/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include <drm/drmP.h>
#include <drm/drm_crtc_helper.h>
#include <drm/radeon_drm.h>
#include <drm/drm_fixed.h>
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
static void atombios_overscan_setup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
SET_CRTC_OVERSCAN_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_OverScan);
int a1, a2;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
switch (radeon_crtc->rmx_type) {
case RMX_CENTER:
args.usOverscanTop = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanBottom = (adjusted_mode->crtc_vdisplay - mode->crtc_vdisplay) / 2;
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - mode->crtc_hdisplay) / 2;
break;
case RMX_ASPECT:
a1 = mode->crtc_vdisplay * adjusted_mode->crtc_hdisplay;
a2 = adjusted_mode->crtc_vdisplay * mode->crtc_hdisplay;
if (a1 > a2) {
args.usOverscanLeft = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_hdisplay - (a2 / mode->crtc_vdisplay)) / 2;
} else if (a2 > a1) {
args.usOverscanLeft = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
args.usOverscanRight = (adjusted_mode->crtc_vdisplay - (a1 / mode->crtc_hdisplay)) / 2;
}
break;
case RMX_FULL:
default:
args.usOverscanRight = radeon_crtc->h_border;
args.usOverscanLeft = radeon_crtc->h_border;
args.usOverscanBottom = radeon_crtc->v_border;
args.usOverscanTop = radeon_crtc->v_border;
break;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_scaler_setup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
ENABLE_SCALER_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, EnableScaler);
/* fixme - fill in enc_priv for atom dac */
enum radeon_tv_std tv_std = TV_STD_NTSC;
bool is_tv = false, is_cv = false;
struct drm_encoder *encoder;
if (!ASIC_IS_AVIVO(rdev) && radeon_crtc->crtc_id)
return;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
/* find tv std */
if (encoder->crtc == crtc) {
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
if (radeon_encoder->active_device & ATOM_DEVICE_TV_SUPPORT) {
struct radeon_encoder_atom_dac *tv_dac = radeon_encoder->enc_priv;
tv_std = tv_dac->tv_std;
is_tv = true;
}
}
}
memset(&args, 0, sizeof(args));
args.ucScaler = radeon_crtc->crtc_id;
if (is_tv) {
switch (tv_std) {
case TV_STD_NTSC:
default:
args.ucTVStandard = ATOM_TV_NTSC;
break;
case TV_STD_PAL:
args.ucTVStandard = ATOM_TV_PAL;
break;
case TV_STD_PAL_M:
args.ucTVStandard = ATOM_TV_PALM;
break;
case TV_STD_PAL_60:
args.ucTVStandard = ATOM_TV_PAL60;
break;
case TV_STD_NTSC_J:
args.ucTVStandard = ATOM_TV_NTSCJ;
break;
case TV_STD_SCART_PAL:
args.ucTVStandard = ATOM_TV_PAL; /* ??? */
break;
case TV_STD_SECAM:
args.ucTVStandard = ATOM_TV_SECAM;
break;
case TV_STD_PAL_CN:
args.ucTVStandard = ATOM_TV_PALCN;
break;
}
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else if (is_cv) {
args.ucTVStandard = ATOM_TV_CV;
args.ucEnable = SCALER_ENABLE_MULTITAP_MODE;
} else {
switch (radeon_crtc->rmx_type) {
case RMX_FULL:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
case RMX_CENTER:
args.ucEnable = ATOM_SCALER_CENTER;
break;
case RMX_ASPECT:
args.ucEnable = ATOM_SCALER_EXPANSION;
break;
default:
if (ASIC_IS_AVIVO(rdev))
args.ucEnable = ATOM_SCALER_DISABLE;
else
args.ucEnable = ATOM_SCALER_CENTER;
break;
}
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
if ((is_tv || is_cv)
&& rdev->family >= CHIP_RV515 && rdev->family <= CHIP_R580) {
atom_rv515_force_tv_scaler(rdev, radeon_crtc);
}
}
static void atombios_lock_crtc(struct drm_crtc *crtc, int lock)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index =
GetIndexIntoMasterTable(COMMAND, UpdateCRTC_DoubleBufferRegisters);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = lock;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_enable_crtc(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, EnableCRTC);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_enable_crtc_memreq(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, EnableCRTCMemReq);
ENABLE_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucEnable = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_blank_crtc(struct drm_crtc *crtc, int state)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int index = GetIndexIntoMasterTable(COMMAND, BlankCRTC);
BLANK_CRTC_PS_ALLOCATION args;
memset(&args, 0, sizeof(args));
args.ucCRTC = radeon_crtc->crtc_id;
