/*
* Copyright 2018 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "nouveau_dmem.h"
#include "nouveau_drv.h"
#include "nouveau_chan.h"
#include "nouveau_dma.h"
#include "nouveau_mem.h"
#include "nouveau_bo.h"
#include "nouveau_svm.h"
#include <nvif/class.h>
#include <nvif/object.h>
#include <nvif/if000c.h>
#include <nvif/if500b.h>
#include <nvif/if900b.h>
#include <nvif/if000c.h>
#include <linux/sched/mm.h>
#include <linux/hmm.h>
/*
* FIXME: this is ugly right now we are using TTM to allocate vram and we pin
* it in vram while in use. We likely want to overhaul memory management for
* nouveau to be more page like (not necessarily with system page size but a
* bigger page size) at lowest level and have some shim layer on top that would
* provide the same functionality as TTM.
*/
#define DMEM_CHUNK_SIZE (2UL << 20)
#define DMEM_CHUNK_NPAGES (DMEM_CHUNK_SIZE >> PAGE_SHIFT)
enum nouveau_aper {
NOUVEAU_APER_VIRT,
NOUVEAU_APER_VRAM,
NOUVEAU_APER_HOST,
};
typedef int (*nouveau_migrate_copy_t)(struct nouveau_drm *drm, u64 npages,
enum nouveau_aper, u64 dst_addr,
enum nouveau_aper, u64 src_addr);
typedef int (*nouveau_clear_page_t)(struct nouveau_drm *drm, u32 length,
enum nouveau_aper, u64 dst_addr);
struct nouveau_dmem_chunk {
struct list_head list;
struct nouveau_bo *bo;
struct nouveau_drm *drm;
unsigned long callocated;
struct dev_pagemap pagemap;
};
struct nouveau_dmem_migrate {
nouveau_migrate_copy_t copy_func;
nouveau_clear_page_t clear_func;
struct nouveau_channel *chan;
};
struct nouveau_dmem {
struct nouveau_drm *drm;
struct nouveau_dmem_migrate migrate;
struct list_head chunks;
struct mutex mutex;
struct page *free_pages;
spinlock_t lock;
};
static struct nouveau_dmem_chunk *nouveau_page_to_chunk(struct page *page)
{
return container_of(page->pgmap, struct nouveau_dmem_chunk, pagemap);
}
static struct nouveau_drm *page_to_drm(struct page *page)
{
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
return chunk->drm;
}
unsigned long nouveau_dmem_page_addr(struct page *page)
{
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
unsigned long off = (page_to_pfn(page) << PAGE_SHIFT) -
chunk->pagemap.res.start;
return chunk->bo->offset + off;
}
static void nouveau_dmem_page_free(struct page *page)
{
struct nouveau_dmem_chunk *chunk = nouveau_page_to_chunk(page);
struct nouveau_dmem *dmem = chunk->drm->dmem;
spin_lock(&dmem->lock);
page->zone_device_data = dmem->free_pages;
dmem->free_pages = page;
WARN_ON(!chunk->callocated);
chunk->callocated--;
/*
* FIXME when chunk->callocated reach 0 we should add the chunk to
* a reclaim list so that it can be freed in case of memory pressure.
*/
spin_unlock(&dmem->lock);
}
static void nouveau_dmem_fence_done(struct nouveau_fence **fence)
{
if (fence) {
nouveau_fence_wait(*fence, true, false);
nouveau_fence_unref(fence);
} else {
/*
* FIXME wait for channel to be IDLE before calling finalizing
* the hmem object.
