summaryrefslogblamecommitdiff
path: root/drivers/gpu/drm/radeon/cik.c
blob: 445f497c7fc9d73716cecdc43338234122622265 (plain) (tree)
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673




























                                                                             
                        

                 
                             
 











                                   


                                 






                                          
                                           




                                         
                                          




                                         
                                          
 

                                                          

                                                                                            
                                                                  
                                                                                   

                                                    
                                                     
 





















                                                                 



















































































































                                                                               













                                                           

                                                        




















                                                                            
                                                        







                                                      
                                                        







                                                      
                                                        





























































                                                                           










                                                                            



































                                                                                  


































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                              

                                                                                   




































































                                                                                                          
  
























                                                                        


















































                                                                                     











































































































                                                                                                      






























































                                                                                          
  








































































































































































































































































































































































































                                                                                                        



























































































































































































































































































































































































































































































































































































                                                                                                         
 
                                                                 
 















                                                         




                                                                   
 












                                                               
 
































































                                                                      


   
                                      

                               
                                             
  
                                                  
   
                                                                          

                                      


































                                                                             
 
                                       
                                               

                                                                     
 
































































                                                                                     
 

                                                     
 
                                         


                                        


   
                                  


                               

                                            



                                              
                       
 





                                                              
 





























                                                                            
 
 










                                                                             

                                                        

                                                  
                                        
            


                                         







                                                   


























































































































































































































                                                                                 
                                     
                                                                       











                                                                              
























                                                             
                                    



                                             





                                                                          











































































































                                                                    














































































                                                                                                 
   












































































































                                                                                                                           




































































                                                                                                       













































































































































                                                                                        






































































                                                                                




                                                                        











































































































































                                                                                                     
                                



















                                                                                  


                                                                              







                                                                           









                                                                            
























































                                                     


                                                              
































































































































































































                                                                                               


                                                      




                                                                                   



                                                    
















































                                                                                  














































































































































































































                                                                                                          









                                                                                                





                                                                               



                                                           


































                                                                                                  



                                                           














                                                                                                  








































































                                                                                                


























                                                                                    













































































































































































































































































































































                                                                                       
























































































































































































































































































































































































































































































































































                                                                                                     




















                                                                     
/*
 * Copyright 2012 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: Alex Deucher
 */
#include <linux/firmware.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include "drmP.h"
#include "radeon.h"
#include "radeon_asic.h"
#include "cikd.h"
#include "atom.h"
#include "cik_blit_shaders.h"

/* GFX */
#define CIK_PFP_UCODE_SIZE 2144
#define CIK_ME_UCODE_SIZE 2144
#define CIK_CE_UCODE_SIZE 2144
/* compute */
#define CIK_MEC_UCODE_SIZE 4192
/* interrupts */
#define BONAIRE_RLC_UCODE_SIZE 2048
#define KB_RLC_UCODE_SIZE 2560
#define KV_RLC_UCODE_SIZE 2560
/* gddr controller */
#define CIK_MC_UCODE_SIZE 7866
/* sdma */
#define CIK_SDMA_UCODE_SIZE 1050
#define CIK_SDMA_UCODE_VERSION 64

MODULE_FIRMWARE("radeon/BONAIRE_pfp.bin");
MODULE_FIRMWARE("radeon/BONAIRE_me.bin");
MODULE_FIRMWARE("radeon/BONAIRE_ce.bin");
MODULE_FIRMWARE("radeon/BONAIRE_mec.bin");
MODULE_FIRMWARE("radeon/BONAIRE_mc.bin");
MODULE_FIRMWARE("radeon/BONAIRE_rlc.bin");
MODULE_FIRMWARE("radeon/BONAIRE_sdma.bin");
MODULE_FIRMWARE("radeon/KAVERI_pfp.bin");
MODULE_FIRMWARE("radeon/KAVERI_me.bin");
MODULE_FIRMWARE("radeon/KAVERI_ce.bin");
MODULE_FIRMWARE("radeon/KAVERI_mec.bin");
MODULE_FIRMWARE("radeon/KAVERI_rlc.bin");
MODULE_FIRMWARE("radeon/KAVERI_sdma.bin");
MODULE_FIRMWARE("radeon/KABINI_pfp.bin");
MODULE_FIRMWARE("radeon/KABINI_me.bin");
MODULE_FIRMWARE("radeon/KABINI_ce.bin");
MODULE_FIRMWARE("radeon/KABINI_mec.bin");
MODULE_FIRMWARE("radeon/KABINI_rlc.bin");
MODULE_FIRMWARE("radeon/KABINI_sdma.bin");

extern int r600_ih_ring_alloc(struct radeon_device *rdev);
extern void r600_ih_ring_fini(struct radeon_device *rdev);
extern void evergreen_mc_stop(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern void evergreen_mc_resume(struct radeon_device *rdev, struct evergreen_mc_save *save);
extern bool evergreen_is_display_hung(struct radeon_device *rdev);
extern void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc);
extern void si_rlc_fini(struct radeon_device *rdev);
extern int si_rlc_init(struct radeon_device *rdev);
static void cik_rlc_stop(struct radeon_device *rdev);

/**
 * cik_get_xclk - get the xclk
 *
 * @rdev: radeon_device pointer
 *
 * Returns the reference clock used by the gfx engine
 * (CIK).
 */
u32 cik_get_xclk(struct radeon_device *rdev)
{
        u32 reference_clock = rdev->clock.spll.reference_freq;

	if (rdev->flags & RADEON_IS_IGP) {
		if (RREG32_SMC(GENERAL_PWRMGT) & GPU_COUNTER_CLK)
			return reference_clock / 2;
	} else {
		if (RREG32_SMC(CG_CLKPIN_CNTL) & XTALIN_DIVIDE)
			return reference_clock / 4;
	}
	return reference_clock;
}

#define BONAIRE_IO_MC_REGS_SIZE 36

static const u32 bonaire_io_mc_regs[BONAIRE_IO_MC_REGS_SIZE][2] =
{
	{0x00000070, 0x04400000},
	{0x00000071, 0x80c01803},
	{0x00000072, 0x00004004},
	{0x00000073, 0x00000100},
	{0x00000074, 0x00ff0000},
	{0x00000075, 0x34000000},
	{0x00000076, 0x08000014},
	{0x00000077, 0x00cc08ec},
	{0x00000078, 0x00000400},
	{0x00000079, 0x00000000},
	{0x0000007a, 0x04090000},
	{0x0000007c, 0x00000000},
	{0x0000007e, 0x4408a8e8},
	{0x0000007f, 0x00000304},
	{0x00000080, 0x00000000},
	{0x00000082, 0x00000001},
	{0x00000083, 0x00000002},
	{0x00000084, 0xf3e4f400},
	{0x00000085, 0x052024e3},
	{0x00000087, 0x00000000},
	{0x00000088, 0x01000000},
	{0x0000008a, 0x1c0a0000},
	{0x0000008b, 0xff010000},
	{0x0000008d, 0xffffefff},
	{0x0000008e, 0xfff3efff},
	{0x0000008f, 0xfff3efbf},
	{0x00000092, 0xf7ffffff},
	{0x00000093, 0xffffff7f},
	{0x00000095, 0x00101101},
	{0x00000096, 0x00000fff},
	{0x00000097, 0x00116fff},
	{0x00000098, 0x60010000},
	{0x00000099, 0x10010000},
	{0x0000009a, 0x00006000},
	{0x0000009b, 0x00001000},
	{0x0000009f, 0x00b48000}
};

/* ucode loading */
/**
 * ci_mc_load_microcode - load MC ucode into the hw
 *
 * @rdev: radeon_device pointer
 *
 * Load the GDDR MC ucode into the hw (CIK).
 * Returns 0 on success, error on failure.
 */
static int ci_mc_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	u32 running, blackout = 0;
	u32 *io_mc_regs;
	int i, ucode_size, regs_size;

	if (!rdev->mc_fw)
		return -EINVAL;

	switch (rdev->family) {
	case CHIP_BONAIRE:
	default:
		io_mc_regs = (u32 *)&bonaire_io_mc_regs;
		ucode_size = CIK_MC_UCODE_SIZE;
		regs_size = BONAIRE_IO_MC_REGS_SIZE;
		break;
	}

	running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK;

	if (running == 0) {
		if (running) {
			blackout = RREG32(MC_SHARED_BLACKOUT_CNTL);
			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout | 1);
		}

		/* reset the engine and set to writable */
		WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000010);

		/* load mc io regs */
		for (i = 0; i < regs_size; i++) {
			WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]);
			WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]);
		}
		/* load the MC ucode */
		fw_data = (const __be32 *)rdev->mc_fw->data;
		for (i = 0; i < ucode_size; i++)
			WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++));

		/* put the engine back into the active state */
		WREG32(MC_SEQ_SUP_CNTL, 0x00000008);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000004);
		WREG32(MC_SEQ_SUP_CNTL, 0x00000001);

		/* wait for training to complete */
		for (i = 0; i < rdev->usec_timeout; i++) {
			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0)
				break;
			udelay(1);
		}
		for (i = 0; i < rdev->usec_timeout; i++) {
			if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1)
				break;
			udelay(1);
		}

		if (running)
			WREG32(MC_SHARED_BLACKOUT_CNTL, blackout);
	}

	return 0;
}

/**
 * cik_init_microcode - load ucode images from disk
 *
 * @rdev: radeon_device pointer
 *
 * Use the firmware interface to load the ucode images into
 * the driver (not loaded into hw).
 * Returns 0 on success, error on failure.
 */
static int cik_init_microcode(struct radeon_device *rdev)
{
	struct platform_device *pdev;
	const char *chip_name;
	size_t pfp_req_size, me_req_size, ce_req_size,
		mec_req_size, rlc_req_size, mc_req_size,
		sdma_req_size;
	char fw_name[30];
	int err;

	DRM_DEBUG("\n");

	pdev = platform_device_register_simple("radeon_cp", 0, NULL, 0);
	err = IS_ERR(pdev);
	if (err) {
		printk(KERN_ERR "radeon_cp: Failed to register firmware\n");
		return -EINVAL;
	}

	switch (rdev->family) {
	case CHIP_BONAIRE:
		chip_name = "BONAIRE";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = BONAIRE_RLC_UCODE_SIZE * 4;
		mc_req_size = CIK_MC_UCODE_SIZE * 4;
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
		break;
	case CHIP_KAVERI:
		chip_name = "KAVERI";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = KV_RLC_UCODE_SIZE * 4;
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
		break;
	case CHIP_KABINI:
		chip_name = "KABINI";
		pfp_req_size = CIK_PFP_UCODE_SIZE * 4;
		me_req_size = CIK_ME_UCODE_SIZE * 4;
		ce_req_size = CIK_CE_UCODE_SIZE * 4;
		mec_req_size = CIK_MEC_UCODE_SIZE * 4;
		rlc_req_size = KB_RLC_UCODE_SIZE * 4;
		sdma_req_size = CIK_SDMA_UCODE_SIZE * 4;
		break;
	default: BUG();
	}

	DRM_INFO("Loading %s Microcode\n", chip_name);

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name);
	err = request_firmware(&rdev->pfp_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->pfp_fw->size != pfp_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->pfp_fw->size, fw_name);
		err = -EINVAL;
		goto out;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name);
	err = request_firmware(&rdev->me_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->me_fw->size != me_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->me_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name);
	err = request_firmware(&rdev->ce_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->ce_fw->size != ce_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->ce_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_mec.bin", chip_name);
	err = request_firmware(&rdev->mec_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->mec_fw->size != mec_req_size) {
		printk(KERN_ERR
		       "cik_cp: Bogus length %zu in firmware \"%s\"\n",
		       rdev->mec_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name);
	err = request_firmware(&rdev->rlc_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->rlc_fw->size != rlc_req_size) {
		printk(KERN_ERR
		       "cik_rlc: Bogus length %zu in firmware \"%s\"\n",
		       rdev->rlc_fw->size, fw_name);
		err = -EINVAL;
	}

	snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name);
	err = request_firmware(&rdev->sdma_fw, fw_name, &pdev->dev);
	if (err)
		goto out;
	if (rdev->sdma_fw->size != sdma_req_size) {
		printk(KERN_ERR
		       "cik_sdma: Bogus length %zu in firmware \"%s\"\n",
		       rdev->sdma_fw->size, fw_name);
		err = -EINVAL;
	}

	/* No MC ucode on APUs */
	if (!(rdev->flags & RADEON_IS_IGP)) {
		snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name);
		err = request_firmware(&rdev->mc_fw, fw_name, &pdev->dev);
		if (err)
			goto out;
		if (rdev->mc_fw->size != mc_req_size) {
			printk(KERN_ERR
			       "cik_mc: Bogus length %zu in firmware \"%s\"\n",
			       rdev->mc_fw->size, fw_name);
			err = -EINVAL;
		}
	}

out:
	platform_device_unregister(pdev);

	if (err) {
		if (err != -EINVAL)
			printk(KERN_ERR
			       "cik_cp: Failed to load firmware \"%s\"\n",
			       fw_name);
		release_firmware(rdev->pfp_fw);
		rdev->pfp_fw = NULL;
		release_firmware(rdev->me_fw);
		rdev->me_fw = NULL;
		release_firmware(rdev->ce_fw);
		rdev->ce_fw = NULL;
		release_firmware(rdev->rlc_fw);
		rdev->rlc_fw = NULL;
		release_firmware(rdev->mc_fw);
		rdev->mc_fw = NULL;
	}
	return err;
}

/*
 * Core functions
 */
/**
 * cik_tiling_mode_table_init - init the hw tiling table
 *
 * @rdev: radeon_device pointer
 *
 * Starting with SI, the tiling setup is done globally in a
 * set of 32 tiling modes.  Rather than selecting each set of
 * parameters per surface as on older asics, we just select
 * which index in the tiling table we want to use, and the
 * surface uses those parameters (CIK).
 */
static void cik_tiling_mode_table_init(struct radeon_device *rdev)
{
	const u32 num_tile_mode_states = 32;
	const u32 num_secondary_tile_mode_states = 16;
	u32 reg_offset, gb_tile_moden, split_equal_to_row_size;
	u32 num_pipe_configs;
	u32 num_rbs = rdev->config.cik.max_backends_per_se *
		rdev->config.cik.max_shader_engines;

	switch (rdev->config.cik.mem_row_size_in_kb) {
	case 1:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB;
		break;
	case 2:
	default:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB;
		break;
	case 4:
		split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB;
		break;
	}

	num_pipe_configs = rdev->config.cik.max_tile_pipes;
	if (num_pipe_configs > 8)
		num_pipe_configs = 8; /* ??? */

	if (num_pipe_configs == 8) {
		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
				break;
			case 1:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
				break;
			case 2:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 3:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
				break;
			case 4:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 5:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
				break;
			case 6:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 7:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 8:
				gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16));
				break;
			case 9:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
				break;
			case 10:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 11:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 12:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 13:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
				break;
			case 14:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 16:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 17:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 27:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
				break;
			case 28:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 29:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 30:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P8_32x32_16x16) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_2_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_2_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else if (num_pipe_configs == 4) {
		if (num_rbs == 4) {
			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
				switch (reg_offset) {
				case 0:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
					break;
				case 1:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
					break;
				case 2:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 3:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
					break;
				case 4:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 5:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
					break;
				case 6:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 7:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 8:
					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16));
					break;
				case 9:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
					break;
				case 10:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 11:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 12:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 13:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
					break;
				case 14:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 16:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 17:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 27:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
					break;
				case 28:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 29:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 30:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_16x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				default:
					gb_tile_moden = 0;
					break;
				}
				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
			}
		} else if (num_rbs < 4) {
			for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
				switch (reg_offset) {
				case 0:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
					break;
				case 1:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
					break;
				case 2:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 3:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
					break;
				case 4:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 5:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
					break;
				case 6:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
					break;
				case 7:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 TILE_SPLIT(split_equal_to_row_size));
					break;
				case 8:
					gb_tile_moden = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) |
						 PIPE_CONFIG(ADDR_SURF_P4_8x16));
					break;
				case 9:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
					break;
				case 10:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 11:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 12:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 13:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
					break;
				case 14:
					gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 16:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 17:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 27:
					gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
					break;
				case 28:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 29:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				case 30:
					gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
							 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
							 PIPE_CONFIG(ADDR_SURF_P4_8x16) |
							 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
					break;
				default:
					gb_tile_moden = 0;
					break;
				}
				WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
			}
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1) |
						 NUM_BANKS(ADDR_SURF_4_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else if (num_pipe_configs == 2) {
		for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B));
				break;
			case 1:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B));
				break;
			case 2:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 3:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B));
				break;
			case 4:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 5:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING));
				break;
			case 6:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B));
				break;
			case 7:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DEPTH_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 TILE_SPLIT(split_equal_to_row_size));
				break;
			case 8:
				gb_tile_moden = ARRAY_MODE(ARRAY_LINEAR_ALIGNED);
				break;
			case 9:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING));
				break;
			case 10:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 11:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 12:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_DISPLAY_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 13:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING));
				break;
			case 14:
				gb_tile_moden = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 16:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 17:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_THIN_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 27:
				gb_tile_moden = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING));
				break;
			case 28:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 29:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			case 30:
				gb_tile_moden = (ARRAY_MODE(ARRAY_PRT_2D_TILED_THIN1) |
						 MICRO_TILE_MODE_NEW(ADDR_SURF_ROTATED_MICRO_TILING) |
						 PIPE_CONFIG(ADDR_SURF_P2) |
						 SAMPLE_SPLIT(ADDR_SURF_SAMPLE_SPLIT_2));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_TILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
		for (reg_offset = 0; reg_offset < num_secondary_tile_mode_states; reg_offset++) {
			switch (reg_offset) {
			case 0:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 1:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 2:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 3:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 4:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 5:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 6:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			case 8:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_8) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 9:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_4) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 10:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 11:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 12:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 13:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4) |
						 NUM_BANKS(ADDR_SURF_16_BANK));
				break;
			case 14:
				gb_tile_moden = (BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) |
						 BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) |
						 MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2) |
						 NUM_BANKS(ADDR_SURF_8_BANK));
				break;
			default:
				gb_tile_moden = 0;
				break;
			}
			WREG32(GB_MACROTILE_MODE0 + (reg_offset * 4), gb_tile_moden);
		}
	} else
		DRM_ERROR("unknown num pipe config: 0x%x\n", num_pipe_configs);
}