args.ucBlanking = state;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void atombios_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
switch (mode) {
case DRM_MODE_DPMS_ON:
radeon_crtc->enabled = true;
/* adjust pm to dpms changes BEFORE enabling crtcs */
radeon_pm_compute_clocks(rdev);
atombios_enable_crtc(crtc, ATOM_ENABLE);
if (ASIC_IS_DCE3(rdev))
atombios_enable_crtc_memreq(crtc, ATOM_ENABLE);
atombios_blank_crtc(crtc, ATOM_DISABLE);
drm_vblank_post_modeset(dev, radeon_crtc->crtc_id);
radeon_crtc_load_lut(crtc);
break;
case DRM_MODE_DPMS_STANDBY:
case DRM_MODE_DPMS_SUSPEND:
case DRM_MODE_DPMS_OFF:
drm_vblank_pre_modeset(dev, radeon_crtc->crtc_id);
atombios_blank_crtc(crtc, ATOM_ENABLE);
if (ASIC_IS_DCE3(rdev))
atombios_enable_crtc_memreq(crtc, ATOM_DISABLE);
atombios_enable_crtc(crtc, ATOM_DISABLE);
radeon_crtc->enabled = false;
/* adjust pm to dpms changes AFTER disabling crtcs */
radeon_pm_compute_clocks(rdev);
break;
}
}
static void
atombios_set_crtc_dtd_timing(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
SET_CRTC_USING_DTD_TIMING_PARAMETERS args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_UsingDTDTiming);
u16 misc = 0;
memset(&args, 0, sizeof(args));
args.usH_Size = cpu_to_le16(mode->crtc_hdisplay - (radeon_crtc->h_border * 2));
args.usH_Blanking_Time =
cpu_to_le16(mode->crtc_hblank_end - mode->crtc_hdisplay + (radeon_crtc->h_border * 2));
args.usV_Size = cpu_to_le16(mode->crtc_vdisplay - (radeon_crtc->v_border * 2));
args.usV_Blanking_Time =
cpu_to_le16(mode->crtc_vblank_end - mode->crtc_vdisplay + (radeon_crtc->v_border * 2));
args.usH_SyncOffset =
cpu_to_le16(mode->crtc_hsync_start - mode->crtc_hdisplay + radeon_crtc->h_border);
args.usH_SyncWidth =
cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start);
args.usV_SyncOffset =
cpu_to_le16(mode->crtc_vsync_start - mode->crtc_vdisplay + radeon_crtc->v_border);
args.usV_SyncWidth =
cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start);
args.ucH_Border = radeon_crtc->h_border;
args.ucV_Border = radeon_crtc->v_border;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= ATOM_VSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= ATOM_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_CSYNC)
misc |= ATOM_COMPOSITESYNC;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
misc |= ATOM_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
misc |= ATOM_DOUBLE_CLOCK_MODE;
args.susModeMiscInfo.usAccess = cpu_to_le16(misc);
args.ucCRTC = radeon_crtc->crtc_id;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_crtc_set_timing(struct drm_crtc *crtc,
struct drm_display_mode *mode)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetCRTC_Timing);
u16 misc = 0;
memset(&args, 0, sizeof(args));
args.usH_Total = cpu_to_le16(mode->crtc_htotal);
args.usH_Disp = cpu_to_le16(mode->crtc_hdisplay);
args.usH_SyncStart = cpu_to_le16(mode->crtc_hsync_start);
args.usH_SyncWidth =
cpu_to_le16(mode->crtc_hsync_end - mode->crtc_hsync_start);
args.usV_Total = cpu_to_le16(mode->crtc_vtotal);
args.usV_Disp = cpu_to_le16(mode->crtc_vdisplay);
args.usV_SyncStart = cpu_to_le16(mode->crtc_vsync_start);
args.usV_SyncWidth =
cpu_to_le16(mode->crtc_vsync_end - mode->crtc_vsync_start);
args.ucOverscanRight = radeon_crtc->h_border;
args.ucOverscanLeft = radeon_crtc->h_border;
args.ucOverscanBottom = radeon_crtc->v_border;
args.ucOverscanTop = radeon_crtc->v_border;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= ATOM_VSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= ATOM_HSYNC_POLARITY;
if (mode->flags & DRM_MODE_FLAG_CSYNC)
misc |= ATOM_COMPOSITESYNC;
if (mode->flags & DRM_MODE_FLAG_INTERLACE)
misc |= ATOM_INTERLACE;
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
misc |= ATOM_DOUBLE_CLOCK_MODE;
args.susModeMiscInfo.usAccess = cpu_to_le16(misc);
args.ucCRTC = radeon_crtc->crtc_id;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_disable_ss(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
u32 ss_cntl;
if (ASIC_IS_DCE4(rdev)) {
switch (radeon_crtc->pll_id) {
case ATOM_PPLL1:
ss_cntl = RREG32(EVERGREEN_P1PLL_SS_CNTL);
ss_cntl &= ~EVERGREEN_PxPLL_SS_EN;
WREG32(EVERGREEN_P1PLL_SS_CNTL, ss_cntl);
break;
case ATOM_PPLL2:
ss_cntl = RREG32(EVERGREEN_P2PLL_SS_CNTL);
ss_cntl &= ~EVERGREEN_PxPLL_SS_EN;
WREG32(EVERGREEN_P2PLL_SS_CNTL, ss_cntl);
break;
case ATOM_DCPLL:
case ATOM_PPLL_INVALID:
return;
}
} else if (ASIC_IS_AVIVO(rdev)) {