*/
}
}
static vm_fault_t nouveau_dmem_fault_copy_one(struct nouveau_drm *drm,
struct vm_fault *vmf, struct migrate_vma *args,
dma_addr_t *dma_addr)
{
struct device *dev = drm->dev->dev;
struct page *dpage, *spage;
spage = migrate_pfn_to_page(args->src[0]);
if (!spage || !(args->src[0] & MIGRATE_PFN_MIGRATE))
return 0;
dpage = alloc_page_vma(GFP_HIGHUSER, vmf->vma, vmf->address);
if (!dpage)
return VM_FAULT_SIGBUS;
lock_page(dpage);
*dma_addr = dma_map_page(dev, dpage, 0, PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, *dma_addr))
goto error_free_page;
if (drm->dmem->migrate.copy_func(drm, 1, NOUVEAU_APER_HOST, *dma_addr,
NOUVEAU_APER_VRAM, nouveau_dmem_page_addr(spage)))
goto error_dma_unmap;
args->dst[0] = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
return 0;
error_dma_unmap:
dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
error_free_page:
__free_page(dpage);
return VM_FAULT_SIGBUS;
}
static vm_fault_t nouveau_dmem_migrate_to_ram(struct vm_fault *vmf)
{
struct nouveau_drm *drm = page_to_drm(vmf->page);
struct nouveau_dmem *dmem = drm->dmem;
struct nouveau_fence *fence;
unsigned long src = 0, dst = 0;
dma_addr_t dma_addr = 0;
vm_fault_t ret;
struct migrate_vma args = {
.vma = vmf->vma,
.start = vmf->address,
.end = vmf->address + PAGE_SIZE,
.src = &src,
.dst = &dst,
.src_owner = drm->dev,
};
/*
* FIXME what we really want is to find some heuristic to migrate more
* than just one page on CPU fault. When such fault happens it is very
* likely that more surrounding page will CPU fault too.
*/
if (migrate_vma_setup(&args) < 0)
return VM_FAULT_SIGBUS;
if (!args.cpages)
return 0;
ret = nouveau_dmem_fault_copy_one(drm, vmf, &args, &dma_addr);
if (ret || dst == 0)
goto done;
nouveau_fence_new(dmem->migrate.chan, false, &fence);
migrate_vma_pages(&args);
nouveau_dmem_fence_done(&fence);
dma_unmap_page(drm->dev->dev, dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
done:
migrate_vma_finalize(&args);
return ret;
}
static const struct dev_pagemap_ops nouveau_dmem_pagemap_ops = {
.page_free = nouveau_dmem_page_free,
.migrate_to_ram = nouveau_dmem_migrate_to_ram,
};
static int
nouveau_dmem_chunk_alloc(struct nouveau_drm *drm, struct page **ppage)
{
struct nouveau_dmem_chunk *chunk;
struct resource *res;
struct page *page;
void *ptr;
unsigned long i, pfn_first;
int ret;
chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
if (chunk == NULL) {
ret = -ENOMEM;
goto out;
}
/* Allocate unused physical address space for device private pages. */
res = request_free_mem_region(&iomem_resource, DMEM_CHUNK_SIZE,
"nouveau_dmem");
if (IS_ERR(res)) {
ret = PTR_ERR(res);
goto out_free;
}
chunk->drm = drm;
chunk->pagemap.type = MEMORY_DEVICE_PRIVATE;
chunk->pagemap.res = *res;
chunk->pagemap.ops = &nouveau_dmem_pagemap_ops;
chunk->pagemap.owner = drm->dev;
ret = nouveau_bo_new(&drm->client, DMEM_CHUNK_SIZE, 0,
TTM_PL_FLAG_VRAM, 0, 0, NULL, NULL,
&chunk->bo);
if (ret)
goto out_release;
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
if (ret)
goto out_bo_free;
ptr = memremap_pages(&chunk->pagemap, numa_node_id());