/**
 * cik_select_se_sh - select which SE, SH to address
 *
 * @rdev: radeon_device pointer
 * @se_num: shader engine to address
 * @sh_num: sh block to address
 *
 * Select which SE, SH combinations to address. Certain
 * registers are instanced per SE or SH.  0xffffffff means
 * broadcast to all SEs or SHs (CIK).
 */
static void cik_select_se_sh(struct radeon_device *rdev,
			     u32 se_num, u32 sh_num)
{
	u32 data = INSTANCE_BROADCAST_WRITES;

	if ((se_num == 0xffffffff) && (sh_num == 0xffffffff))
		data = SH_BROADCAST_WRITES | SE_BROADCAST_WRITES;
	else if (se_num == 0xffffffff)
		data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num);
	else if (sh_num == 0xffffffff)
		data |= SH_BROADCAST_WRITES | SE_INDEX(se_num);
	else
		data |= SH_INDEX(sh_num) | SE_INDEX(se_num);
	WREG32(GRBM_GFX_INDEX, data);
}

/**
 * cik_create_bitmask - create a bitmask
 *
 * @bit_width: length of the mask
 *
 * create a variable length bit mask (CIK).
 * Returns the bitmask.
 */
static u32 cik_create_bitmask(u32 bit_width)
{
	u32 i, mask = 0;

	for (i = 0; i < bit_width; i++) {
		mask <<= 1;
		mask |= 1;
	}
	return mask;
}

/**
 * cik_select_se_sh - select which SE, SH to address
 *
 * @rdev: radeon_device pointer
 * @max_rb_num: max RBs (render backends) for the asic
 * @se_num: number of SEs (shader engines) for the asic
 * @sh_per_se: number of SH blocks per SE for the asic
 *
 * Calculates the bitmask of disabled RBs (CIK).
 * Returns the disabled RB bitmask.
 */
static u32 cik_get_rb_disabled(struct radeon_device *rdev,
			      u32 max_rb_num, u32 se_num,
			      u32 sh_per_se)
{
	u32 data, mask;

	data = RREG32(CC_RB_BACKEND_DISABLE);
	if (data & 1)
		data &= BACKEND_DISABLE_MASK;
	else
		data = 0;
	data |= RREG32(GC_USER_RB_BACKEND_DISABLE);

	data >>= BACKEND_DISABLE_SHIFT;

	mask = cik_create_bitmask(max_rb_num / se_num / sh_per_se);

	return data & mask;
}

/**
 * cik_setup_rb - setup the RBs on the asic
 *
 * @rdev: radeon_device pointer
 * @se_num: number of SEs (shader engines) for the asic
 * @sh_per_se: number of SH blocks per SE for the asic
 * @max_rb_num: max RBs (render backends) for the asic
 *
 * Configures per-SE/SH RB registers (CIK).
 */
static void cik_setup_rb(struct radeon_device *rdev,
			 u32 se_num, u32 sh_per_se,
			 u32 max_rb_num)
{
	int i, j;
	u32 data, mask;
	u32 disabled_rbs = 0;
	u32 enabled_rbs = 0;

	for (i = 0; i < se_num; i++) {
		for (j = 0; j < sh_per_se; j++) {
			cik_select_se_sh(rdev, i, j);
			data = cik_get_rb_disabled(rdev, max_rb_num, se_num, sh_per_se);
			disabled_rbs |= data << ((i * sh_per_se + j) * CIK_RB_BITMAP_WIDTH_PER_SH);
		}
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);

	mask = 1;
	for (i = 0; i < max_rb_num; i++) {
		if (!(disabled_rbs & mask))
			enabled_rbs |= mask;
		mask <<= 1;
	}

	for (i = 0; i < se_num; i++) {
		cik_select_se_sh(rdev, i, 0xffffffff);
		data = 0;
		for (j = 0; j < sh_per_se; j++) {
			switch (enabled_rbs & 3) {
			case 1:
				data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2);
				break;
			case 2:
				data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2);
				break;
			case 3:
			default:
				data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2);
				break;
			}
			enabled_rbs >>= 2;
		}
		WREG32(PA_SC_RASTER_CONFIG, data);
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
}

/**
 * cik_gpu_init - setup the 3D engine
 *
 * @rdev: radeon_device pointer
 *
 * Configures the 3D engine and tiling configuration
 * registers so that the 3D engine is usable.
 */
static void cik_gpu_init(struct radeon_device *rdev)
{
	u32 gb_addr_config = RREG32(GB_ADDR_CONFIG);
	u32 mc_shared_chmap, mc_arb_ramcfg;
	u32 hdp_host_path_cntl;
	u32 tmp;
	int i, j;

	switch (rdev->family) {
	case CHIP_BONAIRE:
		rdev->config.cik.max_shader_engines = 2;
		rdev->config.cik.max_tile_pipes = 4;
		rdev->config.cik.max_cu_per_sh = 7;
		rdev->config.cik.max_sh_per_se = 1;
		rdev->config.cik.max_backends_per_se = 2;
		rdev->config.cik.max_texture_channel_caches = 4;
		rdev->config.cik.max_gprs = 256;
		rdev->config.cik.max_gs_threads = 32;
		rdev->config.cik.max_hw_contexts = 8;

		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
		rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
		break;
	case CHIP_KAVERI:
		/* TODO */
		break;
	case CHIP_KABINI:
	default:
		rdev->config.cik.max_shader_engines = 1;
		rdev->config.cik.max_tile_pipes = 2;
		rdev->config.cik.max_cu_per_sh = 2;
		rdev->config.cik.max_sh_per_se = 1;
		rdev->config.cik.max_backends_per_se = 1;
		rdev->config.cik.max_texture_channel_caches = 2;
		rdev->config.cik.max_gprs = 256;
		rdev->config.cik.max_gs_threads = 16;
		rdev->config.cik.max_hw_contexts = 8;

		rdev->config.cik.sc_prim_fifo_size_frontend = 0x20;
		rdev->config.cik.sc_prim_fifo_size_backend = 0x100;
		rdev->config.cik.sc_hiz_tile_fifo_size = 0x30;
		rdev->config.cik.sc_earlyz_tile_fifo_size = 0x130;
		gb_addr_config = BONAIRE_GB_ADDR_CONFIG_GOLDEN;
		break;
	}

	/* Initialize HDP */
	for (i = 0, j = 0; i < 32; i++, j += 0x18) {
		WREG32((0x2c14 + j), 0x00000000);
		WREG32((0x2c18 + j), 0x00000000);
		WREG32((0x2c1c + j), 0x00000000);
		WREG32((0x2c20 + j), 0x00000000);
		WREG32((0x2c24 + j), 0x00000000);
	}

	WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff));

	WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN);

	mc_shared_chmap = RREG32(MC_SHARED_CHMAP);
	mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG);

	rdev->config.cik.num_tile_pipes = rdev->config.cik.max_tile_pipes;
	rdev->config.cik.mem_max_burst_length_bytes = 256;
	tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT;
	rdev->config.cik.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024;
	if (rdev->config.cik.mem_row_size_in_kb > 4)
		rdev->config.cik.mem_row_size_in_kb = 4;
	/* XXX use MC settings? */
	rdev->config.cik.shader_engine_tile_size = 32;
	rdev->config.cik.num_gpus = 1;
	rdev->config.cik.multi_gpu_tile_size = 64;

	/* fix up row size */
	gb_addr_config &= ~ROW_SIZE_MASK;
	switch (rdev->config.cik.mem_row_size_in_kb) {
	case 1:
	default:
		gb_addr_config |= ROW_SIZE(0);
		break;
	case 2:
		gb_addr_config |= ROW_SIZE(1);
		break;
	case 4:
		gb_addr_config |= ROW_SIZE(2);
		break;
	}

	/* setup tiling info dword.  gb_addr_config is not adequate since it does
	 * not have bank info, so create a custom tiling dword.
	 * bits 3:0   num_pipes
	 * bits 7:4   num_banks
	 * bits 11:8  group_size
	 * bits 15:12 row_size
	 */
	rdev->config.cik.tile_config = 0;
	switch (rdev->config.cik.num_tile_pipes) {
	case 1:
		rdev->config.cik.tile_config |= (0 << 0);
		break;
	case 2:
		rdev->config.cik.tile_config |= (1 << 0);
		break;
	case 4:
		rdev->config.cik.tile_config |= (2 << 0);
		break;
	case 8:
	default:
		/* XXX what about 12? */
		rdev->config.cik.tile_config |= (3 << 0);
		break;
	}
	if ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT)
		rdev->config.cik.tile_config |= 1 << 4;
	else
		rdev->config.cik.tile_config |= 0 << 4;
	rdev->config.cik.tile_config |=
		((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8;
	rdev->config.cik.tile_config |=
		((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12;

	WREG32(GB_ADDR_CONFIG, gb_addr_config);
	WREG32(HDP_ADDR_CONFIG, gb_addr_config);
	WREG32(DMIF_ADDR_CALC, gb_addr_config);
	WREG32(SDMA0_TILING_CONFIG + SDMA0_REGISTER_OFFSET, gb_addr_config & 0x70);
	WREG32(SDMA0_TILING_CONFIG + SDMA1_REGISTER_OFFSET, gb_addr_config & 0x70);

	cik_tiling_mode_table_init(rdev);

	cik_setup_rb(rdev, rdev->config.cik.max_shader_engines,
		     rdev->config.cik.max_sh_per_se,
		     rdev->config.cik.max_backends_per_se);

	/* set HW defaults for 3D engine */
	WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60));

	WREG32(SX_DEBUG_1, 0x20);

	WREG32(TA_CNTL_AUX, 0x00010000);

	tmp = RREG32(SPI_CONFIG_CNTL);
	tmp |= 0x03000000;
	WREG32(SPI_CONFIG_CNTL, tmp);

	WREG32(SQ_CONFIG, 1);

	WREG32(DB_DEBUG, 0);

	tmp = RREG32(DB_DEBUG2) & ~0xf00fffff;
	tmp |= 0x00000400;
	WREG32(DB_DEBUG2, tmp);

	tmp = RREG32(DB_DEBUG3) & ~0x0002021c;
	tmp |= 0x00020200;
	WREG32(DB_DEBUG3, tmp);

	tmp = RREG32(CB_HW_CONTROL) & ~0x00010000;
	tmp |= 0x00018208;
	WREG32(CB_HW_CONTROL, tmp);

	WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4));

	WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_frontend) |
				 SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.cik.sc_prim_fifo_size_backend) |
				 SC_HIZ_TILE_FIFO_SIZE(rdev->config.cik.sc_hiz_tile_fifo_size) |
				 SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.cik.sc_earlyz_tile_fifo_size)));

	WREG32(VGT_NUM_INSTANCES, 1);

	WREG32(CP_PERFMON_CNTL, 0);

	WREG32(SQ_CONFIG, 0);

	WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) |
					  FORCE_EOV_MAX_REZ_CNT(255)));

	WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) |
	       AUTO_INVLD_EN(ES_AND_GS_AUTO));

	WREG32(VGT_GS_VERTEX_REUSE, 16);
	WREG32(PA_SC_LINE_STIPPLE_STATE, 0);

	tmp = RREG32(HDP_MISC_CNTL);
	tmp |= HDP_FLUSH_INVALIDATE_CACHE;
	WREG32(HDP_MISC_CNTL, tmp);

	hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL);
	WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl);

	WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3));
	WREG32(PA_SC_ENHANCE, ENABLE_PA_SC_OUT_OF_ORDER);

	udelay(50);
}

/*
 * GPU scratch registers helpers function.
 */
/**
 * cik_scratch_init - setup driver info for CP scratch regs
 *
 * @rdev: radeon_device pointer
 *
 * Set up the number and offset of the CP scratch registers.
 * NOTE: use of CP scratch registers is a legacy inferface and
 * is not used by default on newer asics (r6xx+).  On newer asics,
 * memory buffers are used for fences rather than scratch regs.
 */
static void cik_scratch_init(struct radeon_device *rdev)
{
	int i;

	rdev->scratch.num_reg = 7;
	rdev->scratch.reg_base = SCRATCH_REG0;
	for (i = 0; i < rdev->scratch.num_reg; i++) {
		rdev->scratch.free[i] = true;
		rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4);
	}
}

/**
 * cik_ring_test - basic gfx ring test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Allocate a scratch register and write to it using the gfx ring (CIK).
 * Provides a basic gfx ring test to verify that the ring is working.
 * Used by cik_cp_gfx_resume();
 * Returns 0 on success, error on failure.
 */
int cik_ring_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	uint32_t scratch;
	uint32_t tmp = 0;
	unsigned i;
	int r;

	r = radeon_scratch_get(rdev, &scratch);
	if (r) {
		DRM_ERROR("radeon: cp failed to get scratch reg (%d).\n", r);
		return r;
	}
	WREG32(scratch, 0xCAFEDEAD);
	r = radeon_ring_lock(rdev, ring, 3);
	if (r) {
		DRM_ERROR("radeon: cp failed to lock ring %d (%d).\n", ring->idx, r);
		radeon_scratch_free(rdev, scratch);
		return r;
	}
	radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
	radeon_ring_write(ring, ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2));
	radeon_ring_write(ring, 0xDEADBEEF);
	radeon_ring_unlock_commit(rdev, ring);
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = RREG32(scratch);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
	} else {
		DRM_ERROR("radeon: ring %d test failed (scratch(0x%04X)=0x%08X)\n",
			  ring->idx, scratch, tmp);
		r = -EINVAL;
	}
	radeon_scratch_free(rdev, scratch);
	return r;
}

/**
 * cik_fence_ring_emit - emit a fence on the gfx ring
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Emits a fence sequnce number on the gfx ring and flushes
 * GPU caches.
 */
void cik_fence_ring_emit(struct radeon_device *rdev,
			 struct radeon_fence *fence)
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;

	/* EVENT_WRITE_EOP - flush caches, send int */
	radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4));
	radeon_ring_write(ring, (EOP_TCL1_ACTION_EN |
				 EOP_TC_ACTION_EN |
				 EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) |
				 EVENT_INDEX(5)));
	radeon_ring_write(ring, addr & 0xfffffffc);
	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | DATA_SEL(1) | INT_SEL(2));
	radeon_ring_write(ring, fence->seq);
	radeon_ring_write(ring, 0);
	/* HDP flush */
	/* We should be using the new WAIT_REG_MEM special op packet here
	 * but it causes the CP to hang
	 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 0);
}

void cik_semaphore_ring_emit(struct radeon_device *rdev,
			     struct radeon_ring *ring,
			     struct radeon_semaphore *semaphore,
			     bool emit_wait)
{
	uint64_t addr = semaphore->gpu_addr;
	unsigned sel = emit_wait ? PACKET3_SEM_SEL_WAIT : PACKET3_SEM_SEL_SIGNAL;

	radeon_ring_write(ring, PACKET3(PACKET3_MEM_SEMAPHORE, 1));
	radeon_ring_write(ring, addr & 0xffffffff);
	radeon_ring_write(ring, (upper_32_bits(addr) & 0xffff) | sel);
}

/*
 * IB stuff
 */
/**
 * cik_ring_ib_execute - emit an IB (Indirect Buffer) on the gfx ring
 *
 * @rdev: radeon_device pointer
 * @ib: radeon indirect buffer object
 *
 * Emits an DE (drawing engine) or CE (constant engine) IB
 * on the gfx ring.  IBs are usually generated by userspace
 * acceleration drivers and submitted to the kernel for
 * sheduling on the ring.  This function schedules the IB
 * on the gfx ring for execution by the GPU.
 */
void cik_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib)
{
	struct radeon_ring *ring = &rdev->ring[ib->ring];
	u32 header, control = INDIRECT_BUFFER_VALID;

	if (ib->is_const_ib) {
		/* set switch buffer packet before const IB */
		radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0));
		radeon_ring_write(ring, 0);

		header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2);
	} else {
		u32 next_rptr;
		if (ring->rptr_save_reg) {
			next_rptr = ring->wptr + 3 + 4;
			radeon_ring_write(ring, PACKET3(PACKET3_SET_UCONFIG_REG, 1));
			radeon_ring_write(ring, ((ring->rptr_save_reg -
						  PACKET3_SET_UCONFIG_REG_START) >> 2));
			radeon_ring_write(ring, next_rptr);
		} else if (rdev->wb.enabled) {
			next_rptr = ring->wptr + 5 + 4;
			radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
			radeon_ring_write(ring, WRITE_DATA_DST_SEL(1));
			radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
			radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
			radeon_ring_write(ring, next_rptr);
		}

		header = PACKET3(PACKET3_INDIRECT_BUFFER, 2);
	}

	control |= ib->length_dw |
		(ib->vm ? (ib->vm->id << 24) : 0);

	radeon_ring_write(ring, header);
	radeon_ring_write(ring,
#ifdef __BIG_ENDIAN
			  (2 << 0) |
#endif
			  (ib->gpu_addr & 0xFFFFFFFC));
	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF);
	radeon_ring_write(ring, control);
}

/**
 * cik_ib_test - basic gfx ring IB test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Allocate an IB and execute it on the gfx ring (CIK).
 * Provides a basic gfx ring test to verify that IBs are working.
 * Returns 0 on success, error on failure.
 */
int cik_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	struct radeon_ib ib;
	uint32_t scratch;
	uint32_t tmp = 0;
	unsigned i;
	int r;

	r = radeon_scratch_get(rdev, &scratch);
	if (r) {
		DRM_ERROR("radeon: failed to get scratch reg (%d).\n", r);
		return r;
	}
	WREG32(scratch, 0xCAFEDEAD);
	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
	if (r) {
		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
		return r;
	}
	ib.ptr[0] = PACKET3(PACKET3_SET_UCONFIG_REG, 1);
	ib.ptr[1] = ((scratch - PACKET3_SET_UCONFIG_REG_START) >> 2);
	ib.ptr[2] = 0xDEADBEEF;
	ib.length_dw = 3;
	r = radeon_ib_schedule(rdev, &ib, NULL);
	if (r) {
		radeon_scratch_free(rdev, scratch);
		radeon_ib_free(rdev, &ib);
		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
		return r;
	}
	r = radeon_fence_wait(ib.fence, false);
	if (r) {
		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
		return r;
	}
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = RREG32(scratch);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
	} else {
		DRM_ERROR("radeon: ib test failed (scratch(0x%04X)=0x%08X)\n",
			  scratch, tmp);
		r = -EINVAL;
	}
	radeon_scratch_free(rdev, scratch);
	radeon_ib_free(rdev, &ib);
	return r;
}