switch (radeon_crtc->pll_id) {
case ATOM_PPLL1:
ss_cntl = RREG32(AVIVO_P1PLL_INT_SS_CNTL);
ss_cntl &= ~1;
WREG32(AVIVO_P1PLL_INT_SS_CNTL, ss_cntl);
break;
case ATOM_PPLL2:
ss_cntl = RREG32(AVIVO_P2PLL_INT_SS_CNTL);
ss_cntl &= ~1;
WREG32(AVIVO_P2PLL_INT_SS_CNTL, ss_cntl);
break;
case ATOM_DCPLL:
case ATOM_PPLL_INVALID:
return;
}
}
}
union atom_enable_ss {
ENABLE_LVDS_SS_PARAMETERS legacy;
ENABLE_SPREAD_SPECTRUM_ON_PPLL_PS_ALLOCATION v1;
};
static void atombios_enable_ss(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder = NULL;
struct radeon_encoder *radeon_encoder = NULL;
struct radeon_encoder_atom_dig *dig = NULL;
int index = GetIndexIntoMasterTable(COMMAND, EnableSpreadSpectrumOnPPLL);
union atom_enable_ss args;
uint16_t percentage = 0;
uint8_t type = 0, step = 0, delay = 0, range = 0;
/* XXX add ss support for DCE4 */
if (ASIC_IS_DCE4(rdev))
return;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
radeon_encoder = to_radeon_encoder(encoder);
/* only enable spread spectrum on LVDS */
if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
dig = radeon_encoder->enc_priv;
if (dig && dig->ss) {
percentage = dig->ss->percentage;
type = dig->ss->type;
step = dig->ss->step;
delay = dig->ss->delay;
range = dig->ss->range;
} else
return;
} else
return;
break;
}
}
if (!radeon_encoder)
return;
memset(&args, 0, sizeof(args));
if (ASIC_IS_AVIVO(rdev)) {
args.v1.usSpreadSpectrumPercentage = cpu_to_le16(percentage);
args.v1.ucSpreadSpectrumType = type;
args.v1.ucSpreadSpectrumStep = step;
args.v1.ucSpreadSpectrumDelay = delay;
args.v1.ucSpreadSpectrumRange = range;
args.v1.ucPpll = radeon_crtc->crtc_id ? ATOM_PPLL2 : ATOM_PPLL1;
args.v1.ucEnable = ATOM_ENABLE;
} else {
args.legacy.usSpreadSpectrumPercentage = cpu_to_le16(percentage);
args.legacy.ucSpreadSpectrumType = type;
args.legacy.ucSpreadSpectrumStepSize_Delay = (step & 3) << 2;
args.legacy.ucSpreadSpectrumStepSize_Delay |= (delay & 7) << 4;
args.legacy.ucEnable = ATOM_ENABLE;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
union adjust_pixel_clock {
ADJUST_DISPLAY_PLL_PS_ALLOCATION v1;
ADJUST_DISPLAY_PLL_PS_ALLOCATION_V3 v3;
};
static u32 atombios_adjust_pll(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct radeon_pll *pll)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder = NULL;
struct radeon_encoder *radeon_encoder = NULL;
u32 adjusted_clock = mode->clock;
int encoder_mode = 0;
u32 dp_clock = mode->clock;
int bpc = 8;
/* reset the pll flags */
pll->flags = 0;
/* select the PLL algo */
if (ASIC_IS_AVIVO(rdev)) {
if (radeon_new_pll == 0)
pll->algo = PLL_ALGO_LEGACY;
else
pll->algo = PLL_ALGO_NEW;
} else {
if (radeon_new_pll == 1)
pll->algo = PLL_ALGO_NEW;
else
pll->algo = PLL_ALGO_LEGACY;
}
if (ASIC_IS_AVIVO(rdev)) {
if ((rdev->family == CHIP_RS600) ||
(rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740))
pll->flags |= (/*RADEON_PLL_USE_FRAC_FB_DIV |*/
RADEON_PLL_PREFER_CLOSEST_LOWER);
if (ASIC_IS_DCE32(rdev) && mode->clock > 200000) /* range limits??? */
pll->flags |= RADEON_PLL_PREFER_HIGH_FB_DIV;
else
pll->flags |= RADEON_PLL_PREFER_LOW_REF_DIV;
} else {
pll->flags |= RADEON_PLL_LEGACY;
if (mode->clock > 200000) /* range limits??? */
pll->flags |= RADEON_PLL_PREFER_HIGH_FB_DIV;
else
pll->flags |= RADEON_PLL_PREFER_LOW_REF_DIV;
}
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
radeon_encoder = to_radeon_encoder(encoder);
encoder_mode = atombios_get_encoder_mode(encoder);
if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT | ATOM_DEVICE_DFP_SUPPORT)) {
struct drm_connector *connector = radeon_get_connector_for_encoder(encoder);
if (connector) {
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
struct radeon_connector_atom_dig *dig_connector =
radeon_connector->con_priv;
dp_clock = dig_connector->dp_clock;
}
}
if (ASIC_IS_AVIVO(rdev)) {
/* DVO wants 2x pixel clock if the DVO chip is in 12 bit mode */
if (radeon_encoder->encoder_id == ENCODER_OBJECT_ID_INTERNAL_KLDSCP_DVO1)
adjusted_clock = mode->clock * 2;
if (radeon_encoder->active_device & (ATOM_DEVICE_TV_SUPPORT)) {
pll->algo = PLL_ALGO_LEGACY;
pll->flags |= RADEON_PLL_PREFER_CLOSEST_LOWER;
}
/* There is some evidence (often anecdotal) that RV515/RV620 LVDS
* (on some boards at least) prefers the legacy algo. I'm not
* sure whether this should handled generically or on a
* case-by-case quirk basis. Both algos should work fine in the
* majority of cases.
