/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
*/
/*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/slab.h>
#include <linux/sysrq.h>
#include <drm/drm_drv.h>
#include "display/intel_display_irq.h"
#include "display/intel_display_types.h"
#include "display/intel_hotplug.h"
#include "display/intel_hotplug_irq.h"
#include "display/intel_lpe_audio.h"
#include "display/intel_psr_regs.h"
#include "gt/intel_breadcrumbs.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_irq.h"
#include "gt/intel_gt_pm_irq.h"
#include "gt/intel_gt_regs.h"
#include "gt/intel_rps.h"
#include "i915_driver.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
/**
* DOC: interrupt handling
*
* These functions provide the basic support for enabling and disabling the
* interrupt handling support. There's a lot more functionality in i915_irq.c
* and related files, but that will be described in separate chapters.
*/
/*
* Interrupt statistic for PMU. Increments the counter only if the
* interrupt originated from the GPU so interrupts from a device which
* shares the interrupt line are not accounted.
*/
static inline void pmu_irq_stats(struct drm_i915_private *i915,
irqreturn_t res)
{
if (unlikely(res != IRQ_HANDLED))
return;
/*
* A clever compiler translates that into INC. A not so clever one
* should at least prevent store tearing.
*/
WRITE_ONCE(i915->pmu.irq_count, i915->pmu.irq_count + 1);
}
void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
i915_reg_t iir, i915_reg_t ier)
{
intel_uncore_write(uncore, imr, 0xffffffff);
intel_uncore_posting_read(uncore, imr);
intel_uncore_write(uncore, ier, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
intel_uncore_write(uncore, iir, 0xffffffff);
intel_uncore_posting_read(uncore, iir);
}
static void gen2_irq_reset(struct intel_uncore *uncore)
{
intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IMR);
intel_uncore_write16(uncore, GEN2_IER, 0);
/* IIR can theoretically queue up two events. Be paranoid. */
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
/*
* We should clear IMR at preinstall/uninstall, and just check at postinstall.
*/
void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
{
u32 val = intel_uncore_read(uncore, reg);
if (val == 0)
return;
drm_WARN(&uncore->i915->drm, 1,
"Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(reg), val);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
intel_uncore_write(uncore, reg, 0xffffffff);
intel_uncore_posting_read(uncore, reg);
}
static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
{
u16 val = intel_uncore_read16(uncore, GEN2_IIR);
if (val == 0)
return;
drm_WARN(&uncore->i915->drm, 1,
"Interrupt register 0x%x is not zero: 0x%08x\n",
i915_mmio_reg_offset(GEN2_IIR), val);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
intel_uncore_posting_read16(uncore, GEN2_IIR);
}
void gen3_irq_init(struct intel_uncore *uncore,
i915_reg_t imr, u32 imr_val,
i915_reg_t ier, u32 ier_val,
i915_reg_t iir)
{
gen3_assert_iir_is_zero(uncore, iir);
intel_uncore_write(uncore, ier, ier_val);
intel_uncore_write(uncore, imr, imr_val);
intel_uncore_posting_read(uncore, imr);
}
static void gen2_irq_init(struct intel_uncore *uncore,
u32 imr_val, u32 ier_val)
{
gen2_assert_iir_is_zero(uncore);
intel_uncore_write16(uncore, GEN2_IER, ier_val);
intel_uncore_write16(uncore, GEN2_IMR, imr_val);
intel_uncore_posting_read16(uncore, GEN2_IMR);
}
/**
* ivb_parity_work - Workqueue called when a parity error interrupt
* occurred.
* @work: workqueue struct
*
* Doesn't actually do anything except notify userspace. As a consequence of
* this event, userspace should try to remap the bad rows since statistically
* it is likely the same row is more likely to go bad again.
*/
static void ivb_parity_work(struct work_struct *work)
{
struct drm_i915_private *dev_priv =
container_of(work, typeof(*dev_priv), l3_parity.error_work);
struct intel_gt *gt = to_gt(dev_priv);
u32 error_status, row, bank, subbank;
char *parity_event[6];
u32 misccpctl;
u8 slice = 0;
/* We must turn off DOP level clock gating to access the L3 registers.