/*
 * CP.
 * On CIK, gfx and compute now have independant command processors.
 *
 * GFX
 * Gfx consists of a single ring and can process both gfx jobs and
 * compute jobs.  The gfx CP consists of three microengines (ME):
 * PFP - Pre-Fetch Parser
 * ME - Micro Engine
 * CE - Constant Engine
 * The PFP and ME make up what is considered the Drawing Engine (DE).
 * The CE is an asynchronous engine used for updating buffer desciptors
 * used by the DE so that they can be loaded into cache in parallel
 * while the DE is processing state update packets.
 *
 * Compute
 * The compute CP consists of two microengines (ME):
 * MEC1 - Compute MicroEngine 1
 * MEC2 - Compute MicroEngine 2
 * Each MEC supports 4 compute pipes and each pipe supports 8 queues.
 * The queues are exposed to userspace and are programmed directly
 * by the compute runtime.
 */
/**
 * cik_cp_gfx_enable - enable/disable the gfx CP MEs
 *
 * @rdev: radeon_device pointer
 * @enable: enable or disable the MEs
 *
 * Halts or unhalts the gfx MEs.
 */
static void cik_cp_gfx_enable(struct radeon_device *rdev, bool enable)
{
	if (enable)
		WREG32(CP_ME_CNTL, 0);
	else {
		WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT));
		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
	}
	udelay(50);
}

/**
 * cik_cp_gfx_load_microcode - load the gfx CP ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the gfx PFP, ME, and CE ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_cp_gfx_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw)
		return -EINVAL;

	cik_cp_gfx_enable(rdev, false);

	/* PFP */
	fw_data = (const __be32 *)rdev->pfp_fw->data;
	WREG32(CP_PFP_UCODE_ADDR, 0);
	for (i = 0; i < CIK_PFP_UCODE_SIZE; i++)
		WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_PFP_UCODE_ADDR, 0);

	/* CE */
	fw_data = (const __be32 *)rdev->ce_fw->data;
	WREG32(CP_CE_UCODE_ADDR, 0);
	for (i = 0; i < CIK_CE_UCODE_SIZE; i++)
		WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_CE_UCODE_ADDR, 0);

	/* ME */
	fw_data = (const __be32 *)rdev->me_fw->data;
	WREG32(CP_ME_RAM_WADDR, 0);
	for (i = 0; i < CIK_ME_UCODE_SIZE; i++)
		WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_ME_RAM_WADDR, 0);

	WREG32(CP_PFP_UCODE_ADDR, 0);
	WREG32(CP_CE_UCODE_ADDR, 0);
	WREG32(CP_ME_RAM_WADDR, 0);
	WREG32(CP_ME_RAM_RADDR, 0);
	return 0;
}

/**
 * cik_cp_gfx_start - start the gfx ring
 *
 * @rdev: radeon_device pointer
 *
 * Enables the ring and loads the clear state context and other
 * packets required to init the ring.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_gfx_start(struct radeon_device *rdev)
{
	struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	int r, i;

	/* init the CP */
	WREG32(CP_MAX_CONTEXT, rdev->config.cik.max_hw_contexts - 1);
	WREG32(CP_ENDIAN_SWAP, 0);
	WREG32(CP_DEVICE_ID, 1);

	cik_cp_gfx_enable(rdev, true);

	r = radeon_ring_lock(rdev, ring, cik_default_size + 17);
	if (r) {
		DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r);
		return r;
	}

	/* init the CE partitions.  CE only used for gfx on CIK */
	radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2));
	radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE));
	radeon_ring_write(ring, 0xc000);
	radeon_ring_write(ring, 0xc000);

	/* setup clear context state */
	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE);

	radeon_ring_write(ring, PACKET3(PACKET3_CONTEXT_CONTROL, 1));
	radeon_ring_write(ring, 0x80000000);
	radeon_ring_write(ring, 0x80000000);

	for (i = 0; i < cik_default_size; i++)
		radeon_ring_write(ring, cik_default_state[i]);

	radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0));
	radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE);

	/* set clear context state */
	radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0));
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2));
	radeon_ring_write(ring, 0x00000316);
	radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */
	radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */

	radeon_ring_unlock_commit(rdev, ring);

	return 0;
}

/**
 * cik_cp_gfx_fini - stop the gfx ring
 *
 * @rdev: radeon_device pointer
 *
 * Stop the gfx ring and tear down the driver ring
 * info.
 */
static void cik_cp_gfx_fini(struct radeon_device *rdev)
{
	cik_cp_gfx_enable(rdev, false);
	radeon_ring_fini(rdev, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
}

/**
 * cik_cp_gfx_resume - setup the gfx ring buffer registers
 *
 * @rdev: radeon_device pointer
 *
 * Program the location and size of the gfx ring buffer
 * and test it to make sure it's working.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_gfx_resume(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	u32 tmp;
	u32 rb_bufsz;
	u64 rb_addr;
	int r;

	WREG32(CP_SEM_WAIT_TIMER, 0x0);
	WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0);

	/* Set the write pointer delay */
	WREG32(CP_RB_WPTR_DELAY, 0);

	/* set the RB to use vmid 0 */
	WREG32(CP_RB_VMID, 0);

	WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF);

	/* ring 0 - compute and gfx */
	/* Set ring buffer size */
	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	rb_bufsz = drm_order(ring->ring_size / 8);
	tmp = (drm_order(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz;
#ifdef __BIG_ENDIAN
	tmp |= BUF_SWAP_32BIT;
#endif
	WREG32(CP_RB0_CNTL, tmp);

	/* Initialize the ring buffer's read and write pointers */
	WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA);
	ring->wptr = 0;
	WREG32(CP_RB0_WPTR, ring->wptr);

	/* set the wb address wether it's enabled or not */
	WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC);
	WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF);

	/* scratch register shadowing is no longer supported */
	WREG32(SCRATCH_UMSK, 0);

	if (!rdev->wb.enabled)
		tmp |= RB_NO_UPDATE;

	mdelay(1);
	WREG32(CP_RB0_CNTL, tmp);

	rb_addr = ring->gpu_addr >> 8;
	WREG32(CP_RB0_BASE, rb_addr);
	WREG32(CP_RB0_BASE_HI, upper_32_bits(rb_addr));

	ring->rptr = RREG32(CP_RB0_RPTR);

	/* start the ring */
	cik_cp_gfx_start(rdev);
	rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true;
	r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]);
	if (r) {
		rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false;
		return r;
	}
	return 0;
}

/**
 * cik_cp_compute_enable - enable/disable the compute CP MEs
 *
 * @rdev: radeon_device pointer
 * @enable: enable or disable the MEs
 *
 * Halts or unhalts the compute MEs.
 */
static void cik_cp_compute_enable(struct radeon_device *rdev, bool enable)
{
	if (enable)
		WREG32(CP_MEC_CNTL, 0);
	else
		WREG32(CP_MEC_CNTL, (MEC_ME1_HALT | MEC_ME2_HALT));
	udelay(50);
}

/**
 * cik_cp_compute_load_microcode - load the compute CP ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the compute MEC1&2 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_cp_compute_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->mec_fw)
		return -EINVAL;

	cik_cp_compute_enable(rdev, false);

	/* MEC1 */
	fw_data = (const __be32 *)rdev->mec_fw->data;
	WREG32(CP_MEC_ME1_UCODE_ADDR, 0);
	for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
		WREG32(CP_MEC_ME1_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(CP_MEC_ME1_UCODE_ADDR, 0);

	if (rdev->family == CHIP_KAVERI) {
		/* MEC2 */
		fw_data = (const __be32 *)rdev->mec_fw->data;
		WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
		for (i = 0; i < CIK_MEC_UCODE_SIZE; i++)
			WREG32(CP_MEC_ME2_UCODE_DATA, be32_to_cpup(fw_data++));
		WREG32(CP_MEC_ME2_UCODE_ADDR, 0);
	}

	return 0;
}

/**
 * cik_cp_compute_start - start the compute queues
 *
 * @rdev: radeon_device pointer
 *
 * Enable the compute queues.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_compute_start(struct radeon_device *rdev)
{
	//todo
	return 0;
}

/**
 * cik_cp_compute_fini - stop the compute queues
 *
 * @rdev: radeon_device pointer
 *
 * Stop the compute queues and tear down the driver queue
 * info.
 */
static void cik_cp_compute_fini(struct radeon_device *rdev)
{
	cik_cp_compute_enable(rdev, false);
	//todo
}

/**
 * cik_cp_compute_resume - setup the compute queue registers
 *
 * @rdev: radeon_device pointer
 *
 * Program the compute queues and test them to make sure they
 * are working.
 * Returns 0 for success, error for failure.
 */
static int cik_cp_compute_resume(struct radeon_device *rdev)
{
	int r;

	//todo
	r = cik_cp_compute_start(rdev);
	if (r)
		return r;
	return 0;
}

/* XXX temporary wrappers to handle both compute and gfx */
/* XXX */
static void cik_cp_enable(struct radeon_device *rdev, bool enable)
{
	cik_cp_gfx_enable(rdev, enable);
	cik_cp_compute_enable(rdev, enable);
}

/* XXX */
static int cik_cp_load_microcode(struct radeon_device *rdev)
{
	int r;

	r = cik_cp_gfx_load_microcode(rdev);
	if (r)
		return r;
	r = cik_cp_compute_load_microcode(rdev);
	if (r)
		return r;

	return 0;
}

/* XXX */
static void cik_cp_fini(struct radeon_device *rdev)
{
	cik_cp_gfx_fini(rdev);
	cik_cp_compute_fini(rdev);
}

/* XXX */
static int cik_cp_resume(struct radeon_device *rdev)
{
	int r;

	/* Reset all cp blocks */
	WREG32(GRBM_SOFT_RESET, SOFT_RESET_CP);
	RREG32(GRBM_SOFT_RESET);
	mdelay(15);
	WREG32(GRBM_SOFT_RESET, 0);
	RREG32(GRBM_SOFT_RESET);

	r = cik_cp_load_microcode(rdev);
	if (r)
		return r;

	r = cik_cp_gfx_resume(rdev);
	if (r)
		return r;
	r = cik_cp_compute_resume(rdev);
	if (r)
		return r;

	return 0;
}

/*
 * sDMA - System DMA
 * Starting with CIK, the GPU has new asynchronous
 * DMA engines.  These engines are used for compute
 * and gfx.  There are two DMA engines (SDMA0, SDMA1)
 * and each one supports 1 ring buffer used for gfx
 * and 2 queues used for compute.
 *
 * The programming model is very similar to the CP
 * (ring buffer, IBs, etc.), but sDMA has it's own
 * packet format that is different from the PM4 format
 * used by the CP. sDMA supports copying data, writing
 * embedded data, solid fills, and a number of other
 * things.  It also has support for tiling/detiling of
 * buffers.
 */
/**
 * cik_sdma_ring_ib_execute - Schedule an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ib: IB object to schedule
 *
 * Schedule an IB in the DMA ring (CIK).
 */
void cik_sdma_ring_ib_execute(struct radeon_device *rdev,
			      struct radeon_ib *ib)
{
	struct radeon_ring *ring = &rdev->ring[ib->ring];
	u32 extra_bits = (ib->vm ? ib->vm->id : 0) & 0xf;

	if (rdev->wb.enabled) {
		u32 next_rptr = ring->wptr + 5;
		while ((next_rptr & 7) != 4)
			next_rptr++;
		next_rptr += 4;
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
		radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
		radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
		radeon_ring_write(ring, 1); /* number of DWs to follow */
		radeon_ring_write(ring, next_rptr);
	}

	/* IB packet must end on a 8 DW boundary */
	while ((ring->wptr & 7) != 4)
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
	radeon_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
	radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff);
	radeon_ring_write(ring, ib->length_dw);

}

/**
 * cik_sdma_fence_ring_emit - emit a fence on the DMA ring
 *
 * @rdev: radeon_device pointer
 * @fence: radeon fence object
 *
 * Add a DMA fence packet to the ring to write
 * the fence seq number and DMA trap packet to generate
 * an interrupt if needed (CIK).
 */
void cik_sdma_fence_ring_emit(struct radeon_device *rdev,
			      struct radeon_fence *fence)
{
	struct radeon_ring *ring = &rdev->ring[fence->ring];
	u64 addr = rdev->fence_drv[fence->ring].gpu_addr;
	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
	u32 ref_and_mask;

	if (fence->ring == R600_RING_TYPE_DMA_INDEX)
		ref_and_mask = SDMA0;
	else
		ref_and_mask = SDMA1;

	/* write the fence */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
	radeon_ring_write(ring, addr & 0xffffffff);
	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
	radeon_ring_write(ring, fence->seq);
	/* generate an interrupt */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
	/* flush HDP */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */
	radeon_ring_write(ring, ref_and_mask); /* MASK */
	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */
}

/**
 * cik_sdma_semaphore_ring_emit - emit a semaphore on the dma ring
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 * @semaphore: radeon semaphore object
 * @emit_wait: wait or signal semaphore
 *
 * Add a DMA semaphore packet to the ring wait on or signal
 * other rings (CIK).
 */
void cik_sdma_semaphore_ring_emit(struct radeon_device *rdev,
				  struct radeon_ring *ring,
				  struct radeon_semaphore *semaphore,
				  bool emit_wait)
{
	u64 addr = semaphore->gpu_addr;
	u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
	radeon_ring_write(ring, addr & 0xfffffff8);
	radeon_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
}

/**
 * cik_sdma_gfx_stop - stop the gfx async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the gfx async dma ring buffers (CIK).
 */
static void cik_sdma_gfx_stop(struct radeon_device *rdev)
{
	u32 rb_cntl, reg_offset;
	int i;

	radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size);

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		rb_cntl = RREG32(SDMA0_GFX_RB_CNTL + reg_offset);
		rb_cntl &= ~SDMA_RB_ENABLE;
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);
		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, 0);
	}
}

/**
 * cik_sdma_rlc_stop - stop the compute async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the compute async dma queues (CIK).
 */
static void cik_sdma_rlc_stop(struct radeon_device *rdev)
{
	/* XXX todo */
}

/**
 * cik_sdma_enable - stop the async dma engines
 *
 * @rdev: radeon_device pointer
 * @enable: enable/disable the DMA MEs.
 *
 * Halt or unhalt the async dma engines (CIK).
 */
static void cik_sdma_enable(struct radeon_device *rdev, bool enable)
{
	u32 me_cntl, reg_offset;
	int i;

	for (i = 0; i < 2; i++) {
		if (i == 0)
			reg_offset = SDMA0_REGISTER_OFFSET;
		else
			reg_offset = SDMA1_REGISTER_OFFSET;
		me_cntl = RREG32(SDMA0_ME_CNTL + reg_offset);
		if (enable)
			me_cntl &= ~SDMA_HALT;
		else
			me_cntl |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + reg_offset, me_cntl);
	}
}

/**
 * cik_sdma_gfx_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the gfx DMA ring buffers and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_gfx_resume(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	u32 rb_cntl, ib_cntl;
	u32 rb_bufsz;
	u32 reg_offset, wb_offset;
	int i, r;

	for (i = 0; i < 2; i++) {
		if (i == 0) {
			ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
			reg_offset = SDMA0_REGISTER_OFFSET;
			wb_offset = R600_WB_DMA_RPTR_OFFSET;
		} else {
			ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
			reg_offset = SDMA1_REGISTER_OFFSET;
			wb_offset = CAYMAN_WB_DMA1_RPTR_OFFSET;
		}

		WREG32(SDMA0_SEM_INCOMPLETE_TIMER_CNTL + reg_offset, 0);
		WREG32(SDMA0_SEM_WAIT_FAIL_TIMER_CNTL + reg_offset, 0);

		/* Set ring buffer size in dwords */
		rb_bufsz = drm_order(ring->ring_size / 4);
		rb_cntl = rb_bufsz << 1;
#ifdef __BIG_ENDIAN
		rb_cntl |= SDMA_RB_SWAP_ENABLE | SDMA_RPTR_WRITEBACK_SWAP_ENABLE;
#endif
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl);

		/* Initialize the ring buffer's read and write pointers */
		WREG32(SDMA0_GFX_RB_RPTR + reg_offset, 0);
		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, 0);

		/* set the wb address whether it's enabled or not */
		WREG32(SDMA0_GFX_RB_RPTR_ADDR_HI + reg_offset,
		       upper_32_bits(rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
		WREG32(SDMA0_GFX_RB_RPTR_ADDR_LO + reg_offset,
		       ((rdev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));

		if (rdev->wb.enabled)
			rb_cntl |= SDMA_RPTR_WRITEBACK_ENABLE;

		WREG32(SDMA0_GFX_RB_BASE + reg_offset, ring->gpu_addr >> 8);
		WREG32(SDMA0_GFX_RB_BASE_HI + reg_offset, ring->gpu_addr >> 40);

		ring->wptr = 0;
		WREG32(SDMA0_GFX_RB_WPTR + reg_offset, ring->wptr << 2);

		ring->rptr = RREG32(SDMA0_GFX_RB_RPTR + reg_offset) >> 2;

		/* enable DMA RB */
		WREG32(SDMA0_GFX_RB_CNTL + reg_offset, rb_cntl | SDMA_RB_ENABLE);

		ib_cntl = SDMA_IB_ENABLE;
#ifdef __BIG_ENDIAN
		ib_cntl |= SDMA_IB_SWAP_ENABLE;
#endif
		/* enable DMA IBs */
		WREG32(SDMA0_GFX_IB_CNTL + reg_offset, ib_cntl);

		ring->ready = true;

		r = radeon_ring_test(rdev, ring->idx, ring);
		if (r) {
			ring->ready = false;
			return r;
		}
	}

	radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size);

	return 0;
}

/**
 * cik_sdma_rlc_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the compute DMA queues and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_rlc_resume(struct radeon_device *rdev)
{
	/* XXX todo */
	return 0;
}

/**
 * cik_sdma_load_microcode - load the sDMA ME ucode
 *
 * @rdev: radeon_device pointer
 *
 * Loads the sDMA0/1 ucode.
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_sdma_load_microcode(struct radeon_device *rdev)
{
	const __be32 *fw_data;
	int i;

	if (!rdev->sdma_fw)
		return -EINVAL;

	/* stop the gfx rings and rlc compute queues */
	cik_sdma_gfx_stop(rdev);
	cik_sdma_rlc_stop(rdev);

	/* halt the MEs */
	cik_sdma_enable(rdev, false);

	/* sdma0 */
	fw_data = (const __be32 *)rdev->sdma_fw->data;
	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
		WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, be32_to_cpup(fw_data++));
	WREG32(SDMA0_UCODE_DATA + SDMA0_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);

	/* sdma1 */
	fw_data = (const __be32 *)rdev->sdma_fw->data;
	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
	for (i = 0; i < CIK_SDMA_UCODE_SIZE; i++)
		WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, be32_to_cpup(fw_data++));
	WREG32(SDMA0_UCODE_DATA + SDMA1_REGISTER_OFFSET, CIK_SDMA_UCODE_VERSION);