*/
if ((radeon_encoder->active_device & (ATOM_DEVICE_LCD_SUPPORT)) &&
((rdev->family == CHIP_RV515) ||
(rdev->family == CHIP_RV620))) {
/* allow the user to overrride just in case */
if (radeon_new_pll == 1)
pll->algo = PLL_ALGO_NEW;
else
pll->algo = PLL_ALGO_LEGACY;
}
} else {
if (encoder->encoder_type != DRM_MODE_ENCODER_DAC)
pll->flags |= RADEON_PLL_NO_ODD_POST_DIV;
if (encoder->encoder_type == DRM_MODE_ENCODER_LVDS)
pll->flags |= RADEON_PLL_USE_REF_DIV;
}
break;
}
}
/* DCE3+ has an AdjustDisplayPll that will adjust the pixel clock
* accordingly based on the encoder/transmitter to work around
* special hw requirements.
*/
if (ASIC_IS_DCE3(rdev)) {
union adjust_pixel_clock args;
u8 frev, crev;
int index;
index = GetIndexIntoMasterTable(COMMAND, AdjustDisplayPll);
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev,
&crev))
return adjusted_clock;
memset(&args, 0, sizeof(args));
switch (frev) {
case 1:
switch (crev) {
case 1:
case 2:
args.v1.usPixelClock = cpu_to_le16(mode->clock / 10);
args.v1.ucTransmitterID = radeon_encoder->encoder_id;
args.v1.ucEncodeMode = encoder_mode;
if (encoder_mode == ATOM_ENCODER_MODE_DP) {
/* may want to enable SS on DP eventually */
/* args.v1.ucConfig |=
ADJUST_DISPLAY_CONFIG_SS_ENABLE;*/
} else if (encoder_mode == ATOM_ENCODER_MODE_LVDS) {
args.v1.ucConfig |=
ADJUST_DISPLAY_CONFIG_SS_ENABLE;
}
atom_execute_table(rdev->mode_info.atom_context,
index, (uint32_t *)&args);
adjusted_clock = le16_to_cpu(args.v1.usPixelClock) * 10;
break;
case 3:
args.v3.sInput.usPixelClock = cpu_to_le16(mode->clock / 10);
args.v3.sInput.ucTransmitterID = radeon_encoder->encoder_id;
args.v3.sInput.ucEncodeMode = encoder_mode;
args.v3.sInput.ucDispPllConfig = 0;
if (radeon_encoder->devices & (ATOM_DEVICE_DFP_SUPPORT)) {
struct radeon_encoder_atom_dig *dig = radeon_encoder->enc_priv;
if (encoder_mode == ATOM_ENCODER_MODE_DP) {
/* may want to enable SS on DP/eDP eventually */
/*args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_SS_ENABLE;*/
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_COHERENT_MODE;
/* 16200 or 27000 */
args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10);
} else {
if (encoder_mode == ATOM_ENCODER_MODE_HDMI) {
/* deep color support */
args.v3.sInput.usPixelClock =
cpu_to_le16((mode->clock * bpc / 8) / 10);
}
if (dig->coherent_mode)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_COHERENT_MODE;
if (mode->clock > 165000)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_DUAL_LINK;
}
} else if (radeon_encoder->devices & (ATOM_DEVICE_LCD_SUPPORT)) {
if (encoder_mode == ATOM_ENCODER_MODE_DP) {
/* may want to enable SS on DP/eDP eventually */
/*args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_SS_ENABLE;*/
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_COHERENT_MODE;
/* 16200 or 27000 */
args.v3.sInput.usPixelClock = cpu_to_le16(dp_clock / 10);
} else if (encoder_mode == ATOM_ENCODER_MODE_LVDS) {
/* want to enable SS on LVDS eventually */
/*args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_SS_ENABLE;*/
} else {
if (mode->clock > 165000)
args.v3.sInput.ucDispPllConfig |=
DISPPLL_CONFIG_DUAL_LINK;
}
}
atom_execute_table(rdev->mode_info.atom_context,
index, (uint32_t *)&args);
adjusted_clock = le32_to_cpu(args.v3.sOutput.ulDispPllFreq) * 10;
if (args.v3.sOutput.ucRefDiv) {
pll->flags |= RADEON_PLL_USE_REF_DIV;
pll->reference_div = args.v3.sOutput.ucRefDiv;
}
if (args.v3.sOutput.ucPostDiv) {
pll->flags |= RADEON_PLL_USE_POST_DIV;
pll->post_div = args.v3.sOutput.ucPostDiv;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return adjusted_clock;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return adjusted_clock;
}
}
return adjusted_clock;
}
union set_pixel_clock {
SET_PIXEL_CLOCK_PS_ALLOCATION base;
PIXEL_CLOCK_PARAMETERS v1;
PIXEL_CLOCK_PARAMETERS_V2 v2;
PIXEL_CLOCK_PARAMETERS_V3 v3;
PIXEL_CLOCK_PARAMETERS_V5 v5;
};
static void atombios_crtc_set_dcpll(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
u8 frev, crev;
int index;
union set_pixel_clock args;
memset(&args, 0, sizeof(args));
index = GetIndexIntoMasterTable(COMMAND, SetPixelClock);
