state->crtc->mode.hdisplay &&
vc4_state->crtc_h == state->crtc->mode.vdisplay;
/* Background fill might be necessary when the plane has per-pixel
* alpha content or a non-opaque plane alpha and could blend from the
* background or does not cover the entire screen.
*/
vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
state->alpha != DRM_BLEND_ALPHA_OPAQUE;
/* Flag the dlist as initialized to avoid checking it twice in case
* the async update check already called vc4_plane_mode_set() and
* decided to fallback to sync update because async update was not
* possible.
*/
vc4_state->dlist_initialized = 1;
vc4_plane_calc_load(state);
return 0;
}
/* If a modeset involves changing the setup of a plane, the atomic
* infrastructure will call this to validate a proposed plane setup.
* However, if a plane isn't getting updated, this (and the
* corresponding vc4_plane_atomic_update) won't get called. Thus, we
* compute the dlist here and have all active plane dlists get updated
* in the CRTC's flush.
*/
static int vc4_plane_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
int ret;
vc4_state->dlist_count = 0;
if (!plane_enabled(new_plane_state))
return 0;
ret = vc4_plane_mode_set(plane, new_plane_state);
if (ret)
return ret;
return vc4_plane_allocate_lbm(new_plane_state);
}
static void vc4_plane_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
/* No contents here. Since we don't know where in the CRTC's
* dlist we should be stored, our dlist is uploaded to the
* hardware with vc4_plane_write_dlist() at CRTC atomic_flush
* time.
*/
}
u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
int i;
vc4_state->hw_dlist = dlist;
/* Can't memcpy_toio() because it needs to be 32-bit writes. */
for (i = 0; i < vc4_state->dlist_count; i++)
writel(vc4_state->dlist[i], &dlist[i]);
return vc4_state->dlist_count;
}
u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
{
const struct vc4_plane_state *vc4_state =
container_of(state, typeof(*vc4_state), base);
return vc4_state->dlist_count;
}
/* Updates the plane to immediately (well, once the FIFO needs
* refilling) scan out from at a new framebuffer.
*/
void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
{
struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
struct drm_gem_cma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
uint32_t addr;
/* We're skipping the address adjustment for negative origin,
* because this is only called on the primary plane.
*/
WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
addr = bo->paddr + fb->offsets[0];
/* Write the new address into the hardware immediately. The
* scanout will start from this address as soon as the FIFO
* needs to refill with pixels.
*/
writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
/* Also update the CPU-side dlist copy, so that any later
* atomic updates that don't do a new modeset on our plane
* also use our updated address.
*/
vc4_state->dlist[vc4_state->ptr0_offset] = addr;
}
static void vc4_plane_atomic_async_update(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct vc4_plane_state *vc4_state, *new_vc4_state;
swap(plane->state->fb, new_plane_state->fb);
plane->state->crtc_x = new_plane_state->crtc_x;
plane->state->crtc_y = new_plane_state->crtc_y;
plane->state->crtc_w = new_plane_state->crtc_w;
plane->state->crtc_h = new_plane_state->crtc_h;
plane->state->src_x = new_plane_state->src_x;
plane->state->src_y = new_plane_state->src_y;
plane->state->src_w = new_plane_state->src_w;
plane->state->src_h = new_plane_state->src_h;
plane->state->alpha = new_plane_state->alpha;
plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
plane->state->rotation = new_plane_state->rotation;
plane->state->zpos = new_plane_state->zpos;
plane->state->normalized_zpos = new_plane_state->normalized_zpos;
plane->state->color_encoding = new_plane_state->color_encoding;
plane->state->color_range = new_plane_state->color_range;
plane->state->src = new_plane_state->src;
plane->state->dst = new_plane_state->dst;
plane->state->visible = new_plane_state->visible;
new_vc4_state = to_vc4_plane_state(new_plane_state);
vc4_state = to_vc4_plane_state(plane->state);
vc4_state->crtc_x = new_vc4_state->crtc_x;
vc4_state->crtc_y = new_vc4_state->crtc_y;
vc4_state->crtc_h = new_vc4_state->crtc_h;
vc4_state->crtc_w = new_vc4_state->crtc_w;
vc4_state->src_x = new_vc4_state->src_x;
vc4_state->src_y = new_vc4_state->src_y;
memcpy(vc4_state->src_w, new_vc4_state->src_w,
sizeof(vc4_state->src_w));
memcpy(vc4_state->src_h, new_vc4_state->src_h,
sizeof(vc4_state->src_h));
memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
sizeof(vc4_state->x_scaling));
memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
sizeof(vc4_state->y_scaling));
vc4_state->is_unity = new_vc4_state->is_unity;
vc4_state->is_yuv = new_vc4_state->is_yuv;
memcpy(vc4_state->offsets, new_vc4_state->offsets,
sizeof(vc4_state->offsets));
vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
vc4_state->dlist[vc4_state->pos0_offset] =
new_vc4_state->dlist[vc4_state->pos0_offset];
vc4_state->dlist[vc4_state->pos2_offset] =
new_vc4_state->dlist[vc4_state->pos2_offset];
vc4_state->dlist[vc4_state->ptr0_offset] =
new_vc4_state->dlist[vc4_state->ptr0_offset];
/* Note that we can't just call vc4_plane_write_dlist()
* because that would smash the context data that the HVS is
* currently using.