	WREG32(SDMA0_UCODE_ADDR + SDMA0_REGISTER_OFFSET, 0);
	WREG32(SDMA0_UCODE_ADDR + SDMA1_REGISTER_OFFSET, 0);
	return 0;
}

/**
 * cik_sdma_resume - setup and start the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Set up the DMA engines and enable them (CIK).
 * Returns 0 for success, error for failure.
 */
static int cik_sdma_resume(struct radeon_device *rdev)
{
	int r;

	/* Reset dma */
	WREG32(SRBM_SOFT_RESET, SOFT_RESET_SDMA | SOFT_RESET_SDMA1);
	RREG32(SRBM_SOFT_RESET);
	udelay(50);
	WREG32(SRBM_SOFT_RESET, 0);
	RREG32(SRBM_SOFT_RESET);

	r = cik_sdma_load_microcode(rdev);
	if (r)
		return r;

	/* unhalt the MEs */
	cik_sdma_enable(rdev, true);

	/* start the gfx rings and rlc compute queues */
	r = cik_sdma_gfx_resume(rdev);
	if (r)
		return r;
	r = cik_sdma_rlc_resume(rdev);
	if (r)
		return r;

	return 0;
}

/**
 * cik_sdma_fini - tear down the async dma engines
 *
 * @rdev: radeon_device pointer
 *
 * Stop the async dma engines and free the rings (CIK).
 */
static void cik_sdma_fini(struct radeon_device *rdev)
{
	/* stop the gfx rings and rlc compute queues */
	cik_sdma_gfx_stop(rdev);
	cik_sdma_rlc_stop(rdev);
	/* halt the MEs */
	cik_sdma_enable(rdev, false);
	radeon_ring_fini(rdev, &rdev->ring[R600_RING_TYPE_DMA_INDEX]);
	radeon_ring_fini(rdev, &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]);
	/* XXX - compute dma queue tear down */
}

/**
 * cik_copy_dma - copy pages using the DMA engine
 *
 * @rdev: radeon_device pointer
 * @src_offset: src GPU address
 * @dst_offset: dst GPU address
 * @num_gpu_pages: number of GPU pages to xfer
 * @fence: radeon fence object
 *
 * Copy GPU paging using the DMA engine (CIK).
 * Used by the radeon ttm implementation to move pages if
 * registered as the asic copy callback.
 */
int cik_copy_dma(struct radeon_device *rdev,
		 uint64_t src_offset, uint64_t dst_offset,
		 unsigned num_gpu_pages,
		 struct radeon_fence **fence)
{
	struct radeon_semaphore *sem = NULL;
	int ring_index = rdev->asic->copy.dma_ring_index;
	struct radeon_ring *ring = &rdev->ring[ring_index];
	u32 size_in_bytes, cur_size_in_bytes;
	int i, num_loops;
	int r = 0;

	r = radeon_semaphore_create(rdev, &sem);
	if (r) {
		DRM_ERROR("radeon: moving bo (%d).\n", r);
		return r;
	}

	size_in_bytes = (num_gpu_pages << RADEON_GPU_PAGE_SHIFT);
	num_loops = DIV_ROUND_UP(size_in_bytes, 0x1fffff);
	r = radeon_ring_lock(rdev, ring, num_loops * 7 + 14);
	if (r) {
		DRM_ERROR("radeon: moving bo (%d).\n", r);
		radeon_semaphore_free(rdev, &sem, NULL);
		return r;
	}

	if (radeon_fence_need_sync(*fence, ring->idx)) {
		radeon_semaphore_sync_rings(rdev, sem, (*fence)->ring,
					    ring->idx);
		radeon_fence_note_sync(*fence, ring->idx);
	} else {
		radeon_semaphore_free(rdev, &sem, NULL);
	}

	for (i = 0; i < num_loops; i++) {
		cur_size_in_bytes = size_in_bytes;
		if (cur_size_in_bytes > 0x1fffff)
			cur_size_in_bytes = 0x1fffff;
		size_in_bytes -= cur_size_in_bytes;
		radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0));
		radeon_ring_write(ring, cur_size_in_bytes);
		radeon_ring_write(ring, 0); /* src/dst endian swap */
		radeon_ring_write(ring, src_offset & 0xffffffff);
		radeon_ring_write(ring, upper_32_bits(src_offset) & 0xffffffff);
		radeon_ring_write(ring, dst_offset & 0xfffffffc);
		radeon_ring_write(ring, upper_32_bits(dst_offset) & 0xffffffff);
		src_offset += cur_size_in_bytes;
		dst_offset += cur_size_in_bytes;
	}

	r = radeon_fence_emit(rdev, fence, ring->idx);
	if (r) {
		radeon_ring_unlock_undo(rdev, ring);
		return r;
	}

	radeon_ring_unlock_commit(rdev, ring);
	radeon_semaphore_free(rdev, &sem, *fence);

	return r;
}

/**
 * cik_sdma_ring_test - simple async dma engine test
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test the DMA engine by writing using it to write an
 * value to memory. (CIK).
 * Returns 0 for success, error for failure.
 */
int cik_sdma_ring_test(struct radeon_device *rdev,
		       struct radeon_ring *ring)
{
	unsigned i;
	int r;
	void __iomem *ptr = (void *)rdev->vram_scratch.ptr;
	u32 tmp;

	if (!ptr) {
		DRM_ERROR("invalid vram scratch pointer\n");
		return -EINVAL;
	}

	tmp = 0xCAFEDEAD;
	writel(tmp, ptr);

	r = radeon_ring_lock(rdev, ring, 4);
	if (r) {
		DRM_ERROR("radeon: dma failed to lock ring %d (%d).\n", ring->idx, r);
		return r;
	}
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
	radeon_ring_write(ring, rdev->vram_scratch.gpu_addr & 0xfffffffc);
	radeon_ring_write(ring, upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff);
	radeon_ring_write(ring, 1); /* number of DWs to follow */
	radeon_ring_write(ring, 0xDEADBEEF);
	radeon_ring_unlock_commit(rdev, ring);

	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = readl(ptr);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}

	if (i < rdev->usec_timeout) {
		DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
	} else {
		DRM_ERROR("radeon: ring %d test failed (0x%08X)\n",
			  ring->idx, tmp);
		r = -EINVAL;
	}
	return r;
}

/**
 * cik_sdma_ib_test - test an IB on the DMA engine
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Test a simple IB in the DMA ring (CIK).
 * Returns 0 on success, error on failure.
 */
int cik_sdma_ib_test(struct radeon_device *rdev, struct radeon_ring *ring)
{
	struct radeon_ib ib;
	unsigned i;
	int r;
	void __iomem *ptr = (void *)rdev->vram_scratch.ptr;
	u32 tmp = 0;

	if (!ptr) {
		DRM_ERROR("invalid vram scratch pointer\n");
		return -EINVAL;
	}

	tmp = 0xCAFEDEAD;
	writel(tmp, ptr);

	r = radeon_ib_get(rdev, ring->idx, &ib, NULL, 256);
	if (r) {
		DRM_ERROR("radeon: failed to get ib (%d).\n", r);
		return r;
	}

	ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
	ib.ptr[1] = rdev->vram_scratch.gpu_addr & 0xfffffffc;
	ib.ptr[2] = upper_32_bits(rdev->vram_scratch.gpu_addr) & 0xffffffff;
	ib.ptr[3] = 1;
	ib.ptr[4] = 0xDEADBEEF;
	ib.length_dw = 5;

	r = radeon_ib_schedule(rdev, &ib, NULL);
	if (r) {
		radeon_ib_free(rdev, &ib);
		DRM_ERROR("radeon: failed to schedule ib (%d).\n", r);
		return r;
	}
	r = radeon_fence_wait(ib.fence, false);
	if (r) {
		DRM_ERROR("radeon: fence wait failed (%d).\n", r);
		return r;
	}
	for (i = 0; i < rdev->usec_timeout; i++) {
		tmp = readl(ptr);
		if (tmp == 0xDEADBEEF)
			break;
		DRM_UDELAY(1);
	}
	if (i < rdev->usec_timeout) {
		DRM_INFO("ib test on ring %d succeeded in %u usecs\n", ib.fence->ring, i);
	} else {
		DRM_ERROR("radeon: ib test failed (0x%08X)\n", tmp);
		r = -EINVAL;
	}
	radeon_ib_free(rdev, &ib);
	return r;
}


static void cik_print_gpu_status_regs(struct radeon_device *rdev)
{
	dev_info(rdev->dev, "  GRBM_STATUS=0x%08X\n",
		RREG32(GRBM_STATUS));
	dev_info(rdev->dev, "  GRBM_STATUS2=0x%08X\n",
		RREG32(GRBM_STATUS2));
	dev_info(rdev->dev, "  GRBM_STATUS_SE0=0x%08X\n",
		RREG32(GRBM_STATUS_SE0));
	dev_info(rdev->dev, "  GRBM_STATUS_SE1=0x%08X\n",
		RREG32(GRBM_STATUS_SE1));
	dev_info(rdev->dev, "  GRBM_STATUS_SE2=0x%08X\n",
		RREG32(GRBM_STATUS_SE2));
	dev_info(rdev->dev, "  GRBM_STATUS_SE3=0x%08X\n",
		RREG32(GRBM_STATUS_SE3));
	dev_info(rdev->dev, "  SRBM_STATUS=0x%08X\n",
		RREG32(SRBM_STATUS));
	dev_info(rdev->dev, "  SRBM_STATUS2=0x%08X\n",
		RREG32(SRBM_STATUS2));
	dev_info(rdev->dev, "  SDMA0_STATUS_REG   = 0x%08X\n",
		RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET));
	dev_info(rdev->dev, "  SDMA1_STATUS_REG   = 0x%08X\n",
		 RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET));
}

/**
 * cik_gpu_check_soft_reset - check which blocks are busy
 *
 * @rdev: radeon_device pointer
 *
 * Check which blocks are busy and return the relevant reset
 * mask to be used by cik_gpu_soft_reset().
 * Returns a mask of the blocks to be reset.
 */
static u32 cik_gpu_check_soft_reset(struct radeon_device *rdev)
{
	u32 reset_mask = 0;
	u32 tmp;

	/* GRBM_STATUS */
	tmp = RREG32(GRBM_STATUS);
	if (tmp & (PA_BUSY | SC_BUSY |
		   BCI_BUSY | SX_BUSY |
		   TA_BUSY | VGT_BUSY |
		   DB_BUSY | CB_BUSY |
		   GDS_BUSY | SPI_BUSY |
		   IA_BUSY | IA_BUSY_NO_DMA))
		reset_mask |= RADEON_RESET_GFX;

	if (tmp & (CP_BUSY | CP_COHERENCY_BUSY))
		reset_mask |= RADEON_RESET_CP;

	/* GRBM_STATUS2 */
	tmp = RREG32(GRBM_STATUS2);
	if (tmp & RLC_BUSY)
		reset_mask |= RADEON_RESET_RLC;

	/* SDMA0_STATUS_REG */
	tmp = RREG32(SDMA0_STATUS_REG + SDMA0_REGISTER_OFFSET);
	if (!(tmp & SDMA_IDLE))
		reset_mask |= RADEON_RESET_DMA;

	/* SDMA1_STATUS_REG */
	tmp = RREG32(SDMA0_STATUS_REG + SDMA1_REGISTER_OFFSET);
	if (!(tmp & SDMA_IDLE))
		reset_mask |= RADEON_RESET_DMA1;

	/* SRBM_STATUS2 */
	tmp = RREG32(SRBM_STATUS2);
	if (tmp & SDMA_BUSY)
		reset_mask |= RADEON_RESET_DMA;

	if (tmp & SDMA1_BUSY)
		reset_mask |= RADEON_RESET_DMA1;

	/* SRBM_STATUS */
	tmp = RREG32(SRBM_STATUS);

	if (tmp & IH_BUSY)
		reset_mask |= RADEON_RESET_IH;

	if (tmp & SEM_BUSY)
		reset_mask |= RADEON_RESET_SEM;

	if (tmp & GRBM_RQ_PENDING)
		reset_mask |= RADEON_RESET_GRBM;

	if (tmp & VMC_BUSY)
		reset_mask |= RADEON_RESET_VMC;

	if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY |
		   MCC_BUSY | MCD_BUSY))
		reset_mask |= RADEON_RESET_MC;

	if (evergreen_is_display_hung(rdev))
		reset_mask |= RADEON_RESET_DISPLAY;

	/* Skip MC reset as it's mostly likely not hung, just busy */
	if (reset_mask & RADEON_RESET_MC) {
		DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask);
		reset_mask &= ~RADEON_RESET_MC;
	}

	return reset_mask;
}

/**
 * cik_gpu_soft_reset - soft reset GPU
 *
 * @rdev: radeon_device pointer
 * @reset_mask: mask of which blocks to reset
 *
 * Soft reset the blocks specified in @reset_mask.
 */
static void cik_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask)
{
	struct evergreen_mc_save save;
	u32 grbm_soft_reset = 0, srbm_soft_reset = 0;
	u32 tmp;

	if (reset_mask == 0)
		return;

	dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask);

	cik_print_gpu_status_regs(rdev);
	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR));
	dev_info(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
		 RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS));

	/* stop the rlc */
	cik_rlc_stop(rdev);

	/* Disable GFX parsing/prefetching */
	WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT);

	/* Disable MEC parsing/prefetching */
	WREG32(CP_MEC_CNTL, MEC_ME1_HALT | MEC_ME2_HALT);

	if (reset_mask & RADEON_RESET_DMA) {
		/* sdma0 */
		tmp = RREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET);
		tmp |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + SDMA0_REGISTER_OFFSET, tmp);
	}
	if (reset_mask & RADEON_RESET_DMA1) {
		/* sdma1 */
		tmp = RREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET);
		tmp |= SDMA_HALT;
		WREG32(SDMA0_ME_CNTL + SDMA1_REGISTER_OFFSET, tmp);
	}

	evergreen_mc_stop(rdev, &save);
	if (evergreen_mc_wait_for_idle(rdev)) {
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}

	if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))
		grbm_soft_reset = SOFT_RESET_CP | SOFT_RESET_GFX;

	if (reset_mask & RADEON_RESET_CP) {
		grbm_soft_reset |= SOFT_RESET_CP;

		srbm_soft_reset |= SOFT_RESET_GRBM;
	}

	if (reset_mask & RADEON_RESET_DMA)
		srbm_soft_reset |= SOFT_RESET_SDMA;

	if (reset_mask & RADEON_RESET_DMA1)
		srbm_soft_reset |= SOFT_RESET_SDMA1;

	if (reset_mask & RADEON_RESET_DISPLAY)
		srbm_soft_reset |= SOFT_RESET_DC;

	if (reset_mask & RADEON_RESET_RLC)
		grbm_soft_reset |= SOFT_RESET_RLC;

	if (reset_mask & RADEON_RESET_SEM)
		srbm_soft_reset |= SOFT_RESET_SEM;

	if (reset_mask & RADEON_RESET_IH)
		srbm_soft_reset |= SOFT_RESET_IH;

	if (reset_mask & RADEON_RESET_GRBM)
		srbm_soft_reset |= SOFT_RESET_GRBM;

	if (reset_mask & RADEON_RESET_VMC)
		srbm_soft_reset |= SOFT_RESET_VMC;

	if (!(rdev->flags & RADEON_IS_IGP)) {
		if (reset_mask & RADEON_RESET_MC)
			srbm_soft_reset |= SOFT_RESET_MC;
	}

	if (grbm_soft_reset) {
		tmp = RREG32(GRBM_SOFT_RESET);
		tmp |= grbm_soft_reset;
		dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(GRBM_SOFT_RESET, tmp);
		tmp = RREG32(GRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~grbm_soft_reset;
		WREG32(GRBM_SOFT_RESET, tmp);
		tmp = RREG32(GRBM_SOFT_RESET);
	}

	if (srbm_soft_reset) {
		tmp = RREG32(SRBM_SOFT_RESET);
		tmp |= srbm_soft_reset;
		dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
		WREG32(SRBM_SOFT_RESET, tmp);
		tmp = RREG32(SRBM_SOFT_RESET);

		udelay(50);

		tmp &= ~srbm_soft_reset;
		WREG32(SRBM_SOFT_RESET, tmp);
		tmp = RREG32(SRBM_SOFT_RESET);
	}

	/* Wait a little for things to settle down */
	udelay(50);

	evergreen_mc_resume(rdev, &save);
	udelay(50);

	cik_print_gpu_status_regs(rdev);
}

/**
 * cik_asic_reset - soft reset GPU
 *
 * @rdev: radeon_device pointer
 *
 * Look up which blocks are hung and attempt
 * to reset them.
 * Returns 0 for success.
 */
int cik_asic_reset(struct radeon_device *rdev)
{
	u32 reset_mask;

	reset_mask = cik_gpu_check_soft_reset(rdev);

	if (reset_mask)
		r600_set_bios_scratch_engine_hung(rdev, true);

	cik_gpu_soft_reset(rdev, reset_mask);

	reset_mask = cik_gpu_check_soft_reset(rdev);

	if (!reset_mask)
		r600_set_bios_scratch_engine_hung(rdev, false);

	return 0;
}

/**
 * cik_gfx_is_lockup - check if the 3D engine is locked up
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Check if the 3D engine is locked up (CIK).
 * Returns true if the engine is locked, false if not.
 */
bool cik_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
	u32 reset_mask = cik_gpu_check_soft_reset(rdev);

	if (!(reset_mask & (RADEON_RESET_GFX |
			    RADEON_RESET_COMPUTE |
			    RADEON_RESET_CP))) {
		radeon_ring_lockup_update(ring);
		return false;
	}
	/* force CP activities */
	radeon_ring_force_activity(rdev, ring);
	return radeon_ring_test_lockup(rdev, ring);
}

/**
 * cik_sdma_is_lockup - Check if the DMA engine is locked up
 *
 * @rdev: radeon_device pointer
 * @ring: radeon_ring structure holding ring information
 *
 * Check if the async DMA engine is locked up (CIK).
 * Returns true if the engine appears to be locked up, false if not.
 */
bool cik_sdma_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring)
{
	u32 reset_mask = cik_gpu_check_soft_reset(rdev);
	u32 mask;

	if (ring->idx == R600_RING_TYPE_DMA_INDEX)
		mask = RADEON_RESET_DMA;
	else
		mask = RADEON_RESET_DMA1;

	if (!(reset_mask & mask)) {
		radeon_ring_lockup_update(ring);
		return false;
	}
	/* force ring activities */
	radeon_ring_force_activity(rdev, ring);
	return radeon_ring_test_lockup(rdev, ring);
}