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev,
&crev))
return;
switch (frev) {
case 1:
switch (crev) {
case 5:
/* if the default dcpll clock is specified,
* SetPixelClock provides the dividers
*/
args.v5.ucCRTC = ATOM_CRTC_INVALID;
args.v5.usPixelClock = rdev->clock.default_dispclk;
args.v5.ucPpll = ATOM_DCPLL;
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_crtc_program_pll(struct drm_crtc *crtc,
int crtc_id,
int pll_id,
u32 encoder_mode,
u32 encoder_id,
u32 clock,
u32 ref_div,
u32 fb_div,
u32 frac_fb_div,
u32 post_div)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
u8 frev, crev;
int index = GetIndexIntoMasterTable(COMMAND, SetPixelClock);
union set_pixel_clock args;
memset(&args, 0, sizeof(args));
if (!atom_parse_cmd_header(rdev->mode_info.atom_context, index, &frev,
&crev))
return;
switch (frev) {
case 1:
switch (crev) {
case 1:
if (clock == ATOM_DISABLE)
return;
args.v1.usPixelClock = cpu_to_le16(clock / 10);
args.v1.usRefDiv = cpu_to_le16(ref_div);
args.v1.usFbDiv = cpu_to_le16(fb_div);
args.v1.ucFracFbDiv = frac_fb_div;
args.v1.ucPostDiv = post_div;
args.v1.ucPpll = pll_id;
args.v1.ucCRTC = crtc_id;
args.v1.ucRefDivSrc = 1;
break;
case 2:
args.v2.usPixelClock = cpu_to_le16(clock / 10);
args.v2.usRefDiv = cpu_to_le16(ref_div);
args.v2.usFbDiv = cpu_to_le16(fb_div);
args.v2.ucFracFbDiv = frac_fb_div;
args.v2.ucPostDiv = post_div;
args.v2.ucPpll = pll_id;
args.v2.ucCRTC = crtc_id;
args.v2.ucRefDivSrc = 1;
break;
case 3:
args.v3.usPixelClock = cpu_to_le16(clock / 10);
args.v3.usRefDiv = cpu_to_le16(ref_div);
args.v3.usFbDiv = cpu_to_le16(fb_div);
args.v3.ucFracFbDiv = frac_fb_div;
args.v3.ucPostDiv = post_div;
args.v3.ucPpll = pll_id;
args.v3.ucMiscInfo = (pll_id << 2);
args.v3.ucTransmitterId = encoder_id;
args.v3.ucEncoderMode = encoder_mode;
break;
case 5:
args.v5.ucCRTC = crtc_id;
args.v5.usPixelClock = cpu_to_le16(clock / 10);
args.v5.ucRefDiv = ref_div;
args.v5.usFbDiv = cpu_to_le16(fb_div);
args.v5.ulFbDivDecFrac = cpu_to_le32(frac_fb_div * 100000);
args.v5.ucPostDiv = post_div;
args.v5.ucMiscInfo = 0; /* HDMI depth, etc. */
args.v5.ucTransmitterID = encoder_id;
args.v5.ucEncoderMode = encoder_mode;
args.v5.ucPpll = pll_id;
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
break;
default:
DRM_ERROR("Unknown table version %d %d\n", frev, crev);
return;
}
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
static void atombios_crtc_set_pll(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder = NULL;
struct radeon_encoder *radeon_encoder = NULL;
u32 pll_clock = mode->clock;
u32 ref_div = 0, fb_div = 0, frac_fb_div = 0, post_div = 0;
struct radeon_pll *pll;
u32 adjusted_clock;
int encoder_mode = 0;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
if (encoder->crtc == crtc) {
radeon_encoder = to_radeon_encoder(encoder);
encoder_mode = atombios_get_encoder_mode(encoder);
break;
}
}
if (!radeon_encoder)
return;
switch (radeon_crtc->pll_id) {
case ATOM_PPLL1:
pll = &rdev->clock.p1pll;
break;
case ATOM_PPLL2:
pll = &rdev->clock.p2pll;
break;
case ATOM_DCPLL:
case ATOM_PPLL_INVALID:
default:
pll = &rdev->clock.dcpll;
break;
}
/* adjust pixel clock as needed */
adjusted_clock = atombios_adjust_pll(crtc, mode, pll);
radeon_compute_pll(pll, adjusted_clock, &pll_clock, &fb_div, &frac_fb_div,
&ref_div, &post_div);
atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id,
encoder_mode, radeon_encoder->encoder_id, mode->clock,
ref_div, fb_div, frac_fb_div, post_div);
}
static int evergreen_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_framebuffer *radeon_fb;
struct drm_gem_object *obj;
struct radeon_bo *rbo;
uint64_t fb_location;
uint32_t fb_format, fb_pitch_pixels, tiling_flags;
int r;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
radeon_fb = to_radeon_framebuffer(crtc->fb);
/* Pin framebuffer & get tilling informations */
obj = radeon_fb->obj;
rbo = obj->driver_private;
r = radeon_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location);
if (unlikely(r != 0)) {
radeon_bo_unreserve(rbo);
return -EINVAL;
}
radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL);
radeon_bo_unreserve(rbo);
