#include <drm/drmP.h>
#include "nouveau_drv.h"
#include <drm/nouveau_drm.h>
static struct drm_mm_node *
nv20_fb_alloc_tag(struct drm_device *dev, uint32_t size)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
struct drm_mm_node *mem;
int ret;
ret = drm_mm_pre_get(&pfb->tag_heap);
if (ret)
return NULL;
spin_lock(&dev_priv->tile.lock);
mem = drm_mm_search_free(&pfb->tag_heap, size, 0, 0);
if (mem)
mem = drm_mm_get_block_atomic(mem, size, 0);
spin_unlock(&dev_priv->tile.lock);
return mem;
}
static void
nv20_fb_free_tag(struct drm_device *dev, struct drm_mm_node **pmem)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_mm_node *mem = *pmem;
if (mem) {
spin_lock(&dev_priv->tile.lock);
drm_mm_put_block(mem);
spin_unlock(&dev_priv->tile.lock);
*pmem = NULL;
}
}
void
nv20_fb_init_tile_region(struct drm_device *dev, int i, uint32_t addr,
uint32_t size, uint32_t pitch, uint32_t flags)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
int bpp = (flags & NOUVEAU_GEM_TILE_32BPP ? 32 : 16);
tile->addr = 0x00000001 | addr;
tile->limit = max(1u, addr + size) - 1;
tile->pitch = pitch;
/* Allocate some of the on-die tag memory, used to store Z
* compression meta-data (most likely just a bitmap determining
* if a given tile is compressed or not).
*/
if (flags & NOUVEAU_GEM_TILE_ZETA) {
tile->tag_mem = nv20_fb_alloc_tag(dev, size / 256);
if (tile->tag_mem) {
/* Enable Z compression */
tile->zcomp = tile->tag_mem->start;
if (dev_priv->chipset >= 0x25) {
if (bpp == 16)
tile->zcomp |= NV25_PFB_ZCOMP_MODE_16;
else
tile->zcomp |= NV25_PFB_ZCOMP_MODE_32;
} else {
tile->zcomp |= NV20_PFB_ZCOMP_EN;
if (bpp != 16)
tile->zcomp |= NV20_PFB_ZCOMP_MODE_32;
}
}
tile->addr |= 2;
}
}
void
nv20_fb_free_tile_region(struct drm_device *dev, int i)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
tile->addr = tile->limit = tile->pitch = tile->zcomp = 0;
nv20_fb_free_tag(dev, &tile->tag_mem);
}
void
nv20_fb_set_tile_region(struct drm_device *dev, int i)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_tile_reg *tile = &dev_priv->tile.reg[i];
nv_wr32(dev, NV10_PFB_TLIMIT(i), tile->limit);
nv_wr32(dev, NV10_PFB_TSIZE(i), tile->pitch);
nv_wr32(dev, NV10_PFB_TILE(i), tile->addr);
nv_wr32(dev, NV20_PFB_ZCOMP(i), tile->zcomp);
}
int
nv20_fb_vram_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mem_size = nv_rd32(dev, 0x10020c);
u32 pbus1218 = nv_rd32(dev, 0x001218);
dev_priv->vram_size = mem_size & 0xff000000;
switch (pbus1218 & 0x00000300) {
case 0x00000000: dev_priv->vram_type = NV_MEM_TYPE_SDRAM; break;
case 0x00000100: dev_priv->vram_type = NV_MEM_TYPE_DDR1; break;
case 0x00000200: dev_priv->vram_type = NV_MEM_TYPE_GDDR3; break;
case 0x00000300: dev_priv->vram_type = NV_MEM_TYPE_GDDR2; break;
}
return 0;
}
int
nv20_fb_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
int i;
if (dev_priv->chipset >= 0x25)
drm_mm_init(&pfb->tag_heap, 0, 64 * 1024);
else
drm_mm_init(&pfb->tag_heap, 0, 32 * 1024);
/* Turn all the tiling regions off. */
pfb->num_tiles = NV10_PFB_TILE__SIZE;
for (i = 0; i < pfb->num_tiles; i++)
pfb->set_tile_region(dev, i);
return 0;
}
void
nv20_fb_takedown(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_fb_engine *pfb = &dev_priv->engine.fb;
int i;
for (i = 0; i < pfb->num_tiles; i++)
pfb->free_tile_region(dev, i);
drm_mm_takedown(&pfb->tag_heap);
}