/* MC */
/**
 * cik_mc_program - program the GPU memory controller
 *
 * @rdev: radeon_device pointer
 *
 * Set the location of vram, gart, and AGP in the GPU's
 * physical address space (CIK).
 */
static void cik_mc_program(struct radeon_device *rdev)
{
	struct evergreen_mc_save save;
	u32 tmp;
	int i, j;

	/* Initialize HDP */
	for (i = 0, j = 0; i < 32; i++, j += 0x18) {
		WREG32((0x2c14 + j), 0x00000000);
		WREG32((0x2c18 + j), 0x00000000);
		WREG32((0x2c1c + j), 0x00000000);
		WREG32((0x2c20 + j), 0x00000000);
		WREG32((0x2c24 + j), 0x00000000);
	}
	WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0);

	evergreen_mc_stop(rdev, &save);
	if (radeon_mc_wait_for_idle(rdev)) {
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}
	/* Lockout access through VGA aperture*/
	WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE);
	/* Update configuration */
	WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
	       rdev->mc.vram_start >> 12);
	WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
	       rdev->mc.vram_end >> 12);
	WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR,
	       rdev->vram_scratch.gpu_addr >> 12);
	tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16;
	tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF);
	WREG32(MC_VM_FB_LOCATION, tmp);
	/* XXX double check these! */
	WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8));
	WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30));
	WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF);
	WREG32(MC_VM_AGP_BASE, 0);
	WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF);
	WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF);
	if (radeon_mc_wait_for_idle(rdev)) {
		dev_warn(rdev->dev, "Wait for MC idle timedout !\n");
	}
	evergreen_mc_resume(rdev, &save);
	/* we need to own VRAM, so turn off the VGA renderer here
	 * to stop it overwriting our objects */
	rv515_vga_render_disable(rdev);
}

/**
 * cik_mc_init - initialize the memory controller driver params
 *
 * @rdev: radeon_device pointer
 *
 * Look up the amount of vram, vram width, and decide how to place
 * vram and gart within the GPU's physical address space (CIK).
 * Returns 0 for success.
 */
static int cik_mc_init(struct radeon_device *rdev)
{
	u32 tmp;
	int chansize, numchan;

	/* Get VRAM informations */
	rdev->mc.vram_is_ddr = true;
	tmp = RREG32(MC_ARB_RAMCFG);
	if (tmp & CHANSIZE_MASK) {
		chansize = 64;
	} else {
		chansize = 32;
	}
	tmp = RREG32(MC_SHARED_CHMAP);
	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
	case 0:
	default:
		numchan = 1;
		break;
	case 1:
		numchan = 2;
		break;
	case 2:
		numchan = 4;
		break;
	case 3:
		numchan = 8;
		break;
	case 4:
		numchan = 3;
		break;
	case 5:
		numchan = 6;
		break;
	case 6:
		numchan = 10;
		break;
	case 7:
		numchan = 12;
		break;
	case 8:
		numchan = 16;
		break;
	}
	rdev->mc.vram_width = numchan * chansize;
	/* Could aper size report 0 ? */
	rdev->mc.aper_base = pci_resource_start(rdev->pdev, 0);
	rdev->mc.aper_size = pci_resource_len(rdev->pdev, 0);
	/* size in MB on si */
	rdev->mc.mc_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
	rdev->mc.real_vram_size = RREG32(CONFIG_MEMSIZE) * 1024 * 1024;
	rdev->mc.visible_vram_size = rdev->mc.aper_size;
	si_vram_gtt_location(rdev, &rdev->mc);
	radeon_update_bandwidth_info(rdev);

	return 0;
}

/*
 * GART
 * VMID 0 is the physical GPU addresses as used by the kernel.
 * VMIDs 1-15 are used for userspace clients and are handled
 * by the radeon vm/hsa code.
 */
/**
 * cik_pcie_gart_tlb_flush - gart tlb flush callback
 *
 * @rdev: radeon_device pointer
 *
 * Flush the TLB for the VMID 0 page table (CIK).
 */
void cik_pcie_gart_tlb_flush(struct radeon_device *rdev)
{
	/* flush hdp cache */
	WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0);

	/* bits 0-15 are the VM contexts0-15 */
	WREG32(VM_INVALIDATE_REQUEST, 0x1);
}

/**
 * cik_pcie_gart_enable - gart enable
 *
 * @rdev: radeon_device pointer
 *
 * This sets up the TLBs, programs the page tables for VMID0,
 * sets up the hw for VMIDs 1-15 which are allocated on
 * demand, and sets up the global locations for the LDS, GDS,
 * and GPUVM for FSA64 clients (CIK).
 * Returns 0 for success, errors for failure.
 */
static int cik_pcie_gart_enable(struct radeon_device *rdev)
{
	int r, i;

	if (rdev->gart.robj == NULL) {
		dev_err(rdev->dev, "No VRAM object for PCIE GART.\n");
		return -EINVAL;
	}
	r = radeon_gart_table_vram_pin(rdev);
	if (r)
		return r;
	radeon_gart_restore(rdev);
	/* Setup TLB control */
	WREG32(MC_VM_MX_L1_TLB_CNTL,
	       (0xA << 7) |
	       ENABLE_L1_TLB |
	       SYSTEM_ACCESS_MODE_NOT_IN_SYS |
	       ENABLE_ADVANCED_DRIVER_MODEL |
	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
	/* Setup L2 cache */
	WREG32(VM_L2_CNTL, ENABLE_L2_CACHE |
	       ENABLE_L2_FRAGMENT_PROCESSING |
	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
	       EFFECTIVE_L2_QUEUE_SIZE(7) |
	       CONTEXT1_IDENTITY_ACCESS_MODE(1));
	WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE);
	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
	       L2_CACHE_BIGK_FRAGMENT_SIZE(6));
	/* setup context0 */
	WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12);
	WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12);
	WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12);
	WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR,
			(u32)(rdev->dummy_page.addr >> 12));
	WREG32(VM_CONTEXT0_CNTL2, 0);
	WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) |
				  RANGE_PROTECTION_FAULT_ENABLE_DEFAULT));

	WREG32(0x15D4, 0);
	WREG32(0x15D8, 0);
	WREG32(0x15DC, 0);

	/* empty context1-15 */
	/* FIXME start with 4G, once using 2 level pt switch to full
	 * vm size space
	 */
	/* set vm size, must be a multiple of 4 */
	WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0);
	WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn);
	for (i = 1; i < 16; i++) {
		if (i < 8)
			WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2),
			       rdev->gart.table_addr >> 12);
		else
			WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2),
			       rdev->gart.table_addr >> 12);
	}

	/* enable context1-15 */
	WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR,
	       (u32)(rdev->dummy_page.addr >> 12));
	WREG32(VM_CONTEXT1_CNTL2, 4);
	WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) |
				RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				RANGE_PROTECTION_FAULT_ENABLE_DEFAULT |
				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT |
				PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT |
				PDE0_PROTECTION_FAULT_ENABLE_DEFAULT |
				VALID_PROTECTION_FAULT_ENABLE_INTERRUPT |
				VALID_PROTECTION_FAULT_ENABLE_DEFAULT |
				READ_PROTECTION_FAULT_ENABLE_INTERRUPT |
				READ_PROTECTION_FAULT_ENABLE_DEFAULT |
				WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT |
				WRITE_PROTECTION_FAULT_ENABLE_DEFAULT);

	/* TC cache setup ??? */
	WREG32(TC_CFG_L1_LOAD_POLICY0, 0);
	WREG32(TC_CFG_L1_LOAD_POLICY1, 0);
	WREG32(TC_CFG_L1_STORE_POLICY, 0);

	WREG32(TC_CFG_L2_LOAD_POLICY0, 0);
	WREG32(TC_CFG_L2_LOAD_POLICY1, 0);
	WREG32(TC_CFG_L2_STORE_POLICY0, 0);
	WREG32(TC_CFG_L2_STORE_POLICY1, 0);
	WREG32(TC_CFG_L2_ATOMIC_POLICY, 0);

	WREG32(TC_CFG_L1_VOLATILE, 0);
	WREG32(TC_CFG_L2_VOLATILE, 0);

	if (rdev->family == CHIP_KAVERI) {
		u32 tmp = RREG32(CHUB_CONTROL);
		tmp &= ~BYPASS_VM;
		WREG32(CHUB_CONTROL, tmp);
	}

	/* XXX SH_MEM regs */
	/* where to put LDS, scratch, GPUVM in FSA64 space */
	for (i = 0; i < 16; i++) {
		WREG32(SRBM_GFX_CNTL, VMID(i));
		/* CP and shaders */
		WREG32(SH_MEM_CONFIG, 0);
		WREG32(SH_MEM_APE1_BASE, 1);
		WREG32(SH_MEM_APE1_LIMIT, 0);
		WREG32(SH_MEM_BASES, 0);
		/* SDMA GFX */
		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA0_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_APE1_CNTL + SDMA0_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_VIRTUAL_ADDR + SDMA1_REGISTER_OFFSET, 0);
		WREG32(SDMA0_GFX_APE1_CNTL + SDMA1_REGISTER_OFFSET, 0);
		/* XXX SDMA RLC - todo */
	}
	WREG32(SRBM_GFX_CNTL, 0);

	cik_pcie_gart_tlb_flush(rdev);
	DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n",
		 (unsigned)(rdev->mc.gtt_size >> 20),
		 (unsigned long long)rdev->gart.table_addr);
	rdev->gart.ready = true;
	return 0;
}

/**
 * cik_pcie_gart_disable - gart disable
 *
 * @rdev: radeon_device pointer
 *
 * This disables all VM page table (CIK).
 */
static void cik_pcie_gart_disable(struct radeon_device *rdev)
{
	/* Disable all tables */
	WREG32(VM_CONTEXT0_CNTL, 0);
	WREG32(VM_CONTEXT1_CNTL, 0);
	/* Setup TLB control */
	WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS |
	       SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU);
	/* Setup L2 cache */
	WREG32(VM_L2_CNTL,
	       ENABLE_L2_FRAGMENT_PROCESSING |
	       ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE |
	       ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE |
	       EFFECTIVE_L2_QUEUE_SIZE(7) |
	       CONTEXT1_IDENTITY_ACCESS_MODE(1));
	WREG32(VM_L2_CNTL2, 0);
	WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY |
	       L2_CACHE_BIGK_FRAGMENT_SIZE(6));
	radeon_gart_table_vram_unpin(rdev);
}

/**
 * cik_pcie_gart_fini - vm fini callback
 *
 * @rdev: radeon_device pointer
 *
 * Tears down the driver GART/VM setup (CIK).
 */
static void cik_pcie_gart_fini(struct radeon_device *rdev)
{
	cik_pcie_gart_disable(rdev);
	radeon_gart_table_vram_free(rdev);
	radeon_gart_fini(rdev);
}

/* vm parser */
/**
 * cik_ib_parse - vm ib_parse callback
 *
 * @rdev: radeon_device pointer
 * @ib: indirect buffer pointer
 *
 * CIK uses hw IB checking so this is a nop (CIK).
 */
int cik_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib)
{
	return 0;
}

/*
 * vm
 * VMID 0 is the physical GPU addresses as used by the kernel.
 * VMIDs 1-15 are used for userspace clients and are handled
 * by the radeon vm/hsa code.
 */
/**
 * cik_vm_init - cik vm init callback
 *
 * @rdev: radeon_device pointer
 *
 * Inits cik specific vm parameters (number of VMs, base of vram for
 * VMIDs 1-15) (CIK).
 * Returns 0 for success.
 */
int cik_vm_init(struct radeon_device *rdev)
{
	/* number of VMs */
	rdev->vm_manager.nvm = 16;
	/* base offset of vram pages */
	if (rdev->flags & RADEON_IS_IGP) {
		u64 tmp = RREG32(MC_VM_FB_OFFSET);
		tmp <<= 22;
		rdev->vm_manager.vram_base_offset = tmp;
	} else
		rdev->vm_manager.vram_base_offset = 0;

	return 0;
}

/**
 * cik_vm_fini - cik vm fini callback
 *
 * @rdev: radeon_device pointer
 *
 * Tear down any asic specific VM setup (CIK).
 */
void cik_vm_fini(struct radeon_device *rdev)
{
}

/**
 * cik_vm_flush - cik vm flush using the CP
 *
 * @rdev: radeon_device pointer
 *
 * Update the page table base and flush the VM TLB
 * using the CP (CIK).
 */
void cik_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
{
	struct radeon_ring *ring = &rdev->ring[ridx];

	if (vm == NULL)
		return;

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	if (vm->id < 8) {
		radeon_ring_write(ring,
				  (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
	} else {
		radeon_ring_write(ring,
				  (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
	}
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, vm->pd_gpu_addr >> 12);

	/* update SH_MEM_* regs */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, VMID(vm->id));

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 6));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SH_MEM_BASES >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, 0); /* SH_MEM_BASES */
	radeon_ring_write(ring, 0); /* SH_MEM_CONFIG */
	radeon_ring_write(ring, 1); /* SH_MEM_APE1_BASE */
	radeon_ring_write(ring, 0); /* SH_MEM_APE1_LIMIT */

	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, VMID(0));

	/* HDP flush */
	/* We should be using the WAIT_REG_MEM packet here like in
	 * cik_fence_ring_emit(), but it causes the CP to hang in this
	 * context...
	 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 0);

	/* bits 0-15 are the VM contexts0-15 */
	radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3));
	radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(0) |
				 WRITE_DATA_DST_SEL(0)));
	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
	radeon_ring_write(ring, 0);
	radeon_ring_write(ring, 1 << vm->id);

	/* sync PFP to ME, otherwise we might get invalid PFP reads */
	radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0));
	radeon_ring_write(ring, 0x0);
}

/**
 * cik_vm_set_page - update the page tables using sDMA
 *
 * @rdev: radeon_device pointer
 * @ib: indirect buffer to fill with commands
 * @pe: addr of the page entry
 * @addr: dst addr to write into pe
 * @count: number of page entries to update
 * @incr: increase next addr by incr bytes
 * @flags: access flags
 *
 * Update the page tables using CP or sDMA (CIK).
 */
void cik_vm_set_page(struct radeon_device *rdev,
		     struct radeon_ib *ib,
		     uint64_t pe,
		     uint64_t addr, unsigned count,
		     uint32_t incr, uint32_t flags)
{
	uint32_t r600_flags = cayman_vm_page_flags(rdev, flags);
	uint64_t value;
	unsigned ndw;

	if (rdev->asic->vm.pt_ring_index == RADEON_RING_TYPE_GFX_INDEX) {
		/* CP */
		while (count) {
			ndw = 2 + count * 2;
			if (ndw > 0x3FFE)
				ndw = 0x3FFE;

			ib->ptr[ib->length_dw++] = PACKET3(PACKET3_WRITE_DATA, ndw);
			ib->ptr[ib->length_dw++] = (WRITE_DATA_ENGINE_SEL(0) |
						    WRITE_DATA_DST_SEL(1));
			ib->ptr[ib->length_dw++] = pe;
			ib->ptr[ib->length_dw++] = upper_32_bits(pe);
			for (; ndw > 2; ndw -= 2, --count, pe += 8) {
				if (flags & RADEON_VM_PAGE_SYSTEM) {
					value = radeon_vm_map_gart(rdev, addr);
					value &= 0xFFFFFFFFFFFFF000ULL;
				} else if (flags & RADEON_VM_PAGE_VALID) {
					value = addr;
				} else {
					value = 0;
				}
				addr += incr;
				value |= r600_flags;
				ib->ptr[ib->length_dw++] = value;
				ib->ptr[ib->length_dw++] = upper_32_bits(value);
			}
		}
	} else {
		/* DMA */
		if (flags & RADEON_VM_PAGE_SYSTEM) {
			while (count) {
				ndw = count * 2;
				if (ndw > 0xFFFFE)
					ndw = 0xFFFFE;

				/* for non-physically contiguous pages (system) */
				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
				ib->ptr[ib->length_dw++] = pe;
				ib->ptr[ib->length_dw++] = upper_32_bits(pe);
				ib->ptr[ib->length_dw++] = ndw;
				for (; ndw > 0; ndw -= 2, --count, pe += 8) {
					if (flags & RADEON_VM_PAGE_SYSTEM) {
						value = radeon_vm_map_gart(rdev, addr);
						value &= 0xFFFFFFFFFFFFF000ULL;
					} else if (flags & RADEON_VM_PAGE_VALID) {
						value = addr;
					} else {
						value = 0;
					}
					addr += incr;
					value |= r600_flags;
					ib->ptr[ib->length_dw++] = value;
					ib->ptr[ib->length_dw++] = upper_32_bits(value);
				}
			}
		} else {
			while (count) {
				ndw = count;
				if (ndw > 0x7FFFF)
					ndw = 0x7FFFF;

				if (flags & RADEON_VM_PAGE_VALID)
					value = addr;
				else
					value = 0;
				/* for physically contiguous pages (vram) */
				ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
				ib->ptr[ib->length_dw++] = pe; /* dst addr */
				ib->ptr[ib->length_dw++] = upper_32_bits(pe);
				ib->ptr[ib->length_dw++] = r600_flags; /* mask */
				ib->ptr[ib->length_dw++] = 0;
				ib->ptr[ib->length_dw++] = value; /* value */
				ib->ptr[ib->length_dw++] = upper_32_bits(value);
				ib->ptr[ib->length_dw++] = incr; /* increment size */
				ib->ptr[ib->length_dw++] = 0;
				ib->ptr[ib->length_dw++] = ndw; /* number of entries */
				pe += ndw * 8;
				addr += ndw * incr;
				count -= ndw;
			}
		}
		while (ib->length_dw & 0x7)
			ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
	}
}

/**
 * cik_dma_vm_flush - cik vm flush using sDMA
 *
 * @rdev: radeon_device pointer
 *
 * Update the page table base and flush the VM TLB
 * using sDMA (CIK).
 */
void cik_dma_vm_flush(struct radeon_device *rdev, int ridx, struct radeon_vm *vm)
{
	struct radeon_ring *ring = &rdev->ring[ridx];
	u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
			  SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
	u32 ref_and_mask;

	if (vm == NULL)
		return;

	if (ridx == R600_RING_TYPE_DMA_INDEX)
		ref_and_mask = SDMA0;
	else
		ref_and_mask = SDMA1;

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	if (vm->id < 8) {
		radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm->id << 2)) >> 2);
	} else {
		radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm->id - 8) << 2)) >> 2);
	}
	radeon_ring_write(ring, vm->pd_gpu_addr >> 12);

	/* update SH_MEM_* regs */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, VMID(vm->id));

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_BASES >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_CONFIG >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_APE1_BASE >> 2);
	radeon_ring_write(ring, 1);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SH_MEM_APE1_LIMIT >> 2);
	radeon_ring_write(ring, 0);