switch (crtc->fb->bits_per_pixel) {
case 8:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_8BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_INDEXED));
break;
case 15:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB1555));
break;
case 16:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_16BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB565));
break;
case 24:
case 32:
fb_format = (EVERGREEN_GRPH_DEPTH(EVERGREEN_GRPH_DEPTH_32BPP) |
EVERGREEN_GRPH_FORMAT(EVERGREEN_GRPH_FORMAT_ARGB8888));
break;
default:
DRM_ERROR("Unsupported screen depth %d\n",
crtc->fb->bits_per_pixel);
return -EINVAL;
}
if (tiling_flags & RADEON_TILING_MACRO)
fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_2D_TILED_THIN1);
else if (tiling_flags & RADEON_TILING_MICRO)
fb_format |= EVERGREEN_GRPH_ARRAY_MODE(EVERGREEN_GRPH_ARRAY_1D_TILED_THIN1);
switch (radeon_crtc->crtc_id) {
case 0:
WREG32(AVIVO_D1VGA_CONTROL, 0);
break;
case 1:
WREG32(AVIVO_D2VGA_CONTROL, 0);
break;
case 2:
WREG32(EVERGREEN_D3VGA_CONTROL, 0);
break;
case 3:
WREG32(EVERGREEN_D4VGA_CONTROL, 0);
break;
case 4:
WREG32(EVERGREEN_D5VGA_CONTROL, 0);
break;
case 5:
WREG32(EVERGREEN_D6VGA_CONTROL, 0);
break;
default:
break;
}
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS_HIGH + radeon_crtc->crtc_offset,
upper_32_bits(fb_location));
WREG32(EVERGREEN_GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32)fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK);
WREG32(EVERGREEN_GRPH_SECONDARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32) fb_location & EVERGREEN_GRPH_SURFACE_ADDRESS_MASK);
WREG32(EVERGREEN_GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format);
WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_X_START + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_Y_START + radeon_crtc->crtc_offset, 0);
WREG32(EVERGREEN_GRPH_X_END + radeon_crtc->crtc_offset, crtc->fb->width);
WREG32(EVERGREEN_GRPH_Y_END + radeon_crtc->crtc_offset, crtc->fb->height);
fb_pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8);
WREG32(EVERGREEN_GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels);
WREG32(EVERGREEN_GRPH_ENABLE + radeon_crtc->crtc_offset, 1);
WREG32(EVERGREEN_DESKTOP_HEIGHT + radeon_crtc->crtc_offset,
crtc->mode.vdisplay);
x &= ~3;
y &= ~1;
WREG32(EVERGREEN_VIEWPORT_START + radeon_crtc->crtc_offset,
(x << 16) | y);
WREG32(EVERGREEN_VIEWPORT_SIZE + radeon_crtc->crtc_offset,
(crtc->mode.hdisplay << 16) | crtc->mode.vdisplay);
if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE)
WREG32(EVERGREEN_DATA_FORMAT + radeon_crtc->crtc_offset,
EVERGREEN_INTERLEAVE_EN);
else
WREG32(EVERGREEN_DATA_FORMAT + radeon_crtc->crtc_offset, 0);
if (old_fb && old_fb != crtc->fb) {
radeon_fb = to_radeon_framebuffer(old_fb);
rbo = radeon_fb->obj->driver_private;
r = radeon_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
radeon_bo_unpin(rbo);
radeon_bo_unreserve(rbo);
}
/* Bytes per pixel may have changed */
radeon_bandwidth_update(rdev);
return 0;
}
static int avivo_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_framebuffer *radeon_fb;
struct drm_gem_object *obj;
struct radeon_bo *rbo;
uint64_t fb_location;
uint32_t fb_format, fb_pitch_pixels, tiling_flags;
int r;
/* no fb bound */
if (!crtc->fb) {
DRM_DEBUG_KMS("No FB bound\n");
return 0;
}
radeon_fb = to_radeon_framebuffer(crtc->fb);
/* Pin framebuffer & get tilling informations */
obj = radeon_fb->obj;
rbo = obj->driver_private;
r = radeon_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
r = radeon_bo_pin(rbo, RADEON_GEM_DOMAIN_VRAM, &fb_location);
if (unlikely(r != 0)) {
radeon_bo_unreserve(rbo);
return -EINVAL;
}
radeon_bo_get_tiling_flags(rbo, &tiling_flags, NULL);
radeon_bo_unreserve(rbo);
switch (crtc->fb->bits_per_pixel) {
case 8:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_8BPP |
AVIVO_D1GRPH_CONTROL_8BPP_INDEXED;
break;
case 15:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_16BPP |
AVIVO_D1GRPH_CONTROL_16BPP_ARGB1555;
break;
case 16:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_16BPP |
AVIVO_D1GRPH_CONTROL_16BPP_RGB565;
break;
case 24:
case 32:
fb_format =