if (IS_ERR(ptr)) {
ret = PTR_ERR(ptr);
goto out_bo_unpin;
}
mutex_lock(&drm->dmem->mutex);
list_add(&chunk->list, &drm->dmem->chunks);
mutex_unlock(&drm->dmem->mutex);
pfn_first = chunk->pagemap.res.start >> PAGE_SHIFT;
page = pfn_to_page(pfn_first);
spin_lock(&drm->dmem->lock);
for (i = 0; i < DMEM_CHUNK_NPAGES - 1; ++i, ++page) {
page->zone_device_data = drm->dmem->free_pages;
drm->dmem->free_pages = page;
}
*ppage = page;
chunk->callocated++;
spin_unlock(&drm->dmem->lock);
NV_INFO(drm, "DMEM: registered %ldMB of device memory\n",
DMEM_CHUNK_SIZE >> 20);
return 0;
out_bo_unpin:
nouveau_bo_unpin(chunk->bo);
out_bo_free:
nouveau_bo_ref(NULL, &chunk->bo);
out_release:
release_mem_region(chunk->pagemap.res.start,
resource_size(&chunk->pagemap.res));
out_free:
kfree(chunk);
out:
return ret;
}
static struct page *
nouveau_dmem_page_alloc_locked(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
struct page *page = NULL;
int ret;
spin_lock(&drm->dmem->lock);
if (drm->dmem->free_pages) {
page = drm->dmem->free_pages;
drm->dmem->free_pages = page->zone_device_data;
chunk = nouveau_page_to_chunk(page);
chunk->callocated++;
spin_unlock(&drm->dmem->lock);
} else {
spin_unlock(&drm->dmem->lock);
ret = nouveau_dmem_chunk_alloc(drm, &page);
if (ret)
return NULL;
}
get_page(page);
lock_page(page);
return page;
}
static void
nouveau_dmem_page_free_locked(struct nouveau_drm *drm, struct page *page)
{
unlock_page(page);
put_page(page);
}
void
nouveau_dmem_resume(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
int ret;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
list_for_each_entry(chunk, &drm->dmem->chunks, list) {
ret = nouveau_bo_pin(chunk->bo, TTM_PL_FLAG_VRAM, false);
/* FIXME handle pin failure */
WARN_ON(ret);
}
mutex_unlock(&drm->dmem->mutex);
}
void
nouveau_dmem_suspend(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
list_for_each_entry(chunk, &drm->dmem->chunks, list)
nouveau_bo_unpin(chunk->bo);
mutex_unlock(&drm->dmem->mutex);
}
void
nouveau_dmem_fini(struct nouveau_drm *drm)
{
struct nouveau_dmem_chunk *chunk, *tmp;
if (drm->dmem == NULL)
return;
mutex_lock(&drm->dmem->mutex);
list_for_each_entry_safe(chunk, tmp, &drm->dmem->chunks, list) {
nouveau_bo_unpin(chunk->bo);
nouveau_bo_ref(NULL, &chunk->bo);
list_del(&chunk->list);
memunmap_pages(&chunk->pagemap);
release_mem_region(chunk->pagemap.res.start,
resource_size(&chunk->pagemap.res));
kfree(chunk);
}
mutex_unlock(&drm->dmem->mutex);
}
static int
nvc0b5_migrate_copy(struct nouveau_drm *drm, u64 npages,
enum nouveau_aper dst_aper, u64 dst_addr,
enum nouveau_aper src_aper, u64 src_addr)
{
struct nouveau_channel *chan = drm->dmem->migrate.chan;
u32 launch_dma = (1 << 9) /* MULTI_LINE_ENABLE. */ |
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
int ret;
ret = RING_SPACE(chan, 13);
if (ret)
return ret;
if (src_aper != NOUVEAU_APER_VIRT) {
switch (src_aper) {
case NOUVEAU_APER_VRAM:
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 0);
break;
case NOUVEAU_APER_HOST:
BEGIN_IMC0(chan, NvSubCopy, 0x0260, 1);
break;