* In order to prevent a get/put style interface, acquire struct mutex
* any time we access those registers.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
/* If we've screwed up tracking, just let the interrupt fire again */
if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
goto out;
misccpctl = intel_uncore_rmw(&dev_priv->uncore, GEN7_MISCCPCTL,
GEN7_DOP_CLOCK_GATE_ENABLE, 0);
intel_uncore_posting_read(&dev_priv->uncore, GEN7_MISCCPCTL);
while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
i915_reg_t reg;
slice--;
if (drm_WARN_ON_ONCE(&dev_priv->drm,
slice >= NUM_L3_SLICES(dev_priv)))
break;
dev_priv->l3_parity.which_slice &= ~(1<<slice);
reg = GEN7_L3CDERRST1(slice);
error_status = intel_uncore_read(&dev_priv->uncore, reg);
row = GEN7_PARITY_ERROR_ROW(error_status);
bank = GEN7_PARITY_ERROR_BANK(error_status);
subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
intel_uncore_write(&dev_priv->uncore, reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
intel_uncore_posting_read(&dev_priv->uncore, reg);
parity_event[0] = I915_L3_PARITY_UEVENT "=1";
parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
parity_event[5] = NULL;
kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
KOBJ_CHANGE, parity_event);
drm_dbg(&dev_priv->drm,
"Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
slice, row, bank, subbank);
kfree(parity_event[4]);
kfree(parity_event[3]);
kfree(parity_event[2]);
kfree(parity_event[1]);
}
intel_uncore_write(&dev_priv->uncore, GEN7_MISCCPCTL, misccpctl);
out:
drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
spin_lock_irq(gt->irq_lock);
gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
spin_unlock_irq(gt->irq_lock);
mutex_unlock(&dev_priv->drm.struct_mutex);
}
static irqreturn_t valleyview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 iir, gt_iir, pm_iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
gt_iir = intel_uncore_read(&dev_priv->uncore, GTIIR);
pm_iir = intel_uncore_read(&dev_priv->uncore, GEN6_PMIIR);
iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
if (gt_iir == 0 && pm_iir == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
* (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
* bits this time around.
*/
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
if (gt_iir)
intel_uncore_write(&dev_priv->uncore, GTIIR, gt_iir);
if (pm_iir)
intel_uncore_write(&dev_priv->uncore, GEN6_PMIIR, pm_iir);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
if (gt_iir)
gen6_gt_irq_handler(to_gt(dev_priv), gt_iir);
if (pm_iir)
gen6_rps_irq_handler(&to_gt(dev_priv)->rps, pm_iir);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static irqreturn_t cherryview_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 master_ctl, iir;
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 hotplug_status = 0;
u32 ier = 0;
master_ctl = intel_uncore_read(&dev_priv->uncore, GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
iir = intel_uncore_read(&dev_priv->uncore, VLV_IIR);
if (master_ctl == 0 && iir == 0)
break;
ret = IRQ_HANDLED;
/*
* Theory on interrupt generation, based on empirical evidence:
*
* x = ((VLV_IIR & VLV_IER) ||
* ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
* (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
*
* A CPU interrupt will only be raised when 'x' has a 0->1 edge.
* Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
* guarantee the CPU interrupt will be raised again even if we
* don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
* bits this time around.
*/
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, 0);
ier = intel_uncore_rmw(&dev_priv->uncore, VLV_IER, ~0, 0);
gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & (I915_LPE_PIPE_A_INTERRUPT |
I915_LPE_PIPE_B_INTERRUPT |
I915_LPE_PIPE_C_INTERRUPT))
intel_lpe_audio_irq_handler(dev_priv);
/*
* VLV_IIR is single buffered, and reflects the level
* from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
*/
if (iir)
intel_uncore_write(&dev_priv->uncore, VLV_IIR, iir);
intel_uncore_write(&dev_priv->uncore, VLV_IER, ier);
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
/*
* To handle irqs with the minimum potential races with fresh interrupts, we:
* 1 - Disable Master Interrupt Control.