	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, SRBM_GFX_CNTL >> 2);
	radeon_ring_write(ring, VMID(0));

	/* flush HDP */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
	radeon_ring_write(ring, GPU_HDP_FLUSH_DONE);
	radeon_ring_write(ring, GPU_HDP_FLUSH_REQ);
	radeon_ring_write(ring, ref_and_mask); /* REFERENCE */
	radeon_ring_write(ring, ref_and_mask); /* MASK */
	radeon_ring_write(ring, (4 << 16) | 10); /* RETRY_COUNT, POLL_INTERVAL */

	/* flush TLB */
	radeon_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
	radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2);
	radeon_ring_write(ring, 1 << vm->id);
}

/*
 * RLC
 * The RLC is a multi-purpose microengine that handles a
 * variety of functions, the most important of which is
 * the interrupt controller.
 */
/**
 * cik_rlc_stop - stop the RLC ME
 *
 * @rdev: radeon_device pointer
 *
 * Halt the RLC ME (MicroEngine) (CIK).
 */
static void cik_rlc_stop(struct radeon_device *rdev)
{
	int i, j, k;
	u32 mask, tmp;

	tmp = RREG32(CP_INT_CNTL_RING0);
	tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
	WREG32(CP_INT_CNTL_RING0, tmp);

	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);
	RREG32(CB_CGTT_SCLK_CTRL);

	tmp = RREG32(RLC_CGCG_CGLS_CTRL) & 0xfffffffc;
	WREG32(RLC_CGCG_CGLS_CTRL, tmp);

	WREG32(RLC_CNTL, 0);

	for (i = 0; i < rdev->config.cik.max_shader_engines; i++) {
		for (j = 0; j < rdev->config.cik.max_sh_per_se; j++) {
			cik_select_se_sh(rdev, i, j);
			for (k = 0; k < rdev->usec_timeout; k++) {
				if (RREG32(RLC_SERDES_CU_MASTER_BUSY) == 0)
					break;
				udelay(1);
			}
		}
	}
	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);

	mask = SE_MASTER_BUSY_MASK | GC_MASTER_BUSY | TC0_MASTER_BUSY | TC1_MASTER_BUSY;
	for (k = 0; k < rdev->usec_timeout; k++) {
		if ((RREG32(RLC_SERDES_NONCU_MASTER_BUSY) & mask) == 0)
			break;
		udelay(1);
	}
}

/**
 * cik_rlc_start - start the RLC ME
 *
 * @rdev: radeon_device pointer
 *
 * Unhalt the RLC ME (MicroEngine) (CIK).
 */
static void cik_rlc_start(struct radeon_device *rdev)
{
	u32 tmp;

	WREG32(RLC_CNTL, RLC_ENABLE);

	tmp = RREG32(CP_INT_CNTL_RING0);
	tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
	WREG32(CP_INT_CNTL_RING0, tmp);

	udelay(50);
}

/**
 * cik_rlc_resume - setup the RLC hw
 *
 * @rdev: radeon_device pointer
 *
 * Initialize the RLC registers, load the ucode,
 * and start the RLC (CIK).
 * Returns 0 for success, -EINVAL if the ucode is not available.
 */
static int cik_rlc_resume(struct radeon_device *rdev)
{
	u32 i, size;
	u32 clear_state_info[3];
	const __be32 *fw_data;

	if (!rdev->rlc_fw)
		return -EINVAL;

	switch (rdev->family) {
	case CHIP_BONAIRE:
	default:
		size = BONAIRE_RLC_UCODE_SIZE;
		break;
	case CHIP_KAVERI:
		size = KV_RLC_UCODE_SIZE;
		break;
	case CHIP_KABINI:
		size = KB_RLC_UCODE_SIZE;
		break;
	}

	cik_rlc_stop(rdev);

	WREG32(GRBM_SOFT_RESET, SOFT_RESET_RLC);
	RREG32(GRBM_SOFT_RESET);
	udelay(50);
	WREG32(GRBM_SOFT_RESET, 0);
	RREG32(GRBM_SOFT_RESET);
	udelay(50);

	WREG32(RLC_LB_CNTR_INIT, 0);
	WREG32(RLC_LB_CNTR_MAX, 0x00008000);

	cik_select_se_sh(rdev, 0xffffffff, 0xffffffff);
	WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff);
	WREG32(RLC_LB_PARAMS, 0x00600408);
	WREG32(RLC_LB_CNTL, 0x80000004);

	WREG32(RLC_MC_CNTL, 0);
	WREG32(RLC_UCODE_CNTL, 0);

	fw_data = (const __be32 *)rdev->rlc_fw->data;
		WREG32(RLC_GPM_UCODE_ADDR, 0);
	for (i = 0; i < size; i++)
		WREG32(RLC_GPM_UCODE_DATA, be32_to_cpup(fw_data++));
	WREG32(RLC_GPM_UCODE_ADDR, 0);

	/* XXX */
	clear_state_info[0] = 0;//upper_32_bits(rdev->rlc.save_restore_gpu_addr);
	clear_state_info[1] = 0;//rdev->rlc.save_restore_gpu_addr;
	clear_state_info[2] = 0;//cik_default_size;
	WREG32(RLC_GPM_SCRATCH_ADDR, 0x3d);
	for (i = 0; i < 3; i++)
		WREG32(RLC_GPM_SCRATCH_DATA, clear_state_info[i]);
	WREG32(RLC_DRIVER_DMA_STATUS, 0);

	cik_rlc_start(rdev);

	return 0;
}

/*
 * Interrupts
 * Starting with r6xx, interrupts are handled via a ring buffer.
 * Ring buffers are areas of GPU accessible memory that the GPU
 * writes interrupt vectors into and the host reads vectors out of.
 * There is a rptr (read pointer) that determines where the
 * host is currently reading, and a wptr (write pointer)
 * which determines where the GPU has written.  When the
 * pointers are equal, the ring is idle.  When the GPU
 * writes vectors to the ring buffer, it increments the
 * wptr.  When there is an interrupt, the host then starts
 * fetching commands and processing them until the pointers are
 * equal again at which point it updates the rptr.
 */

/**
 * cik_enable_interrupts - Enable the interrupt ring buffer
 *
 * @rdev: radeon_device pointer
 *
 * Enable the interrupt ring buffer (CIK).
 */
static void cik_enable_interrupts(struct radeon_device *rdev)
{
	u32 ih_cntl = RREG32(IH_CNTL);
	u32 ih_rb_cntl = RREG32(IH_RB_CNTL);

	ih_cntl |= ENABLE_INTR;
	ih_rb_cntl |= IH_RB_ENABLE;
	WREG32(IH_CNTL, ih_cntl);
	WREG32(IH_RB_CNTL, ih_rb_cntl);
	rdev->ih.enabled = true;
}

/**
 * cik_disable_interrupts - Disable the interrupt ring buffer
 *
 * @rdev: radeon_device pointer
 *
 * Disable the interrupt ring buffer (CIK).
 */
static void cik_disable_interrupts(struct radeon_device *rdev)
{
	u32 ih_rb_cntl = RREG32(IH_RB_CNTL);
	u32 ih_cntl = RREG32(IH_CNTL);

	ih_rb_cntl &= ~IH_RB_ENABLE;
	ih_cntl &= ~ENABLE_INTR;
	WREG32(IH_RB_CNTL, ih_rb_cntl);
	WREG32(IH_CNTL, ih_cntl);
	/* set rptr, wptr to 0 */
	WREG32(IH_RB_RPTR, 0);
	WREG32(IH_RB_WPTR, 0);
	rdev->ih.enabled = false;
	rdev->ih.rptr = 0;
}

/**
 * cik_disable_interrupt_state - Disable all interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Clear all interrupt enable bits used by the driver (CIK).
 */
static void cik_disable_interrupt_state(struct radeon_device *rdev)
{
	u32 tmp;

	/* gfx ring */
	WREG32(CP_INT_CNTL_RING0, CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE);
	/* sdma */
	tmp = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, tmp);
	tmp = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;
	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, tmp);
	/* compute queues */
	WREG32(CP_ME1_PIPE0_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE1_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE2_INT_CNTL, 0);
	WREG32(CP_ME1_PIPE3_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE0_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE1_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE2_INT_CNTL, 0);
	WREG32(CP_ME2_PIPE3_INT_CNTL, 0);
	/* grbm */
	WREG32(GRBM_INT_CNTL, 0);
	/* vline/vblank, etc. */
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, 0);
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, 0);
	if (rdev->num_crtc >= 4) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, 0);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, 0);
	}
	if (rdev->num_crtc >= 6) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, 0);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, 0);
	}

	/* dac hotplug */
	WREG32(DAC_AUTODETECT_INT_CONTROL, 0);

	/* digital hotplug */
	tmp = RREG32(DC_HPD1_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD1_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD2_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD2_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD3_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD3_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD4_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD4_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD5_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD5_INT_CONTROL, tmp);
	tmp = RREG32(DC_HPD6_INT_CONTROL) & DC_HPDx_INT_POLARITY;
	WREG32(DC_HPD6_INT_CONTROL, tmp);

}

/**
 * cik_irq_init - init and enable the interrupt ring
 *
 * @rdev: radeon_device pointer
 *
 * Allocate a ring buffer for the interrupt controller,
 * enable the RLC, disable interrupts, enable the IH
 * ring buffer and enable it (CIK).
 * Called at device load and reume.
 * Returns 0 for success, errors for failure.
 */
static int cik_irq_init(struct radeon_device *rdev)
{
	int ret = 0;
	int rb_bufsz;
	u32 interrupt_cntl, ih_cntl, ih_rb_cntl;

	/* allocate ring */
	ret = r600_ih_ring_alloc(rdev);
	if (ret)
		return ret;

	/* disable irqs */
	cik_disable_interrupts(rdev);

	/* init rlc */
	ret = cik_rlc_resume(rdev);
	if (ret) {
		r600_ih_ring_fini(rdev);
		return ret;
	}

	/* setup interrupt control */
	/* XXX this should actually be a bus address, not an MC address. same on older asics */
	WREG32(INTERRUPT_CNTL2, rdev->ih.gpu_addr >> 8);
	interrupt_cntl = RREG32(INTERRUPT_CNTL);
	/* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi
	 * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN
	 */
	interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE;
	/* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */
	interrupt_cntl &= ~IH_REQ_NONSNOOP_EN;
	WREG32(INTERRUPT_CNTL, interrupt_cntl);

	WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8);
	rb_bufsz = drm_order(rdev->ih.ring_size / 4);

	ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE |
		      IH_WPTR_OVERFLOW_CLEAR |
		      (rb_bufsz << 1));

	if (rdev->wb.enabled)
		ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE;

	/* set the writeback address whether it's enabled or not */
	WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC);
	WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF);

	WREG32(IH_RB_CNTL, ih_rb_cntl);

	/* set rptr, wptr to 0 */
	WREG32(IH_RB_RPTR, 0);
	WREG32(IH_RB_WPTR, 0);

	/* Default settings for IH_CNTL (disabled at first) */
	ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0);
	/* RPTR_REARM only works if msi's are enabled */
	if (rdev->msi_enabled)
		ih_cntl |= RPTR_REARM;
	WREG32(IH_CNTL, ih_cntl);

	/* force the active interrupt state to all disabled */
	cik_disable_interrupt_state(rdev);

	pci_set_master(rdev->pdev);

	/* enable irqs */
	cik_enable_interrupts(rdev);

	return ret;
}

/**
 * cik_irq_set - enable/disable interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Enable interrupt sources on the GPU (vblanks, hpd,
 * etc.) (CIK).
 * Returns 0 for success, errors for failure.
 */
int cik_irq_set(struct radeon_device *rdev)
{
	u32 cp_int_cntl = CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE |
		PRIV_INSTR_INT_ENABLE | PRIV_REG_INT_ENABLE;
	u32 crtc1 = 0, crtc2 = 0, crtc3 = 0, crtc4 = 0, crtc5 = 0, crtc6 = 0;
	u32 hpd1, hpd2, hpd3, hpd4, hpd5, hpd6;
	u32 grbm_int_cntl = 0;
	u32 dma_cntl, dma_cntl1;

	if (!rdev->irq.installed) {
		WARN(1, "Can't enable IRQ/MSI because no handler is installed\n");
		return -EINVAL;
	}
	/* don't enable anything if the ih is disabled */
	if (!rdev->ih.enabled) {
		cik_disable_interrupts(rdev);
		/* force the active interrupt state to all disabled */
		cik_disable_interrupt_state(rdev);
		return 0;
	}

	hpd1 = RREG32(DC_HPD1_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd2 = RREG32(DC_HPD2_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd3 = RREG32(DC_HPD3_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd4 = RREG32(DC_HPD4_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd5 = RREG32(DC_HPD5_INT_CONTROL) & ~DC_HPDx_INT_EN;
	hpd6 = RREG32(DC_HPD6_INT_CONTROL) & ~DC_HPDx_INT_EN;

	dma_cntl = RREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET) & ~TRAP_ENABLE;
	dma_cntl1 = RREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET) & ~TRAP_ENABLE;

	/* enable CP interrupts on all rings */
	if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int gfx\n");
		cp_int_cntl |= TIME_STAMP_INT_ENABLE;
	}
	/* TODO: compute queues! */
	/* CP_ME[1-2]_PIPE[0-3]_INT_CNTL */

	if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int dma\n");
		dma_cntl |= TRAP_ENABLE;
	}

	if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) {
		DRM_DEBUG("cik_irq_set: sw int dma1\n");
		dma_cntl1 |= TRAP_ENABLE;
	}

	if (rdev->irq.crtc_vblank_int[0] ||
	    atomic_read(&rdev->irq.pflip[0])) {
		DRM_DEBUG("cik_irq_set: vblank 0\n");
		crtc1 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[1] ||
	    atomic_read(&rdev->irq.pflip[1])) {
		DRM_DEBUG("cik_irq_set: vblank 1\n");
		crtc2 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[2] ||
	    atomic_read(&rdev->irq.pflip[2])) {
		DRM_DEBUG("cik_irq_set: vblank 2\n");
		crtc3 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[3] ||
	    atomic_read(&rdev->irq.pflip[3])) {
		DRM_DEBUG("cik_irq_set: vblank 3\n");
		crtc4 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[4] ||
	    atomic_read(&rdev->irq.pflip[4])) {
		DRM_DEBUG("cik_irq_set: vblank 4\n");
		crtc5 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.crtc_vblank_int[5] ||
	    atomic_read(&rdev->irq.pflip[5])) {
		DRM_DEBUG("cik_irq_set: vblank 5\n");
		crtc6 |= VBLANK_INTERRUPT_MASK;
	}
	if (rdev->irq.hpd[0]) {
		DRM_DEBUG("cik_irq_set: hpd 1\n");
		hpd1 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[1]) {
		DRM_DEBUG("cik_irq_set: hpd 2\n");
		hpd2 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[2]) {
		DRM_DEBUG("cik_irq_set: hpd 3\n");
		hpd3 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[3]) {
		DRM_DEBUG("cik_irq_set: hpd 4\n");
		hpd4 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[4]) {
		DRM_DEBUG("cik_irq_set: hpd 5\n");
		hpd5 |= DC_HPDx_INT_EN;
	}
	if (rdev->irq.hpd[5]) {
		DRM_DEBUG("cik_irq_set: hpd 6\n");
		hpd6 |= DC_HPDx_INT_EN;
	}

	WREG32(CP_INT_CNTL_RING0, cp_int_cntl);

	WREG32(SDMA0_CNTL + SDMA0_REGISTER_OFFSET, dma_cntl);
	WREG32(SDMA0_CNTL + SDMA1_REGISTER_OFFSET, dma_cntl1);

	WREG32(GRBM_INT_CNTL, grbm_int_cntl);

	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC0_REGISTER_OFFSET, crtc1);
	WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC1_REGISTER_OFFSET, crtc2);
	if (rdev->num_crtc >= 4) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC2_REGISTER_OFFSET, crtc3);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC3_REGISTER_OFFSET, crtc4);
	}
	if (rdev->num_crtc >= 6) {
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC4_REGISTER_OFFSET, crtc5);
		WREG32(LB_INTERRUPT_MASK + EVERGREEN_CRTC5_REGISTER_OFFSET, crtc6);
	}

	WREG32(DC_HPD1_INT_CONTROL, hpd1);
	WREG32(DC_HPD2_INT_CONTROL, hpd2);
	WREG32(DC_HPD3_INT_CONTROL, hpd3);
	WREG32(DC_HPD4_INT_CONTROL, hpd4);
	WREG32(DC_HPD5_INT_CONTROL, hpd5);
	WREG32(DC_HPD6_INT_CONTROL, hpd6);

	return 0;
}

/**
 * cik_irq_ack - ack interrupt sources
 *
 * @rdev: radeon_device pointer
 *
 * Ack interrupt sources on the GPU (vblanks, hpd,
 * etc.) (CIK).  Certain interrupts sources are sw
 * generated and do not require an explicit ack.
 */
static inline void cik_irq_ack(struct radeon_device *rdev)
{
	u32 tmp;

	rdev->irq.stat_regs.cik.disp_int = RREG32(DISP_INTERRUPT_STATUS);
	rdev->irq.stat_regs.cik.disp_int_cont = RREG32(DISP_INTERRUPT_STATUS_CONTINUE);
	rdev->irq.stat_regs.cik.disp_int_cont2 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE2);
	rdev->irq.stat_regs.cik.disp_int_cont3 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE3);
	rdev->irq.stat_regs.cik.disp_int_cont4 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE4);
	rdev->irq.stat_regs.cik.disp_int_cont5 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE5);
	rdev->irq.stat_regs.cik.disp_int_cont6 = RREG32(DISP_INTERRUPT_STATUS_CONTINUE6);

	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT)
		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VBLANK_ACK);
	if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT)
		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC0_REGISTER_OFFSET, VLINE_ACK);
	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT)
		WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VBLANK_ACK);
	if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT)
		WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC1_REGISTER_OFFSET, VLINE_ACK);

	if (rdev->num_crtc >= 4) {
		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC2_REGISTER_OFFSET, VLINE_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC3_REGISTER_OFFSET, VLINE_ACK);
	}

	if (rdev->num_crtc >= 6) {
		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC4_REGISTER_OFFSET, VLINE_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT)
			WREG32(LB_VBLANK_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VBLANK_ACK);
		if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT)
			WREG32(LB_VLINE_STATUS + EVERGREEN_CRTC5_REGISTER_OFFSET, VLINE_ACK);
	}

	if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
		tmp = RREG32(DC_HPD1_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD1_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
		tmp = RREG32(DC_HPD2_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD2_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
		tmp = RREG32(DC_HPD3_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD3_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
		tmp = RREG32(DC_HPD4_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD4_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
		tmp = RREG32(DC_HPD5_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD5_INT_CONTROL, tmp);
	}
	if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
		tmp = RREG32(DC_HPD5_INT_CONTROL);
		tmp |= DC_HPDx_INT_ACK;
		WREG32(DC_HPD6_INT_CONTROL, tmp);
	}
}