default:
return -EINVAL;
}
launch_dma |= 0x00001000; /* SRC_TYPE_PHYSICAL. */
}
if (dst_aper != NOUVEAU_APER_VIRT) {
switch (dst_aper) {
case NOUVEAU_APER_VRAM:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
break;
case NOUVEAU_APER_HOST:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
break;
default:
return -EINVAL;
}
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
}
BEGIN_NVC0(chan, NvSubCopy, 0x0400, 8);
OUT_RING (chan, upper_32_bits(src_addr));
OUT_RING (chan, lower_32_bits(src_addr));
OUT_RING (chan, upper_32_bits(dst_addr));
OUT_RING (chan, lower_32_bits(dst_addr));
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, PAGE_SIZE);
OUT_RING (chan, npages);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING (chan, launch_dma);
return 0;
}
static int
nvc0b5_migrate_clear(struct nouveau_drm *drm, u32 length,
enum nouveau_aper dst_aper, u64 dst_addr)
{
struct nouveau_channel *chan = drm->dmem->migrate.chan;
u32 launch_dma = (1 << 10) /* REMAP_ENABLE_TRUE */ |
(1 << 8) /* DST_MEMORY_LAYOUT_PITCH. */ |
(1 << 7) /* SRC_MEMORY_LAYOUT_PITCH. */ |
(1 << 2) /* FLUSH_ENABLE_TRUE. */ |
(2 << 0) /* DATA_TRANSFER_TYPE_NON_PIPELINED. */;
u32 remap = (4 << 0) /* DST_X_CONST_A */ |
(5 << 4) /* DST_Y_CONST_B */ |
(3 << 16) /* COMPONENT_SIZE_FOUR */ |
(1 << 24) /* NUM_DST_COMPONENTS_TWO */;
int ret;
ret = RING_SPACE(chan, 12);
if (ret)
return ret;
switch (dst_aper) {
case NOUVEAU_APER_VRAM:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 0);
break;
case NOUVEAU_APER_HOST:
BEGIN_IMC0(chan, NvSubCopy, 0x0264, 1);
break;
default:
return -EINVAL;
}
launch_dma |= 0x00002000; /* DST_TYPE_PHYSICAL. */
BEGIN_NVC0(chan, NvSubCopy, 0x0700, 3);
OUT_RING(chan, 0);
OUT_RING(chan, 0);
OUT_RING(chan, remap);
BEGIN_NVC0(chan, NvSubCopy, 0x0408, 2);
OUT_RING(chan, upper_32_bits(dst_addr));
OUT_RING(chan, lower_32_bits(dst_addr));
BEGIN_NVC0(chan, NvSubCopy, 0x0418, 1);
OUT_RING(chan, length >> 3);
BEGIN_NVC0(chan, NvSubCopy, 0x0300, 1);
OUT_RING(chan, launch_dma);
return 0;
}
static int
nouveau_dmem_migrate_init(struct nouveau_drm *drm)
{
switch (drm->ttm.copy.oclass) {
case PASCAL_DMA_COPY_A:
case PASCAL_DMA_COPY_B:
case VOLTA_DMA_COPY_A:
case TURING_DMA_COPY_A:
drm->dmem->migrate.copy_func = nvc0b5_migrate_copy;
drm->dmem->migrate.clear_func = nvc0b5_migrate_clear;
drm->dmem->migrate.chan = drm->ttm.chan;
return 0;
default:
break;
}
return -ENODEV;
}
void
nouveau_dmem_init(struct nouveau_drm *drm)
{
int ret;
/* This only make sense on PASCAL or newer */
if (drm->client.device.info.family < NV_DEVICE_INFO_V0_PASCAL)
return;
if (!(drm->dmem = kzalloc(sizeof(*drm->dmem), GFP_KERNEL)))
return;
drm->dmem->drm = drm;
mutex_init(&drm->dmem->mutex);
INIT_LIST_HEAD(&drm->dmem->chunks);
mutex_init(&drm->dmem->mutex);
spin_lock_init(&drm->dmem->lock);
/* Initialize migration dma helpers before registering memory */
ret = nouveau_dmem_migrate_init(drm);
if (ret) {
kfree(drm->dmem);
drm->dmem = NULL;
}
}
static unsigned long nouveau_dmem_migrate_copy_one(struct nouveau_drm *drm,
unsigned long src, dma_addr_t *dma_addr, u64 *pfn)