* 2 - Find the source(s) of the interrupt.
* 3 - Clear the Interrupt Identity bits (IIR).
* 4 - Process the interrupt(s) that had bits set in the IIRs.
* 5 - Re-enable Master Interrupt Control.
*/
static irqreturn_t ilk_irq_handler(int irq, void *arg)
{
struct drm_i915_private *i915 = arg;
void __iomem * const regs = intel_uncore_regs(&i915->uncore);
u32 de_iir, gt_iir, de_ier, sde_ier = 0;
irqreturn_t ret = IRQ_NONE;
if (unlikely(!intel_irqs_enabled(i915)))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&i915->runtime_pm);
/* disable master interrupt before clearing iir */
de_ier = raw_reg_read(regs, DEIER);
raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
/* Disable south interrupts. We'll only write to SDEIIR once, so further
* interrupts will will be stored on its back queue, and then we'll be
* able to process them after we restore SDEIER (as soon as we restore
* it, we'll get an interrupt if SDEIIR still has something to process
* due to its back queue). */
if (!HAS_PCH_NOP(i915)) {
sde_ier = raw_reg_read(regs, SDEIER);
raw_reg_write(regs, SDEIER, 0);
}
/* Find, clear, then process each source of interrupt */
gt_iir = raw_reg_read(regs, GTIIR);
if (gt_iir) {
raw_reg_write(regs, GTIIR, gt_iir);
if (GRAPHICS_VER(i915) >= 6)
gen6_gt_irq_handler(to_gt(i915), gt_iir);
else
gen5_gt_irq_handler(to_gt(i915), gt_iir);
ret = IRQ_HANDLED;
}
de_iir = raw_reg_read(regs, DEIIR);
if (de_iir) {
raw_reg_write(regs, DEIIR, de_iir);
if (DISPLAY_VER(i915) >= 7)
ivb_display_irq_handler(i915, de_iir);
else
ilk_display_irq_handler(i915, de_iir);
ret = IRQ_HANDLED;
}
if (GRAPHICS_VER(i915) >= 6) {
u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
if (pm_iir) {
raw_reg_write(regs, GEN6_PMIIR, pm_iir);
gen6_rps_irq_handler(&to_gt(i915)->rps, pm_iir);
ret = IRQ_HANDLED;
}
}
raw_reg_write(regs, DEIER, de_ier);
if (sde_ier)
raw_reg_write(regs, SDEIER, sde_ier);
pmu_irq_stats(i915, ret);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
enable_rpm_wakeref_asserts(&i915->runtime_pm);
return ret;
}
static inline u32 gen8_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN8_MASTER_IRQ);
}
static inline void gen8_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
}
static irqreturn_t gen8_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
void __iomem * const regs = intel_uncore_regs(&dev_priv->uncore);
u32 master_ctl;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
master_ctl = gen8_master_intr_disable(regs);
if (!master_ctl) {
gen8_master_intr_enable(regs);
return IRQ_NONE;
}
/* Find, queue (onto bottom-halves), then clear each source */
gen8_gt_irq_handler(to_gt(dev_priv), master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & ~GEN8_GT_IRQS) {
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
gen8_de_irq_handler(dev_priv, master_ctl);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
}
gen8_master_intr_enable(regs);
pmu_irq_stats(dev_priv, IRQ_HANDLED);
return IRQ_HANDLED;
}
static inline u32 gen11_master_intr_disable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
/*
* Now with master disabled, get a sample of level indications
* for this interrupt. Indications will be cleared on related acks.
* New indications can and will light up during processing,
* and will generate new interrupt after enabling master.