/**
 * cik_irq_disable - disable interrupts
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts on the hw (CIK).
 */
static void cik_irq_disable(struct radeon_device *rdev)
{
	cik_disable_interrupts(rdev);
	/* Wait and acknowledge irq */
	mdelay(1);
	cik_irq_ack(rdev);
	cik_disable_interrupt_state(rdev);
}

/**
 * cik_irq_disable - disable interrupts for suspend
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts and stop the RLC (CIK).
 * Used for suspend.
 */
static void cik_irq_suspend(struct radeon_device *rdev)
{
	cik_irq_disable(rdev);
	cik_rlc_stop(rdev);
}

/**
 * cik_irq_fini - tear down interrupt support
 *
 * @rdev: radeon_device pointer
 *
 * Disable interrupts on the hw and free the IH ring
 * buffer (CIK).
 * Used for driver unload.
 */
static void cik_irq_fini(struct radeon_device *rdev)
{
	cik_irq_suspend(rdev);
	r600_ih_ring_fini(rdev);
}

/**
 * cik_get_ih_wptr - get the IH ring buffer wptr
 *
 * @rdev: radeon_device pointer
 *
 * Get the IH ring buffer wptr from either the register
 * or the writeback memory buffer (CIK).  Also check for
 * ring buffer overflow and deal with it.
 * Used by cik_irq_process().
 * Returns the value of the wptr.
 */
static inline u32 cik_get_ih_wptr(struct radeon_device *rdev)
{
	u32 wptr, tmp;

	if (rdev->wb.enabled)
		wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]);
	else
		wptr = RREG32(IH_RB_WPTR);

	if (wptr & RB_OVERFLOW) {
		/* When a ring buffer overflow happen start parsing interrupt
		 * from the last not overwritten vector (wptr + 16). Hopefully
		 * this should allow us to catchup.
		 */
		dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, %d, %d)\n",
			wptr, rdev->ih.rptr, (wptr + 16) + rdev->ih.ptr_mask);
		rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask;
		tmp = RREG32(IH_RB_CNTL);
		tmp |= IH_WPTR_OVERFLOW_CLEAR;
		WREG32(IH_RB_CNTL, tmp);
	}
	return (wptr & rdev->ih.ptr_mask);
}

/*        CIK IV Ring
 * Each IV ring entry is 128 bits:
 * [7:0]    - interrupt source id
 * [31:8]   - reserved
 * [59:32]  - interrupt source data
 * [63:60]  - reserved
 * [71:64]  - RINGID
 *            CP:
 *            ME_ID [1:0], PIPE_ID[1:0], QUEUE_ID[2:0]
 *            QUEUE_ID - for compute, which of the 8 queues owned by the dispatcher
 *                     - for gfx, hw shader state (0=PS...5=LS, 6=CS)
 *            ME_ID - 0 = gfx, 1 = first 4 CS pipes, 2 = second 4 CS pipes
 *            PIPE_ID - ME0 0=3D
 *                    - ME1&2 compute dispatcher (4 pipes each)
 *            SDMA:
 *            INSTANCE_ID [1:0], QUEUE_ID[1:0]
 *            INSTANCE_ID - 0 = sdma0, 1 = sdma1
 *            QUEUE_ID - 0 = gfx, 1 = rlc0, 2 = rlc1
 * [79:72]  - VMID
 * [95:80]  - PASID
 * [127:96] - reserved
 */
/**
 * cik_irq_process - interrupt handler
 *
 * @rdev: radeon_device pointer
 *
 * Interrupt hander (CIK).  Walk the IH ring,
 * ack interrupts and schedule work to handle
 * interrupt events.
 * Returns irq process return code.
 */
int cik_irq_process(struct radeon_device *rdev)
{
	u32 wptr;
	u32 rptr;
	u32 src_id, src_data, ring_id;
	u8 me_id, pipe_id, queue_id;
	u32 ring_index;
	bool queue_hotplug = false;
	bool queue_reset = false;

	if (!rdev->ih.enabled || rdev->shutdown)
		return IRQ_NONE;

	wptr = cik_get_ih_wptr(rdev);

restart_ih:
	/* is somebody else already processing irqs? */
	if (atomic_xchg(&rdev->ih.lock, 1))
		return IRQ_NONE;

	rptr = rdev->ih.rptr;
	DRM_DEBUG("cik_irq_process start: rptr %d, wptr %d\n", rptr, wptr);

	/* Order reading of wptr vs. reading of IH ring data */
	rmb();

	/* display interrupts */
	cik_irq_ack(rdev);

	while (rptr != wptr) {
		/* wptr/rptr are in bytes! */
		ring_index = rptr / 4;
		src_id =  le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff;
		src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff;
		ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff;

		switch (src_id) {
		case 1: /* D1 vblank/vline */
			switch (src_data) {
			case 0: /* D1 vblank */
				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[0]) {
						drm_handle_vblank(rdev->ddev, 0);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[0]))
						radeon_crtc_handle_flip(rdev, 0);
					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D1 vblank\n");
				}
				break;
			case 1: /* D1 vline */
				if (rdev->irq.stat_regs.cik.disp_int & LB_D1_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int &= ~LB_D1_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D1 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 2: /* D2 vblank/vline */
			switch (src_data) {
			case 0: /* D2 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[1]) {
						drm_handle_vblank(rdev->ddev, 1);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[1]))
						radeon_crtc_handle_flip(rdev, 1);
					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D2 vblank\n");
				}
				break;
			case 1: /* D2 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont & LB_D2_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont &= ~LB_D2_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D2 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 3: /* D3 vblank/vline */
			switch (src_data) {
			case 0: /* D3 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[2]) {
						drm_handle_vblank(rdev->ddev, 2);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[2]))
						radeon_crtc_handle_flip(rdev, 2);
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D3 vblank\n");
				}
				break;
			case 1: /* D3 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & LB_D3_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~LB_D3_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D3 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 4: /* D4 vblank/vline */
			switch (src_data) {
			case 0: /* D4 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[3]) {
						drm_handle_vblank(rdev->ddev, 3);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[3]))
						radeon_crtc_handle_flip(rdev, 3);
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D4 vblank\n");
				}
				break;
			case 1: /* D4 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & LB_D4_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~LB_D4_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D4 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 5: /* D5 vblank/vline */
			switch (src_data) {
			case 0: /* D5 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[4]) {
						drm_handle_vblank(rdev->ddev, 4);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[4]))
						radeon_crtc_handle_flip(rdev, 4);
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D5 vblank\n");
				}
				break;
			case 1: /* D5 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & LB_D5_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~LB_D5_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D5 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 6: /* D6 vblank/vline */
			switch (src_data) {
			case 0: /* D6 vblank */
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VBLANK_INTERRUPT) {
					if (rdev->irq.crtc_vblank_int[5]) {
						drm_handle_vblank(rdev->ddev, 5);
						rdev->pm.vblank_sync = true;
						wake_up(&rdev->irq.vblank_queue);
					}
					if (atomic_read(&rdev->irq.pflip[5]))
						radeon_crtc_handle_flip(rdev, 5);
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VBLANK_INTERRUPT;
					DRM_DEBUG("IH: D6 vblank\n");
				}
				break;
			case 1: /* D6 vline */
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & LB_D6_VLINE_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~LB_D6_VLINE_INTERRUPT;
					DRM_DEBUG("IH: D6 vline\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 42: /* HPD hotplug */
			switch (src_data) {
			case 0:
				if (rdev->irq.stat_regs.cik.disp_int & DC_HPD1_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int &= ~DC_HPD1_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD1\n");
				}
				break;
			case 1:
				if (rdev->irq.stat_regs.cik.disp_int_cont & DC_HPD2_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont &= ~DC_HPD2_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD2\n");
				}
				break;
			case 2:
				if (rdev->irq.stat_regs.cik.disp_int_cont2 & DC_HPD3_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont2 &= ~DC_HPD3_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD3\n");
				}
				break;
			case 3:
				if (rdev->irq.stat_regs.cik.disp_int_cont3 & DC_HPD4_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont3 &= ~DC_HPD4_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD4\n");
				}
				break;
			case 4:
				if (rdev->irq.stat_regs.cik.disp_int_cont4 & DC_HPD5_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont4 &= ~DC_HPD5_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD5\n");
				}
				break;
			case 5:
				if (rdev->irq.stat_regs.cik.disp_int_cont5 & DC_HPD6_INTERRUPT) {
					rdev->irq.stat_regs.cik.disp_int_cont5 &= ~DC_HPD6_INTERRUPT;
					queue_hotplug = true;
					DRM_DEBUG("IH: HPD6\n");
				}
				break;
			default:
				DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
				break;
			}
			break;
		case 146:
		case 147:
			dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data);
			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_ADDR   0x%08X\n",
				RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR));
			dev_err(rdev->dev, "  VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n",
				RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS));
			/* reset addr and status */
			WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1);
			break;
		case 176: /* GFX RB CP_INT */
		case 177: /* GFX IB CP_INT */
			radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
			break;
		case 181: /* CP EOP event */
			DRM_DEBUG("IH: CP EOP\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
			switch (me_id) {
			case 0:
				radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX);
				break;
			case 1:
				/* XXX compute */
				break;
			case 2:
				/* XXX compute */
				break;
			}
			break;
		case 184: /* CP Privileged reg access */
			DRM_ERROR("Illegal register access in command stream\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
			switch (me_id) {
			case 0:
				/* This results in a full GPU reset, but all we need to do is soft
				 * reset the CP for gfx
				 */
				queue_reset = true;
				break;
			case 1:
				/* XXX compute */
				break;
			case 2:
				/* XXX compute */
				break;
			}
			break;
		case 185: /* CP Privileged inst */
			DRM_ERROR("Illegal instruction in command stream\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x60) >> 5;
			pipe_id = (ring_id & 0x18) >> 3;
			queue_id = (ring_id & 0x7) >> 0;
			switch (me_id) {
			case 0:
				/* This results in a full GPU reset, but all we need to do is soft
				 * reset the CP for gfx
				 */
				queue_reset = true;
				break;
			case 1:
				/* XXX compute */
				break;
			case 2:
				/* XXX compute */
				break;
			}
			break;
		case 224: /* SDMA trap event */
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x3) >> 0;
			queue_id = (ring_id & 0xc) >> 2;
			DRM_DEBUG("IH: SDMA trap\n");
			switch (me_id) {
			case 0:
				switch (queue_id) {
				case 0:
					radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX);
					break;
				case 1:
					/* XXX compute */
					break;
				case 2:
					/* XXX compute */
					break;
				}
				break;
			case 1:
				switch (queue_id) {
				case 0:
					radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
					break;
				case 1:
					/* XXX compute */
					break;
				case 2:
					/* XXX compute */
					break;
				}
				break;
			}
			break;
		case 241: /* SDMA Privileged inst */
		case 247: /* SDMA Privileged inst */
			DRM_ERROR("Illegal instruction in SDMA command stream\n");
			/* XXX check the bitfield order! */
			me_id = (ring_id & 0x3) >> 0;
			queue_id = (ring_id & 0xc) >> 2;
			switch (me_id) {
			case 0:
				switch (queue_id) {
				case 0:
					queue_reset = true;
					break;
				case 1:
					/* XXX compute */
					queue_reset = true;
					break;
				case 2:
					/* XXX compute */
					queue_reset = true;
					break;
				}
				break;
			case 1:
				switch (queue_id) {
				case 0:
					queue_reset = true;
					break;
				case 1:
					/* XXX compute */
					queue_reset = true;
					break;
				case 2:
					/* XXX compute */
					queue_reset = true;
					break;
				}
				break;
			}
			break;
		case 233: /* GUI IDLE */
			DRM_DEBUG("IH: GUI idle\n");
			break;
		default:
			DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data);
			break;
		}

		/* wptr/rptr are in bytes! */
		rptr += 16;
		rptr &= rdev->ih.ptr_mask;
	}
	if (queue_hotplug)
		schedule_work(&rdev->hotplug_work);
	if (queue_reset)
		schedule_work(&rdev->reset_work);
	rdev->ih.rptr = rptr;
	WREG32(IH_RB_RPTR, rdev->ih.rptr);
	atomic_set(&rdev->ih.lock, 0);

	/* make sure wptr hasn't changed while processing */
	wptr = cik_get_ih_wptr(rdev);
	if (wptr != rptr)
		goto restart_ih;

	return IRQ_HANDLED;
}

/*
 * startup/shutdown callbacks
 */
/**
 * cik_startup - program the asic to a functional state
 *
 * @rdev: radeon_device pointer
 *
 * Programs the asic to a functional state (CIK).
 * Called by cik_init() and cik_resume().
 * Returns 0 for success, error for failure.
 */
static int cik_startup(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	int r;

	if (rdev->flags & RADEON_IS_IGP) {
		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw ||
		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw) {
			r = cik_init_microcode(rdev);
			if (r) {
				DRM_ERROR("Failed to load firmware!\n");
				return r;
			}
		}
	} else {
		if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw ||
		    !rdev->mec_fw || !rdev->sdma_fw || !rdev->rlc_fw ||
		    !rdev->mc_fw) {
			r = cik_init_microcode(rdev);
			if (r) {
				DRM_ERROR("Failed to load firmware!\n");
				return r;
			}
		}

		r = ci_mc_load_microcode(rdev);
		if (r) {
			DRM_ERROR("Failed to load MC firmware!\n");
			return r;
		}
	}

	r = r600_vram_scratch_init(rdev);
	if (r)
		return r;

	cik_mc_program(rdev);
	r = cik_pcie_gart_enable(rdev);
	if (r)
		return r;
	cik_gpu_init(rdev);

	/* allocate rlc buffers */
	r = si_rlc_init(rdev);
	if (r) {
		DRM_ERROR("Failed to init rlc BOs!\n");
		return r;
	}

	/* allocate wb buffer */
	r = radeon_wb_init(rdev);
	if (r)
		return r;

	r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r);
		return r;
	}

	r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
		return r;
	}

	r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX);
	if (r) {
		dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r);
		return r;
	}

	/* Enable IRQ */
	if (!rdev->irq.installed) {
		r = radeon_irq_kms_init(rdev);
		if (r)
			return r;
	}

	r = cik_irq_init(rdev);
	if (r) {
		DRM_ERROR("radeon: IH init failed (%d).\n", r);
		radeon_irq_kms_fini(rdev);
		return r;
	}
	cik_irq_set(rdev);

	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET,
			     CP_RB0_RPTR, CP_RB0_WPTR,
			     0, 0xfffff, RADEON_CP_PACKET2);
	if (r)
		return r;

	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET,
			     SDMA0_GFX_RB_RPTR + SDMA0_REGISTER_OFFSET,
			     SDMA0_GFX_RB_WPTR + SDMA0_REGISTER_OFFSET,
			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	if (r)
		return r;

	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
	r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET,
			     SDMA0_GFX_RB_RPTR + SDMA1_REGISTER_OFFSET,
			     SDMA0_GFX_RB_WPTR + SDMA1_REGISTER_OFFSET,
			     2, 0xfffffffc, SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0));
	if (r)
		return r;

	r = cik_cp_resume(rdev);
	if (r)
		return r;

	r = cik_sdma_resume(rdev);
	if (r)
		return r;

	r = radeon_ib_pool_init(rdev);
	if (r) {
		dev_err(rdev->dev, "IB initialization failed (%d).\n", r);
		return r;
	}

	r = radeon_vm_manager_init(rdev);
	if (r) {
		dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r);
		return r;
	}

	return 0;
}

/**
 * cik_resume - resume the asic to a functional state
 *
 * @rdev: radeon_device pointer
 *
 * Programs the asic to a functional state (CIK).
 * Called at resume.
 * Returns 0 for success, error for failure.
 */
int cik_resume(struct radeon_device *rdev)
{
	int r;

	/* post card */
	atom_asic_init(rdev->mode_info.atom_context);

	rdev->accel_working = true;
	r = cik_startup(rdev);
	if (r) {
		DRM_ERROR("cik startup failed on resume\n");
		rdev->accel_working = false;
		return r;
	}

	return r;

}

/**
 * cik_suspend - suspend the asic
 *
 * @rdev: radeon_device pointer
 *
 * Bring the chip into a state suitable for suspend (CIK).
 * Called at suspend.
 * Returns 0 for success.
 */
int cik_suspend(struct radeon_device *rdev)
{
	radeon_vm_manager_fini(rdev);
	cik_cp_enable(rdev, false);
	cik_sdma_enable(rdev, false);
	cik_irq_suspend(rdev);
	radeon_wb_disable(rdev);
	cik_pcie_gart_disable(rdev);
	return 0;
}

/* Plan is to move initialization in that function and use
 * helper function so that radeon_device_init pretty much
 * do nothing more than calling asic specific function. This
 * should also allow to remove a bunch of callback function
 * like vram_info.
 */
/**
 * cik_init - asic specific driver and hw init
 *
 * @rdev: radeon_device pointer
 *
 * Setup asic specific driver variables and program the hw
 * to a functional state (CIK).
 * Called at driver startup.
 * Returns 0 for success, errors for failure.
 */
int cik_init(struct radeon_device *rdev)
{
	struct radeon_ring *ring;
	int r;

	/* Read BIOS */
	if (!radeon_get_bios(rdev)) {
		if (ASIC_IS_AVIVO(rdev))
			return -EINVAL;
	}
	/* Must be an ATOMBIOS */
	if (!rdev->is_atom_bios) {
		dev_err(rdev->dev, "Expecting atombios for cayman GPU\n");
		return -EINVAL;
	}
	r = radeon_atombios_init(rdev);
	if (r)
		return r;

	/* Post card if necessary */
	if (!radeon_card_posted(rdev)) {
		if (!rdev->bios) {
			dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n");
			return -EINVAL;
		}
		DRM_INFO("GPU not posted. posting now...\n");
		atom_asic_init(rdev->mode_info.atom_context);
	}
	/* Initialize scratch registers */
	cik_scratch_init(rdev);
	/* Initialize surface registers */
	radeon_surface_init(rdev);
	/* Initialize clocks */
	radeon_get_clock_info(rdev->ddev);

	/* Fence driver */
	r = radeon_fence_driver_init(rdev);
	if (r)
		return r;

	/* initialize memory controller */
	r = cik_mc_init(rdev);
	if (r)
		return r;
	/* Memory manager */
	r = radeon_bo_init(rdev);
	if (r)
		return r;

	ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 1024 * 1024);

	ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 256 * 1024);

	ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX];
	ring->ring_obj = NULL;
	r600_ring_init(rdev, ring, 256 * 1024);

	rdev->ih.ring_obj = NULL;
	r600_ih_ring_init(rdev, 64 * 1024);

	r = r600_pcie_gart_init(rdev);
	if (r)
		return r;

	rdev->accel_working = true;
	r = cik_startup(rdev);
	if (r) {
		dev_err(rdev->dev, "disabling GPU acceleration\n");
		cik_cp_fini(rdev);
		cik_sdma_fini(rdev);
		cik_irq_fini(rdev);
		si_rlc_fini(rdev);
		radeon_wb_fini(rdev);
		radeon_ib_pool_fini(rdev);
		radeon_vm_manager_fini(rdev);
		radeon_irq_kms_fini(rdev);
		cik_pcie_gart_fini(rdev);
		rdev->accel_working = false;
	}

	/* Don't start up if the MC ucode is missing.
	 * The default clocks and voltages before the MC ucode
	 * is loaded are not suffient for advanced operations.
	 */
	if (!rdev->mc_fw && !(rdev->flags & RADEON_IS_IGP)) {
		DRM_ERROR("radeon: MC ucode required for NI+.\n");
		return -EINVAL;
	}

	return 0;
}

/**
 * cik_fini - asic specific driver and hw fini
 *
 * @rdev: radeon_device pointer
 *
 * Tear down the asic specific driver variables and program the hw
 * to an idle state (CIK).
 * Called at driver unload.
 */
void cik_fini(struct radeon_device *rdev)
{
	cik_cp_fini(rdev);
	cik_sdma_fini(rdev);
	cik_irq_fini(rdev);
	si_rlc_fini(rdev);
	radeon_wb_fini(rdev);
	radeon_vm_manager_fini(rdev);
	radeon_ib_pool_fini(rdev);
	radeon_irq_kms_fini(rdev);
	cik_pcie_gart_fini(rdev);
	r600_vram_scratch_fini(rdev);
	radeon_gem_fini(rdev);
	radeon_fence_driver_fini(rdev);
	radeon_bo_fini(rdev);
	radeon_atombios_fini(rdev);
	kfree(rdev->bios);
	rdev->bios = NULL;
}

/* display watermark setup */
/**
 * dce8_line_buffer_adjust - Set up the line buffer
 *
 * @rdev: radeon_device pointer
 * @radeon_crtc: the selected display controller
 * @mode: the current display mode on the selected display
 * controller
 *
 * Setup up the line buffer allocation for
 * the selected display controller (CIK).
 * Returns the line buffer size in pixels.
 */
static u32 dce8_line_buffer_adjust(struct radeon_device *rdev,
				   struct radeon_crtc *radeon_crtc,
				   struct drm_display_mode *mode)
{
	u32 tmp;

	/*
	 * Line Buffer Setup
	 * There are 6 line buffers, one for each display controllers.
	 * There are 3 partitions per LB. Select the number of partitions
	 * to enable based on the display width.  For display widths larger
	 * than 4096, you need use to use 2 display controllers and combine
	 * them using the stereo blender.
	 */
	if (radeon_crtc->base.enabled && mode) {
		if (mode->crtc_hdisplay < 1920)
			tmp = 1;
		else if (mode->crtc_hdisplay < 2560)
			tmp = 2;
		else if (mode->crtc_hdisplay < 4096)
			tmp = 0;
		else {
			DRM_DEBUG_KMS("Mode too big for LB!\n");
			tmp = 0;
		}
	} else
		tmp = 1;

	WREG32(LB_MEMORY_CTRL + radeon_crtc->crtc_offset,
	       LB_MEMORY_CONFIG(tmp) | LB_MEMORY_SIZE(0x6B0));

	if (radeon_crtc->base.enabled && mode) {
		switch (tmp) {
		case 0:
		default:
			return 4096 * 2;
		case 1:
			return 1920 * 2;
		case 2:
			return 2560 * 2;
		}
	}

	/* controller not enabled, so no lb used */
	return 0;
}

/**
 * cik_get_number_of_dram_channels - get the number of dram channels
 *
 * @rdev: radeon_device pointer
 *
 * Look up the number of video ram channels (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the number of dram channels
 */
static u32 cik_get_number_of_dram_channels(struct radeon_device *rdev)
{
	u32 tmp = RREG32(MC_SHARED_CHMAP);

	switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) {
	case 0:
	default:
		return 1;
	case 1:
		return 2;
	case 2:
		return 4;
	case 3:
		return 8;
	case 4:
		return 3;
	case 5:
		return 6;
	case 6:
		return 10;
	case 7:
		return 12;
	case 8:
		return 16;
	}
}

struct dce8_wm_params {
	u32 dram_channels; /* number of dram channels */
	u32 yclk;          /* bandwidth per dram data pin in kHz */
	u32 sclk;          /* engine clock in kHz */
	u32 disp_clk;      /* display clock in kHz */
	u32 src_width;     /* viewport width */
	u32 active_time;   /* active display time in ns */
	u32 blank_time;    /* blank time in ns */
	bool interlaced;    /* mode is interlaced */
	fixed20_12 vsc;    /* vertical scale ratio */
	u32 num_heads;     /* number of active crtcs */
	u32 bytes_per_pixel; /* bytes per pixel display + overlay */
	u32 lb_size;       /* line buffer allocated to pipe */
	u32 vtaps;         /* vertical scaler taps */
};

/**
 * dce8_dram_bandwidth - get the dram bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the raw dram bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dram bandwidth in MBytes/s
 */
static u32 dce8_dram_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate raw DRAM Bandwidth */
	fixed20_12 dram_efficiency; /* 0.7 */
	fixed20_12 yclk, dram_channels, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	yclk.full = dfixed_const(wm->yclk);
	yclk.full = dfixed_div(yclk, a);
	dram_channels.full = dfixed_const(wm->dram_channels * 4);
	a.full = dfixed_const(10);
	dram_efficiency.full = dfixed_const(7);
	dram_efficiency.full = dfixed_div(dram_efficiency, a);
	bandwidth.full = dfixed_mul(dram_channels, yclk);
	bandwidth.full = dfixed_mul(bandwidth, dram_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_dram_bandwidth_for_display - get the dram bandwidth for display
 *
 * @wm: watermark calculation data
 *
 * Calculate the dram bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dram bandwidth for display in MBytes/s
 */
static u32 dce8_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
	/* Calculate DRAM Bandwidth and the part allocated to display. */
	fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */
	fixed20_12 yclk, dram_channels, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	yclk.full = dfixed_const(wm->yclk);
	yclk.full = dfixed_div(yclk, a);
	dram_channels.full = dfixed_const(wm->dram_channels * 4);
	a.full = dfixed_const(10);
	disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */
	disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a);
	bandwidth.full = dfixed_mul(dram_channels, yclk);
	bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_data_return_bandwidth - get the data return bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the data return bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the data return bandwidth in MBytes/s
 */
static u32 dce8_data_return_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the display Data return Bandwidth */
	fixed20_12 return_efficiency; /* 0.8 */
	fixed20_12 sclk, bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	sclk.full = dfixed_const(wm->sclk);
	sclk.full = dfixed_div(sclk, a);
	a.full = dfixed_const(10);
	return_efficiency.full = dfixed_const(8);
	return_efficiency.full = dfixed_div(return_efficiency, a);
	a.full = dfixed_const(32);
	bandwidth.full = dfixed_mul(a, sclk);
	bandwidth.full = dfixed_mul(bandwidth, return_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_dmif_request_bandwidth - get the dmif bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the dmif bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the dmif bandwidth in MBytes/s
 */
static u32 dce8_dmif_request_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the DMIF Request Bandwidth */
	fixed20_12 disp_clk_request_efficiency; /* 0.8 */
	fixed20_12 disp_clk, bandwidth;
	fixed20_12 a, b;

	a.full = dfixed_const(1000);
	disp_clk.full = dfixed_const(wm->disp_clk);
	disp_clk.full = dfixed_div(disp_clk, a);
	a.full = dfixed_const(32);
	b.full = dfixed_mul(a, disp_clk);

	a.full = dfixed_const(10);
	disp_clk_request_efficiency.full = dfixed_const(8);
	disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a);

	bandwidth.full = dfixed_mul(b, disp_clk_request_efficiency);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_available_bandwidth - get the min available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the min available bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the min available bandwidth in MBytes/s
 */
static u32 dce8_available_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the Available bandwidth. Display can use this temporarily but not in average. */
	u32 dram_bandwidth = dce8_dram_bandwidth(wm);
	u32 data_return_bandwidth = dce8_data_return_bandwidth(wm);
	u32 dmif_req_bandwidth = dce8_dmif_request_bandwidth(wm);

	return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth));
}

/**
 * dce8_average_bandwidth - get the average available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Calculate the average available bandwidth used for display (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the average available bandwidth in MBytes/s
 */
static u32 dce8_average_bandwidth(struct dce8_wm_params *wm)
{
	/* Calculate the display mode Average Bandwidth
	 * DisplayMode should contain the source and destination dimensions,
	 * timing, etc.
	 */
	fixed20_12 bpp;
	fixed20_12 line_time;
	fixed20_12 src_width;
	fixed20_12 bandwidth;
	fixed20_12 a;

	a.full = dfixed_const(1000);
	line_time.full = dfixed_const(wm->active_time + wm->blank_time);
	line_time.full = dfixed_div(line_time, a);
	bpp.full = dfixed_const(wm->bytes_per_pixel);
	src_width.full = dfixed_const(wm->src_width);
	bandwidth.full = dfixed_mul(src_width, bpp);
	bandwidth.full = dfixed_mul(bandwidth, wm->vsc);
	bandwidth.full = dfixed_div(bandwidth, line_time);

	return dfixed_trunc(bandwidth);
}

/**
 * dce8_latency_watermark - get the latency watermark
 *
 * @wm: watermark calculation data
 *
 * Calculate the latency watermark (CIK).
 * Used for display watermark bandwidth calculations
 * Returns the latency watermark in ns
 */
static u32 dce8_latency_watermark(struct dce8_wm_params *wm)
{
	/* First calculate the latency in ns */
	u32 mc_latency = 2000; /* 2000 ns. */
	u32 available_bandwidth = dce8_available_bandwidth(wm);
	u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth;
	u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth;
	u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */
	u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) +
		(wm->num_heads * cursor_line_pair_return_time);
	u32 latency = mc_latency + other_heads_data_return_time + dc_latency;
	u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time;
	u32 tmp, dmif_size = 12288;
	fixed20_12 a, b, c;

	if (wm->num_heads == 0)
		return 0;

	a.full = dfixed_const(2);
	b.full = dfixed_const(1);
	if ((wm->vsc.full > a.full) ||
	    ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) ||
	    (wm->vtaps >= 5) ||
	    ((wm->vsc.full >= a.full) && wm->interlaced))
		max_src_lines_per_dst_line = 4;
	else
		max_src_lines_per_dst_line = 2;

	a.full = dfixed_const(available_bandwidth);
	b.full = dfixed_const(wm->num_heads);
	a.full = dfixed_div(a, b);

	b.full = dfixed_const(mc_latency + 512);
	c.full = dfixed_const(wm->disp_clk);
	b.full = dfixed_div(b, c);

	c.full = dfixed_const(dmif_size);
	b.full = dfixed_div(c, b);

	tmp = min(dfixed_trunc(a), dfixed_trunc(b));

	b.full = dfixed_const(1000);
	c.full = dfixed_const(wm->disp_clk);
	b.full = dfixed_div(c, b);
	c.full = dfixed_const(wm->bytes_per_pixel);
	b.full = dfixed_mul(b, c);

	lb_fill_bw = min(tmp, dfixed_trunc(b));

	a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel);
	b.full = dfixed_const(1000);
	c.full = dfixed_const(lb_fill_bw);
	b.full = dfixed_div(c, b);
	a.full = dfixed_div(a, b);
	line_fill_time = dfixed_trunc(a);

	if (line_fill_time < wm->active_time)
		return latency;
	else
		return latency + (line_fill_time - wm->active_time);

}

/**
 * dce8_average_bandwidth_vs_dram_bandwidth_for_display - check
 * average and available dram bandwidth
 *
 * @wm: watermark calculation data
 *
 * Check if the display average bandwidth fits in the display
 * dram bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_average_bandwidth_vs_dram_bandwidth_for_display(struct dce8_wm_params *wm)
{
	if (dce8_average_bandwidth(wm) <=
	    (dce8_dram_bandwidth_for_display(wm) / wm->num_heads))
		return true;
	else
		return false;
}

/**
 * dce8_average_bandwidth_vs_available_bandwidth - check
 * average and available bandwidth
 *
 * @wm: watermark calculation data
 *
 * Check if the display average bandwidth fits in the display
 * available bandwidth (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_average_bandwidth_vs_available_bandwidth(struct dce8_wm_params *wm)
{
	if (dce8_average_bandwidth(wm) <=
	    (dce8_available_bandwidth(wm) / wm->num_heads))
		return true;
	else
		return false;
}

/**
 * dce8_check_latency_hiding - check latency hiding
 *
 * @wm: watermark calculation data
 *
 * Check latency hiding (CIK).
 * Used for display watermark bandwidth calculations
 * Returns true if the display fits, false if not.
 */
static bool dce8_check_latency_hiding(struct dce8_wm_params *wm)
{
	u32 lb_partitions = wm->lb_size / wm->src_width;
	u32 line_time = wm->active_time + wm->blank_time;
	u32 latency_tolerant_lines;
	u32 latency_hiding;
	fixed20_12 a;

	a.full = dfixed_const(1);
	if (wm->vsc.full > a.full)
		latency_tolerant_lines = 1;
	else {
		if (lb_partitions <= (wm->vtaps + 1))
			latency_tolerant_lines = 1;
		else
			latency_tolerant_lines = 2;
	}

	latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time);

	if (dce8_latency_watermark(wm) <= latency_hiding)
		return true;
	else
		return false;
}

/**
 * dce8_program_watermarks - program display watermarks
 *
 * @rdev: radeon_device pointer
 * @radeon_crtc: the selected display controller
 * @lb_size: line buffer size
 * @num_heads: number of display controllers in use
 *
 * Calculate and program the display watermarks for the
 * selected display controller (CIK).
 */
static void dce8_program_watermarks(struct radeon_device *rdev,
				    struct radeon_crtc *radeon_crtc,
				    u32 lb_size, u32 num_heads)
{
	struct drm_display_mode *mode = &radeon_crtc->base.mode;
	struct dce8_wm_params wm;
	u32 pixel_period;
	u32 line_time = 0;
	u32 latency_watermark_a = 0, latency_watermark_b = 0;
	u32 tmp, wm_mask;

	if (radeon_crtc->base.enabled && num_heads && mode) {
		pixel_period = 1000000 / (u32)mode->clock;
		line_time = min((u32)mode->crtc_htotal * pixel_period, (u32)65535);

		wm.yclk = rdev->pm.current_mclk * 10;
		wm.sclk = rdev->pm.current_sclk * 10;
		wm.disp_clk = mode->clock;
		wm.src_width = mode->crtc_hdisplay;
		wm.active_time = mode->crtc_hdisplay * pixel_period;
		wm.blank_time = line_time - wm.active_time;
		wm.interlaced = false;
		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
			wm.interlaced = true;
		wm.vsc = radeon_crtc->vsc;
		wm.vtaps = 1;
		if (radeon_crtc->rmx_type != RMX_OFF)
			wm.vtaps = 2;
		wm.bytes_per_pixel = 4; /* XXX: get this from fb config */
		wm.lb_size = lb_size;
		wm.dram_channels = cik_get_number_of_dram_channels(rdev);
		wm.num_heads = num_heads;

		/* set for high clocks */
		latency_watermark_a = min(dce8_latency_watermark(&wm), (u32)65535);
		/* set for low clocks */
		/* wm.yclk = low clk; wm.sclk = low clk */
		latency_watermark_b = min(dce8_latency_watermark(&wm), (u32)65535);

		/* possibly force display priority to high */
		/* should really do this at mode validation time... */
		if (!dce8_average_bandwidth_vs_dram_bandwidth_for_display(&wm) ||
		    !dce8_average_bandwidth_vs_available_bandwidth(&wm) ||
		    !dce8_check_latency_hiding(&wm) ||
		    (rdev->disp_priority == 2)) {
			DRM_DEBUG_KMS("force priority to high\n");
		}
	}

	/* select wm A */
	wm_mask = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset);
	tmp = wm_mask;
	tmp &= ~LATENCY_WATERMARK_MASK(3);
	tmp |= LATENCY_WATERMARK_MASK(1);
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp);
	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
	       (LATENCY_LOW_WATERMARK(latency_watermark_a) |
		LATENCY_HIGH_WATERMARK(line_time)));
	/* select wm B */
	tmp = RREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset);
	tmp &= ~LATENCY_WATERMARK_MASK(3);
	tmp |= LATENCY_WATERMARK_MASK(2);
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, tmp);
	WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset,
	       (LATENCY_LOW_WATERMARK(latency_watermark_b) |
		LATENCY_HIGH_WATERMARK(line_time)));
	/* restore original selection */
	WREG32(DPG_WATERMARK_MASK_CONTROL + radeon_crtc->crtc_offset, wm_mask);
}

/**
 * dce8_bandwidth_update - program display watermarks
 *
 * @rdev: radeon_device pointer
 *
 * Calculate and program the display watermarks and line
 * buffer allocation (CIK).
 */
void dce8_bandwidth_update(struct radeon_device *rdev)
{
	struct drm_display_mode *mode = NULL;
	u32 num_heads = 0, lb_size;
	int i;

	radeon_update_display_priority(rdev);

	for (i = 0; i < rdev->num_crtc; i++) {
		if (rdev->mode_info.crtcs[i]->base.enabled)
			num_heads++;
	}
	for (i = 0; i < rdev->num_crtc; i++) {
		mode = &rdev->mode_info.crtcs[i]->base.mode;
		lb_size = dce8_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode);
		dce8_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads);
	}
}

/**
 * cik_get_gpu_clock_counter - return GPU clock counter snapshot
 *
 * @rdev: radeon_device pointer
 *
 * Fetches a GPU clock counter snapshot (SI).
 * Returns the 64 bit clock counter snapshot.
 */
uint64_t cik_get_gpu_clock_counter(struct radeon_device *rdev)
{
	uint64_t clock;

	mutex_lock(&rdev->gpu_clock_mutex);
	WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1);
	clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) |
	        ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL);
	mutex_unlock(&rdev->gpu_clock_mutex);
	return clock;
}