AVIVO_D1GRPH_CONTROL_DEPTH_32BPP |
AVIVO_D1GRPH_CONTROL_32BPP_ARGB8888;
break;
default:
DRM_ERROR("Unsupported screen depth %d\n",
crtc->fb->bits_per_pixel);
return -EINVAL;
}
if (rdev->family >= CHIP_R600) {
if (tiling_flags & RADEON_TILING_MACRO)
fb_format |= R600_D1GRPH_ARRAY_MODE_2D_TILED_THIN1;
else if (tiling_flags & RADEON_TILING_MICRO)
fb_format |= R600_D1GRPH_ARRAY_MODE_1D_TILED_THIN1;
} else {
if (tiling_flags & RADEON_TILING_MACRO)
fb_format |= AVIVO_D1GRPH_MACRO_ADDRESS_MODE;
if (tiling_flags & RADEON_TILING_MICRO)
fb_format |= AVIVO_D1GRPH_TILED;
}
if (radeon_crtc->crtc_id == 0)
WREG32(AVIVO_D1VGA_CONTROL, 0);
else
WREG32(AVIVO_D2VGA_CONTROL, 0);
if (rdev->family >= CHIP_RV770) {
if (radeon_crtc->crtc_id) {
WREG32(R700_D2GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location));
WREG32(R700_D2GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location));
} else {
WREG32(R700_D1GRPH_PRIMARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location));
WREG32(R700_D1GRPH_SECONDARY_SURFACE_ADDRESS_HIGH, upper_32_bits(fb_location));
}
}
WREG32(AVIVO_D1GRPH_PRIMARY_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
(u32) fb_location);
WREG32(AVIVO_D1GRPH_SECONDARY_SURFACE_ADDRESS +
radeon_crtc->crtc_offset, (u32) fb_location);
WREG32(AVIVO_D1GRPH_CONTROL + radeon_crtc->crtc_offset, fb_format);
WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_X + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_SURFACE_OFFSET_Y + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_X_START + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_Y_START + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_D1GRPH_X_END + radeon_crtc->crtc_offset, crtc->fb->width);
WREG32(AVIVO_D1GRPH_Y_END + radeon_crtc->crtc_offset, crtc->fb->height);
fb_pitch_pixels = crtc->fb->pitch / (crtc->fb->bits_per_pixel / 8);
WREG32(AVIVO_D1GRPH_PITCH + radeon_crtc->crtc_offset, fb_pitch_pixels);
WREG32(AVIVO_D1GRPH_ENABLE + radeon_crtc->crtc_offset, 1);
WREG32(AVIVO_D1MODE_DESKTOP_HEIGHT + radeon_crtc->crtc_offset,
crtc->mode.vdisplay);
x &= ~3;
y &= ~1;
WREG32(AVIVO_D1MODE_VIEWPORT_START + radeon_crtc->crtc_offset,
(x << 16) | y);
WREG32(AVIVO_D1MODE_VIEWPORT_SIZE + radeon_crtc->crtc_offset,
(crtc->mode.hdisplay << 16) | crtc->mode.vdisplay);
if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE)
WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset,
AVIVO_D1MODE_INTERLEAVE_EN);
else
WREG32(AVIVO_D1MODE_DATA_FORMAT + radeon_crtc->crtc_offset, 0);
if (old_fb && old_fb != crtc->fb) {
radeon_fb = to_radeon_framebuffer(old_fb);
rbo = radeon_fb->obj->driver_private;
r = radeon_bo_reserve(rbo, false);
if (unlikely(r != 0))
return r;
radeon_bo_unpin(rbo);
radeon_bo_unreserve(rbo);
}
/* Bytes per pixel may have changed */
radeon_bandwidth_update(rdev);
return 0;
}
int atombios_crtc_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
if (ASIC_IS_DCE4(rdev))
return evergreen_crtc_set_base(crtc, x, y, old_fb);
else if (ASIC_IS_AVIVO(rdev))
return avivo_crtc_set_base(crtc, x, y, old_fb);
else
return radeon_crtc_set_base(crtc, x, y, old_fb);
}
/* properly set additional regs when using atombios */
static void radeon_legacy_atom_fixup(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
u32 disp_merge_cntl;
switch (radeon_crtc->crtc_id) {
case 0:
disp_merge_cntl = RREG32(RADEON_DISP_MERGE_CNTL);
disp_merge_cntl &= ~RADEON_DISP_RGB_OFFSET_EN;
WREG32(RADEON_DISP_MERGE_CNTL, disp_merge_cntl);
break;
case 1:
disp_merge_cntl = RREG32(RADEON_DISP2_MERGE_CNTL);
disp_merge_cntl &= ~RADEON_DISP2_RGB_OFFSET_EN;
WREG32(RADEON_DISP2_MERGE_CNTL, disp_merge_cntl);
WREG32(RADEON_FP_H2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_H_SYNC_STRT_WID));
WREG32(RADEON_FP_V2_SYNC_STRT_WID, RREG32(RADEON_CRTC2_V_SYNC_STRT_WID));
break;
}
}
static int radeon_atom_pick_pll(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *test_encoder;
struct drm_crtc *test_crtc;
uint32_t pll_in_use = 0;
if (ASIC_IS_DCE4(rdev)) {
/* if crtc is driving DP and we have an ext clock, use that */
list_for_each_entry(test_encoder, &dev->mode_config.encoder_list, head) {