*/
return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
}
static inline void gen11_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
}
static irqreturn_t gen11_irq_handler(int irq, void *arg)
{
struct drm_i915_private *i915 = arg;
void __iomem * const regs = intel_uncore_regs(&i915->uncore);
struct intel_gt *gt = to_gt(i915);
u32 master_ctl;
u32 gu_misc_iir;
if (!intel_irqs_enabled(i915))
return IRQ_NONE;
master_ctl = gen11_master_intr_disable(regs);
if (!master_ctl) {
gen11_master_intr_enable(regs);
return IRQ_NONE;
}
/* Find, queue (onto bottom-halves), then clear each source */
gen11_gt_irq_handler(gt, master_ctl);
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
if (master_ctl & GEN11_DISPLAY_IRQ)
gen11_display_irq_handler(i915);
gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
gen11_master_intr_enable(regs);
gen11_gu_misc_irq_handler(i915, gu_misc_iir);
pmu_irq_stats(i915, IRQ_HANDLED);
return IRQ_HANDLED;
}
static inline u32 dg1_master_intr_disable(void __iomem * const regs)
{
u32 val;
/* First disable interrupts */
raw_reg_write(regs, DG1_MSTR_TILE_INTR, 0);
/* Get the indication levels and ack the master unit */
val = raw_reg_read(regs, DG1_MSTR_TILE_INTR);
if (unlikely(!val))
return 0;
raw_reg_write(regs, DG1_MSTR_TILE_INTR, val);
return val;
}
static inline void dg1_master_intr_enable(void __iomem * const regs)
{
raw_reg_write(regs, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
}
static irqreturn_t dg1_irq_handler(int irq, void *arg)
{
struct drm_i915_private * const i915 = arg;
struct intel_gt *gt = to_gt(i915);
void __iomem * const regs = intel_uncore_regs(gt->uncore);
u32 master_tile_ctl, master_ctl;
u32 gu_misc_iir;
if (!intel_irqs_enabled(i915))
return IRQ_NONE;
master_tile_ctl = dg1_master_intr_disable(regs);
if (!master_tile_ctl) {
dg1_master_intr_enable(regs);
return IRQ_NONE;
}
/* FIXME: we only support tile 0 for now. */
if (master_tile_ctl & DG1_MSTR_TILE(0)) {
master_ctl = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, master_ctl);
} else {
drm_err(&i915->drm, "Tile not supported: 0x%08x\n",
master_tile_ctl);
dg1_master_intr_enable(regs);
return IRQ_NONE;
}
gen11_gt_irq_handler(gt, master_ctl);
if (master_ctl & GEN11_DISPLAY_IRQ)
gen11_display_irq_handler(i915);
gu_misc_iir = gen11_gu_misc_irq_ack(i915, master_ctl);
dg1_master_intr_enable(regs);
gen11_gu_misc_irq_handler(i915, gu_misc_iir);
pmu_irq_stats(i915, IRQ_HANDLED);
return IRQ_HANDLED;
}
static void ibx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (HAS_PCH_NOP(dev_priv))
return;
GEN3_IRQ_RESET(uncore, SDE);
if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
intel_uncore_write(&dev_priv->uncore, SERR_INT, 0xffffffff);
}
/* drm_dma.h hooks
*/
static void ilk_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
GEN3_IRQ_RESET(uncore, DE);
dev_priv->irq_mask = ~0u;
if (GRAPHICS_VER(dev_priv) == 7)
intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
if (IS_HASWELL(dev_priv)) {
intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
}
gen5_gt_irq_reset(to_gt(dev_priv));
ibx_irq_reset(dev_priv);
}
static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
{
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, 0);
intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
gen5_gt_irq_reset(to_gt(dev_priv));
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.irq.display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void gen8_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
gen8_master_intr_disable(intel_uncore_regs(uncore));
gen8_gt_irq_reset(to_gt(dev_priv));