*/
writel(vc4_state->dlist[vc4_state->pos0_offset],
&vc4_state->hw_dlist[vc4_state->pos0_offset]);
writel(vc4_state->dlist[vc4_state->pos2_offset],
&vc4_state->hw_dlist[vc4_state->pos2_offset]);
writel(vc4_state->dlist[vc4_state->ptr0_offset],
&vc4_state->hw_dlist[vc4_state->ptr0_offset]);
}
static int vc4_plane_atomic_async_check(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
plane);
struct vc4_plane_state *old_vc4_state, *new_vc4_state;
int ret;
u32 i;
ret = vc4_plane_mode_set(plane, new_plane_state);
if (ret)
return ret;
old_vc4_state = to_vc4_plane_state(plane->state);
new_vc4_state = to_vc4_plane_state(new_plane_state);
if (!new_vc4_state->hw_dlist)
return -EINVAL;
if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
return -EINVAL;
/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
* if anything else has changed, fallback to a sync update.
*/
for (i = 0; i < new_vc4_state->dlist_count; i++) {
if (i == new_vc4_state->pos0_offset ||
i == new_vc4_state->pos2_offset ||
i == new_vc4_state->ptr0_offset ||
(new_vc4_state->lbm_offset &&
i == new_vc4_state->lbm_offset))
continue;
if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
return -EINVAL;
}
return 0;
}
static int vc4_prepare_fb(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_bo *bo;
if (!state->fb)
return 0;
bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
drm_gem_plane_helper_prepare_fb(plane, state);
if (plane->state->fb == state->fb)
return 0;
return vc4_bo_inc_usecnt(bo);
}
static void vc4_cleanup_fb(struct drm_plane *plane,
struct drm_plane_state *state)
{
struct vc4_bo *bo;
if (plane->state->fb == state->fb || !state->fb)
return;
bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
vc4_bo_dec_usecnt(bo);
}
static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
.atomic_check = vc4_plane_atomic_check,
.atomic_update = vc4_plane_atomic_update,
.prepare_fb = vc4_prepare_fb,
.cleanup_fb = vc4_cleanup_fb,
.atomic_async_check = vc4_plane_atomic_async_check,
.atomic_async_update = vc4_plane_atomic_async_update,
};
static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
.atomic_check = vc4_plane_atomic_check,
.atomic_update = vc4_plane_atomic_update,
.atomic_async_check = vc4_plane_atomic_async_check,
.atomic_async_update = vc4_plane_atomic_async_update,
};
static bool vc4_format_mod_supported(struct drm_plane *plane,
uint32_t format,
uint64_t modifier)
{
/* Support T_TILING for RGB formats only. */
switch (format) {
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_XRGB1555:
switch (fourcc_mod_broadcom_mod(modifier)) {
case DRM_FORMAT_MOD_LINEAR:
case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
return true;
default:
return false;
}
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
switch (fourcc_mod_broadcom_mod(modifier)) {
case DRM_FORMAT_MOD_LINEAR:
case DRM_FORMAT_MOD_BROADCOM_SAND64:
case DRM_FORMAT_MOD_BROADCOM_SAND128:
case DRM_FORMAT_MOD_BROADCOM_SAND256:
return true;
default:
return false;
}
case DRM_FORMAT_P030:
switch (fourcc_mod_broadcom_mod(modifier)) {
case DRM_FORMAT_MOD_BROADCOM_SAND128:
return true;
default:
return false;
}
case DRM_FORMAT_RGBX1010102:
case DRM_FORMAT_BGRX1010102:
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_BGRA1010102:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
default:
return (modifier == DRM_FORMAT_MOD_LINEAR);
}
}
static const struct drm_plane_funcs vc4_plane_funcs = {
.update_plane = drm_atomic_helper_update_plane,
.disable_plane = drm_atomic_helper_disable_plane,
.reset = vc4_plane_reset,
.atomic_duplicate_state = vc4_plane_duplicate_state,
.atomic_destroy_state = vc4_plane_destroy_state,
.format_mod_supported = vc4_format_mod_supported,
};
struct drm_plane *vc4_plane_init(struct drm_device *dev,
enum drm_plane_type type,
uint32_t possible_crtcs)
{
struct vc4_dev *vc4 = to_vc4_dev(dev);
struct drm_plane *plane;
struct vc4_plane *vc4_plane;
u32 formats[ARRAY_SIZE(hvs_formats)];
int num_formats = 0;
unsigned i;
static const uint64_t modifiers[] = {
DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
DRM_FORMAT_MOD_BROADCOM_SAND128,
DRM_FORMAT_MOD_BROADCOM_SAND64,
DRM_FORMAT_MOD_BROADCOM_SAND256,
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
if (!hvs_formats[i].hvs5_only || vc4->is_vc5) {
formats[num_formats] = hvs_formats[i].drm;
num_formats++;
}
}
vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
possible_crtcs,
&vc4_plane_funcs,
formats, num_formats,
modifiers, type, NULL);
if (IS_ERR(vc4_plane))
return ERR_CAST(vc4_plane);
plane = &vc4_plane->base;
if (vc4->is_vc5)
drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
else
drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
drm_plane_create_alpha_property(plane);
drm_plane_create_blend_mode_property(plane,
BIT(DRM_MODE_BLEND_PIXEL_NONE) |
BIT(DRM_MODE_BLEND_PREMULTI) |
BIT(DRM_MODE_BLEND_COVERAGE));
drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
DRM_MODE_ROTATE_0 |
DRM_MODE_ROTATE_180 |
DRM_MODE_REFLECT_X |
DRM_MODE_REFLECT_Y);
drm_plane_create_color_properties(plane,
BIT(DRM_COLOR_YCBCR_BT601) |
BIT(DRM_COLOR_YCBCR_BT709) |
BIT(DRM_COLOR_YCBCR_BT2020),
BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
BIT(DRM_COLOR_YCBCR_FULL_RANGE),
DRM_COLOR_YCBCR_BT709,
DRM_COLOR_YCBCR_LIMITED_RANGE);
return plane;
}
int vc4_plane_create_additional_planes(struct drm_device *drm)
{
struct drm_plane *cursor_plane;
struct drm_crtc *crtc;
unsigned int i;
/* Set up some arbitrary number of planes. We're not limited
* by a set number of physical registers, just the space in
* the HVS (16k) and how small an plane can be (28 bytes).
* However, each plane we set up takes up some memory, and
* increases the cost of looping over planes, which atomic
* modesetting does quite a bit. As a result, we pick a
* modest number of planes to expose, that should hopefully
* still cover any sane usecase.
*/
for (i = 0; i < 16; i++) {
struct drm_plane *plane =
vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
GENMASK(drm->mode_config.num_crtc - 1, 0));
if (IS_ERR(plane))
continue;
}
drm_for_each_crtc(crtc, drm) {
/* Set up the legacy cursor after overlay initialization,
* since we overlay planes on the CRTC in the order they were
* initialized.
*/
cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
drm_crtc_mask(crtc));
if (!IS_ERR(cursor_plane)) {
crtc->cursor = cursor_plane;
}
}
return 0;
}