{
struct device *dev = drm->dev->dev;
struct page *dpage, *spage;
unsigned long paddr;
spage = migrate_pfn_to_page(src);
if (!(src & MIGRATE_PFN_MIGRATE))
goto out;
dpage = nouveau_dmem_page_alloc_locked(drm);
if (!dpage)
goto out;
paddr = nouveau_dmem_page_addr(dpage);
if (spage) {
*dma_addr = dma_map_page(dev, spage, 0, page_size(spage),
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, *dma_addr))
goto out_free_page;
if (drm->dmem->migrate.copy_func(drm, page_size(spage),
NOUVEAU_APER_VRAM, paddr, NOUVEAU_APER_HOST, *dma_addr))
goto out_dma_unmap;
} else {
*dma_addr = DMA_MAPPING_ERROR;
if (drm->dmem->migrate.clear_func(drm, page_size(dpage),
NOUVEAU_APER_VRAM, paddr))
goto out_free_page;
}
*pfn = NVIF_VMM_PFNMAP_V0_V | NVIF_VMM_PFNMAP_V0_VRAM |
((paddr >> PAGE_SHIFT) << NVIF_VMM_PFNMAP_V0_ADDR_SHIFT);
if (src & MIGRATE_PFN_WRITE)
*pfn |= NVIF_VMM_PFNMAP_V0_W;
return migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
out_dma_unmap:
dma_unmap_page(dev, *dma_addr, PAGE_SIZE, DMA_BIDIRECTIONAL);
out_free_page:
nouveau_dmem_page_free_locked(drm, dpage);
out:
*pfn = NVIF_VMM_PFNMAP_V0_NONE;
return 0;
}
static void nouveau_dmem_migrate_chunk(struct nouveau_drm *drm,
struct nouveau_svmm *svmm, struct migrate_vma *args,
dma_addr_t *dma_addrs, u64 *pfns)
{
struct nouveau_fence *fence;
unsigned long addr = args->start, nr_dma = 0, i;
for (i = 0; addr < args->end; i++) {
args->dst[i] = nouveau_dmem_migrate_copy_one(drm, args->src[i],
dma_addrs + nr_dma, pfns + i);
if (!dma_mapping_error(drm->dev->dev, dma_addrs[nr_dma]))
nr_dma++;
addr += PAGE_SIZE;
}
nouveau_fence_new(drm->dmem->migrate.chan, false, &fence);
migrate_vma_pages(args);
nouveau_dmem_fence_done(&fence);
nouveau_pfns_map(svmm, args->vma->vm_mm, args->start, pfns, i);
while (nr_dma--) {
dma_unmap_page(drm->dev->dev, dma_addrs[nr_dma], PAGE_SIZE,
DMA_BIDIRECTIONAL);
}
migrate_vma_finalize(args);
}
int
nouveau_dmem_migrate_vma(struct nouveau_drm *drm,
struct nouveau_svmm *svmm,
struct vm_area_struct *vma,
unsigned long start,
unsigned long end)
{
unsigned long npages = (end - start) >> PAGE_SHIFT;
unsigned long max = min(SG_MAX_SINGLE_ALLOC, npages);
dma_addr_t *dma_addrs;
struct migrate_vma args = {
.vma = vma,
.start = start,
};
unsigned long i;
u64 *pfns;
int ret = -ENOMEM;
if (drm->dmem == NULL)
return -ENODEV;
args.src = kcalloc(max, sizeof(*args.src), GFP_KERNEL);
if (!args.src)
goto out;
args.dst = kcalloc(max, sizeof(*args.dst), GFP_KERNEL);
if (!args.dst)
goto out_free_src;
dma_addrs = kmalloc_array(max, sizeof(*dma_addrs), GFP_KERNEL);
if (!dma_addrs)
goto out_free_dst;
pfns = nouveau_pfns_alloc(max);
if (!pfns)
goto out_free_dma;
for (i = 0; i < npages; i += max) {
args.end = start + (max << PAGE_SHIFT);
ret = migrate_vma_setup(&args);
if (ret)
goto out_free_pfns;
if (args.cpages)
nouveau_dmem_migrate_chunk(drm, svmm, &args, dma_addrs,
pfns);
args.start = args.end;
}
ret = 0;
out_free_pfns:
nouveau_pfns_free(pfns);
out_free_dma:
kfree(dma_addrs);
out_free_dst:
kfree(args.dst);
out_free_src:
kfree(args.src);
out:
return ret;
}