gen8_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
if (HAS_PCH_SPLIT(dev_priv))
ibx_irq_reset(dev_priv);
}
static void gen11_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_gt *gt = to_gt(dev_priv);
struct intel_uncore *uncore = gt->uncore;
gen11_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
gen11_gt_irq_reset(gt);
gen11_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
}
static void dg1_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
struct intel_gt *gt;
unsigned int i;
dg1_master_intr_disable(intel_uncore_regs(&dev_priv->uncore));
for_each_gt(gt, dev_priv, i)
gen11_gt_irq_reset(gt);
gen11_display_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
intel_uncore_write(uncore, GEN11_GFX_MSTR_IRQ, ~0);
}
static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
intel_uncore_write(uncore, GEN8_MASTER_IRQ, 0);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
gen8_gt_irq_reset(to_gt(dev_priv));
GEN3_IRQ_RESET(uncore, GEN8_PCU_);
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.irq.display_irqs_enabled)
vlv_display_irq_reset(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen5_gt_irq_postinstall(to_gt(dev_priv));
ilk_de_irq_postinstall(dev_priv);
}
static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen5_gt_irq_postinstall(to_gt(dev_priv));
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.irq.display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
intel_uncore_write(&dev_priv->uncore, VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
intel_uncore_posting_read(&dev_priv->uncore, VLV_MASTER_IER);
}
static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen8_gt_irq_postinstall(to_gt(dev_priv));
gen8_de_irq_postinstall(dev_priv);
gen8_master_intr_enable(intel_uncore_regs(&dev_priv->uncore));
}
static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_gt *gt = to_gt(dev_priv);
struct intel_uncore *uncore = gt->uncore;
u32 gu_misc_masked = GEN11_GU_MISC_GSE;
gen11_gt_irq_postinstall(gt);
gen11_de_irq_postinstall(dev_priv);
GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
gen11_master_intr_enable(intel_uncore_regs(uncore));
intel_uncore_posting_read(&dev_priv->uncore, GEN11_GFX_MSTR_IRQ);
}
static void dg1_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 gu_misc_masked = GEN11_GU_MISC_GSE;
struct intel_gt *gt;
unsigned int i;
for_each_gt(gt, dev_priv, i)
gen11_gt_irq_postinstall(gt);
GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
dg1_de_irq_postinstall(dev_priv);
dg1_master_intr_enable(intel_uncore_regs(uncore));
intel_uncore_posting_read(uncore, DG1_MSTR_TILE_INTR);
}
static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
{
gen8_gt_irq_postinstall(to_gt(dev_priv));
spin_lock_irq(&dev_priv->irq_lock);
if (dev_priv->display.irq.display_irqs_enabled)
vlv_display_irq_postinstall(dev_priv);
spin_unlock_irq(&dev_priv->irq_lock);
intel_uncore_write(&dev_priv->uncore, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
intel_uncore_posting_read(&dev_priv->uncore, GEN8_MASTER_IRQ);
}
static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i9xx_pipestat_irq_reset(dev_priv);
gen2_irq_reset(uncore);
dev_priv->irq_mask = ~0u;
}
static u32 i9xx_error_mask(struct drm_i915_private *i915)
{
/*
* On gen2/3 FBC generates (seemingly spurious)
* display INVALID_GTT/INVALID_GTT_PTE table errors.
*
* Also gen3 bspec has this to say:
* "DISPA_INVALID_GTT_PTE
" [DevNapa] : Reserved. This bit does not reflect the page
" table error for the display plane A."
*
* Unfortunately we can't mask off individual PGTBL_ER bits,
* so we just have to mask off all page table errors via EMR.