if (test_encoder->crtc && (test_encoder->crtc == crtc)) {
if (atombios_get_encoder_mode(test_encoder) == ATOM_ENCODER_MODE_DP) {
if (rdev->clock.dp_extclk)
return ATOM_PPLL_INVALID;
}
}
}
/* otherwise, pick one of the plls */
list_for_each_entry(test_crtc, &dev->mode_config.crtc_list, head) {
struct radeon_crtc *radeon_test_crtc;
if (crtc == test_crtc)
continue;
radeon_test_crtc = to_radeon_crtc(test_crtc);
if ((radeon_test_crtc->pll_id >= ATOM_PPLL1) &&
(radeon_test_crtc->pll_id <= ATOM_PPLL2))
pll_in_use |= (1 << radeon_test_crtc->pll_id);
}
if (!(pll_in_use & 1))
return ATOM_PPLL1;
return ATOM_PPLL2;
} else
return radeon_crtc->crtc_id;
}
int atombios_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y, struct drm_framebuffer *old_fb)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
struct drm_encoder *encoder;
bool is_tvcv = false;
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
/* find tv std */
if (encoder->crtc == crtc) {
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
if (radeon_encoder->active_device &
(ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT))
is_tvcv = true;
}
}
atombios_disable_ss(crtc);
/* always set DCPLL */
if (ASIC_IS_DCE4(rdev))
atombios_crtc_set_dcpll(crtc);
atombios_crtc_set_pll(crtc, adjusted_mode);
atombios_enable_ss(crtc);
if (ASIC_IS_DCE4(rdev))
atombios_set_crtc_dtd_timing(crtc, adjusted_mode);
else if (ASIC_IS_AVIVO(rdev)) {
if (is_tvcv)
atombios_crtc_set_timing(crtc, adjusted_mode);
else
atombios_set_crtc_dtd_timing(crtc, adjusted_mode);
} else {
atombios_crtc_set_timing(crtc, adjusted_mode);
if (radeon_crtc->crtc_id == 0)
atombios_set_crtc_dtd_timing(crtc, adjusted_mode);
radeon_legacy_atom_fixup(crtc);
}
atombios_crtc_set_base(crtc, x, y, old_fb);
atombios_overscan_setup(crtc, mode, adjusted_mode);
atombios_scaler_setup(crtc);
return 0;
}
static bool atombios_crtc_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
/* adjust pm to upcoming mode change */
radeon_pm_compute_clocks(rdev);
if (!radeon_crtc_scaling_mode_fixup(crtc, mode, adjusted_mode))
return false;
return true;
}
static void atombios_crtc_prepare(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
/* pick pll */
radeon_crtc->pll_id = radeon_atom_pick_pll(crtc);
atombios_lock_crtc(crtc, ATOM_ENABLE);
atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void atombios_crtc_commit(struct drm_crtc *crtc)
{
atombios_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
atombios_lock_crtc(crtc, ATOM_DISABLE);
}
static void atombios_crtc_disable(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
atombios_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
switch (radeon_crtc->pll_id) {
case ATOM_PPLL1:
case ATOM_PPLL2:
/* disable the ppll */
atombios_crtc_program_pll(crtc, radeon_crtc->crtc_id, radeon_crtc->pll_id,
0, 0, ATOM_DISABLE, 0, 0, 0, 0);
break;
default:
break;
}
radeon_crtc->pll_id = -1;
}
static const struct drm_crtc_helper_funcs atombios_helper_funcs = {
.dpms = atombios_crtc_dpms,
.mode_fixup = atombios_crtc_mode_fixup,
.mode_set = atombios_crtc_mode_set,
.mode_set_base = atombios_crtc_set_base,
.prepare = atombios_crtc_prepare,
.commit = atombios_crtc_commit,
.load_lut = radeon_crtc_load_lut,
.disable = atombios_crtc_disable,
};
void radeon_atombios_init_crtc(struct drm_device *dev,
struct radeon_crtc *radeon_crtc)
{
struct radeon_device *rdev = dev->dev_private;
if (ASIC_IS_DCE4(rdev)) {
switch (radeon_crtc->crtc_id) {
case 0:
default:
radeon_crtc->crtc_offset = EVERGREEN_CRTC0_REGISTER_OFFSET;
break;
case 1:
radeon_crtc->crtc_offset = EVERGREEN_CRTC1_REGISTER_OFFSET;
break;
case 2:
radeon_crtc->crtc_offset = EVERGREEN_CRTC2_REGISTER_OFFSET;
break;
case 3:
radeon_crtc->crtc_offset = EVERGREEN_CRTC3_REGISTER_OFFSET;
break;
case 4:
radeon_crtc->crtc_offset = EVERGREEN_CRTC4_REGISTER_OFFSET;
break;
case 5:
radeon_crtc->crtc_offset = EVERGREEN_CRTC5_REGISTER_OFFSET;
break;
}
} else {
if (radeon_crtc->crtc_id == 1)
radeon_crtc->crtc_offset =
AVIVO_D2CRTC_H_TOTAL - AVIVO_D1CRTC_H_TOTAL;
else
radeon_crtc->crtc_offset = 0;
}
radeon_crtc->pll_id = -1;
drm_crtc_helper_add(&radeon_crtc->base, &atombios_helper_funcs);
}