*/
if (HAS_FBC(i915))
return ~I915_ERROR_MEMORY_REFRESH;
else
return ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u16 enable_mask;
intel_uncore_write16(uncore, EMR, i9xx_error_mask(dev_priv));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
gen2_irq_init(uncore, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
}
static void i8xx_error_irq_ack(struct drm_i915_private *i915,
u16 *eir, u16 *eir_stuck)
{
struct intel_uncore *uncore = &i915->uncore;
u16 emr;
*eir = intel_uncore_read16(uncore, EIR);
intel_uncore_write16(uncore, EIR, *eir);
*eir_stuck = intel_uncore_read16(uncore, EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = intel_uncore_read16(uncore, EMR);
intel_uncore_write16(uncore, EMR, 0xffff);
intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
}
static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
u16 eir, u16 eir_stuck)
{
drm_dbg(&dev_priv->drm, "Master Error: EIR 0x%04x\n", eir);
if (eir_stuck)
drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
eir_stuck);
drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n",
intel_uncore_read(&dev_priv->uncore, PGTBL_ER));
}
static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
u32 *eir, u32 *eir_stuck)
{
u32 emr;
*eir = intel_uncore_read(&dev_priv->uncore, EIR);
intel_uncore_write(&dev_priv->uncore, EIR, *eir);
*eir_stuck = intel_uncore_read(&dev_priv->uncore, EIR);
if (*eir_stuck == 0)
return;
/*
* Toggle all EMR bits to make sure we get an edge
* in the ISR master error bit if we don't clear
* all the EIR bits. Otherwise the edge triggered
* IIR on i965/g4x wouldn't notice that an interrupt
* is still pending. Also some EIR bits can't be
* cleared except by handling the underlying error
* (or by a GPU reset) so we mask any bit that
* remains set.
*/
emr = intel_uncore_read(&dev_priv->uncore, EMR);
intel_uncore_write(&dev_priv->uncore, EMR, 0xffffffff);
intel_uncore_write(&dev_priv->uncore, EMR, emr | *eir_stuck);
}
static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
u32 eir, u32 eir_stuck)
{
drm_dbg(&dev_priv->drm, "Master Error, EIR 0x%08x\n", eir);
if (eir_stuck)
drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
eir_stuck);
drm_dbg(&dev_priv->drm, "PGTBL_ER: 0x%08x\n",
intel_uncore_read(&dev_priv->uncore, PGTBL_ER));
}
static irqreturn_t i8xx_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u16 eir = 0, eir_stuck = 0;
u16 iir;
iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i915_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (I915_HAS_HOTPLUG(dev_priv)) {
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
intel_uncore_rmw(&dev_priv->uncore,
PORT_HOTPLUG_STAT(dev_priv), 0, 0);
}
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
dev_priv->irq_mask = ~0u;
}
static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
intel_uncore_write(uncore, EMR, i9xx_error_mask(dev_priv));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (I915_HAS_HOTPLUG(dev_priv)) {
/* Enable in IER... */
enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
/* and unmask in IMR */
dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
}
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static irqreturn_t i915_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (I915_HAS_HOTPLUG(dev_priv) &&
iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0], iir);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, ret);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
static void i965_irq_reset(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
intel_uncore_rmw(uncore, PORT_HOTPLUG_STAT(dev_priv), 0, 0);
i9xx_pipestat_irq_reset(dev_priv);
GEN3_IRQ_RESET(uncore, GEN2_);
dev_priv->irq_mask = ~0u;
}
static u32 i965_error_mask(struct drm_i915_private *i915)
{
/*
* Enable some error detection, note the instruction error mask
* bit is reserved, so we leave it masked.
*
* i965 FBC no longer generates spurious GTT errors,
* so we can always enable the page table errors.
*/
if (IS_G4X(i915))
return ~(GM45_ERROR_PAGE_TABLE |
GM45_ERROR_MEM_PRIV |
GM45_ERROR_CP_PRIV |
I915_ERROR_MEMORY_REFRESH);
else
return ~(I915_ERROR_PAGE_TABLE |
I915_ERROR_MEMORY_REFRESH);
}
static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
u32 enable_mask;
intel_uncore_write(uncore, EMR, i965_error_mask(dev_priv));
/* Unmask the interrupts that we always want on. */
dev_priv->irq_mask =
~(I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT);
enable_mask =
I915_ASLE_INTERRUPT |
I915_DISPLAY_PORT_INTERRUPT |
I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
I915_MASTER_ERROR_INTERRUPT |
I915_USER_INTERRUPT;
if (IS_G4X(dev_priv))
enable_mask |= I915_BSD_USER_INTERRUPT;
GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
/* Interrupt setup is already guaranteed to be single-threaded, this is
* just to make the assert_spin_locked check happy. */
spin_lock_irq(&dev_priv->irq_lock);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
spin_unlock_irq(&dev_priv->irq_lock);
i915_enable_asle_pipestat(dev_priv);
}
static irqreturn_t i965_irq_handler(int irq, void *arg)
{
struct drm_i915_private *dev_priv = arg;
irqreturn_t ret = IRQ_NONE;
if (!intel_irqs_enabled(dev_priv))
return IRQ_NONE;
/* IRQs are synced during runtime_suspend, we don't require a wakeref */
disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
do {
u32 pipe_stats[I915_MAX_PIPES] = {};
u32 eir = 0, eir_stuck = 0;
u32 hotplug_status = 0;
u32 iir;
iir = intel_uncore_read(&dev_priv->uncore, GEN2_IIR);
if (iir == 0)
break;
ret = IRQ_HANDLED;
if (iir & I915_DISPLAY_PORT_INTERRUPT)
hotplug_status = i9xx_hpd_irq_ack(dev_priv);
/* Call regardless, as some status bits might not be
* signalled in iir */
i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
intel_uncore_write(&dev_priv->uncore, GEN2_IIR, iir);
if (iir & I915_USER_INTERRUPT)
intel_engine_cs_irq(to_gt(dev_priv)->engine[RCS0],
iir);
if (iir & I915_BSD_USER_INTERRUPT)
intel_engine_cs_irq(to_gt(dev_priv)->engine[VCS0],
iir >> 25);
if (iir & I915_MASTER_ERROR_INTERRUPT)
i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
if (hotplug_status)
i9xx_hpd_irq_handler(dev_priv, hotplug_status);
i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
} while (0);
pmu_irq_stats(dev_priv, IRQ_HANDLED);
enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
return ret;
}
/**
* intel_irq_init - initializes irq support
* @dev_priv: i915 device instance
*
* This function initializes all the irq support including work items, timers
* and all the vtables. It does not setup the interrupt itself though.
*/
void intel_irq_init(struct drm_i915_private *dev_priv)
{
int i;
INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
for (i = 0; i < MAX_L3_SLICES; ++i)
dev_priv->l3_parity.remap_info[i] = NULL;
/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
if (HAS_GT_UC(dev_priv) && GRAPHICS_VER(dev_priv) < 11)
to_gt(dev_priv)->pm_guc_events = GUC_INTR_GUC2HOST << 16;
}
/**
* intel_irq_fini - deinitializes IRQ support
* @i915: i915 device instance
*
* This function deinitializes all the IRQ support.
*/
void intel_irq_fini(struct drm_i915_private *i915)
{
int i;
for (i = 0; i < MAX_L3_SLICES; ++i)
kfree(i915->l3_parity.remap_info[i]);
}
static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
return cherryview_irq_handler;
else if (IS_VALLEYVIEW(dev_priv))
return valleyview_irq_handler;
else if (GRAPHICS_VER(dev_priv) == 4)
return i965_irq_handler;
else if (GRAPHICS_VER(dev_priv) == 3)
return i915_irq_handler;
else
return i8xx_irq_handler;
} else {
if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
return dg1_irq_handler;
else if (GRAPHICS_VER(dev_priv) >= 11)
return gen11_irq_handler;
else if (GRAPHICS_VER(dev_priv) >= 8)
return gen8_irq_handler;
else
return ilk_irq_handler;
}
}
static void intel_irq_reset(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_reset(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_reset(dev_priv);
else if (GRAPHICS_VER(dev_priv) == 4)
i965_irq_reset(dev_priv);
else if (GRAPHICS_VER(dev_priv) == 3)
i915_irq_reset(dev_priv);
else
i8xx_irq_reset(dev_priv);
} else {
if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
dg1_irq_reset(dev_priv);
else if (GRAPHICS_VER(dev_priv) >= 11)
gen11_irq_reset(dev_priv);
else if (GRAPHICS_VER(dev_priv) >= 8)
gen8_irq_reset(dev_priv);
else
ilk_irq_reset(dev_priv);
}
}
static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
{
if (HAS_GMCH(dev_priv)) {
if (IS_CHERRYVIEW(dev_priv))
cherryview_irq_postinstall(dev_priv);
else if (IS_VALLEYVIEW(dev_priv))
valleyview_irq_postinstall(dev_priv);
else if (GRAPHICS_VER(dev_priv) == 4)
i965_irq_postinstall(dev_priv);
else if (GRAPHICS_VER(dev_priv) == 3)
i915_irq_postinstall(dev_priv);
else
i8xx_irq_postinstall(dev_priv);
} else {
if (GRAPHICS_VER_FULL(dev_priv) >= IP_VER(12, 10))
dg1_irq_postinstall(dev_priv);
else if (GRAPHICS_VER(dev_priv) >= 11)
gen11_irq_postinstall(dev_priv);
else if (GRAPHICS_VER(dev_priv) >= 8)
gen8_irq_postinstall(dev_priv);
else
ilk_irq_postinstall(dev_priv);
}
}
/**
* intel_irq_install - enables the hardware interrupt
* @dev_priv: i915 device instance
*
* This function enables the hardware interrupt handling, but leaves the hotplug
* handling still disabled. It is called after intel_irq_init().
*
* In the driver load and resume code we need working interrupts in a few places
* but don't want to deal with the hassle of concurrent probe and hotplug
* workers. Hence the split into this two-stage approach.
*/
int intel_irq_install(struct drm_i915_private *dev_priv)
{
int irq = to_pci_dev(dev_priv->drm.dev)->irq;
int ret;
/*
* We enable some interrupt sources in our postinstall hooks, so mark
* interrupts as enabled _before_ actually enabling them to avoid
* special cases in our ordering checks.
*/
dev_priv->runtime_pm.irqs_enabled = true;
dev_priv->irq_enabled = true;
intel_irq_reset(dev_priv);
ret = request_irq(irq, intel_irq_handler(dev_priv),
IRQF_SHARED, DRIVER_NAME, dev_priv);
if (ret < 0) {
dev_priv->irq_enabled = false;
return ret;
}
intel_irq_postinstall(dev_priv);
return ret;
}
/**
* intel_irq_uninstall - finilizes all irq handling
* @dev_priv: i915 device instance
*
* This stops interrupt and hotplug handling and unregisters and frees all
* resources acquired in the init functions.
*/
void intel_irq_uninstall(struct drm_i915_private *dev_priv)
{
int irq = to_pci_dev(dev_priv->drm.dev)->irq;
/*
* FIXME we can get called twice during driver probe
* error handling as well as during driver remove due to
* intel_display_driver_remove() calling us out of sequence.
* Would be nice if it didn't do that...
*/
if (!dev_priv->irq_enabled)
return;
dev_priv->irq_enabled = false;
intel_irq_reset(dev_priv);
free_irq(irq, dev_priv);
intel_hpd_cancel_work(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
}
/**
* intel_runtime_pm_disable_interrupts - runtime interrupt disabling
* @dev_priv: i915 device instance
*
* This function is used to disable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
{
intel_irq_reset(dev_priv);
dev_priv->runtime_pm.irqs_enabled = false;
intel_synchronize_irq(dev_priv);
}
/**
* intel_runtime_pm_enable_interrupts - runtime interrupt enabling
* @dev_priv: i915 device instance
*
* This function is used to enable interrupts at runtime, both in the runtime
* pm and the system suspend/resume code.
*/
void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.irqs_enabled = true;
intel_irq_reset(dev_priv);
intel_irq_postinstall(dev_priv);
}
bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
{
return dev_priv->runtime_pm.irqs_enabled;
}
void intel_synchronize_irq(struct drm_i915_private *i915)
{
synchronize_irq(to_pci_dev(i915->drm.dev)->irq);
}
void intel_synchronize_hardirq(struct drm_i915_private *i915)
{
synchronize_hardirq(to_pci_dev(i915->drm.dev)->irq);
}