/*
* GTT virtualization
*
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Zhi Wang <zhi.a.wang@intel.com>
* Zhenyu Wang <zhenyuw@linux.intel.com>
* Xiao Zheng <xiao.zheng@intel.com>
*
* Contributors:
* Min He <min.he@intel.com>
* Bing Niu <bing.niu@intel.com>
*
*/
#include "i915_drv.h"
#include "gvt.h"
#include "i915_pvinfo.h"
#include "trace.h"
static bool enable_out_of_sync = false;
static int preallocated_oos_pages = 8192;
/*
* validate a gm address and related range size,
* translate it to host gm address
*/
bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
{
if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
&& !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
addr, size);
return false;
}
return true;
}
/* translate a guest gmadr to host gmadr */
int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
{
if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
"invalid guest gmadr %llx\n", g_addr))
return -EACCES;
if (vgpu_gmadr_is_aperture(vgpu, g_addr))
*h_addr = vgpu_aperture_gmadr_base(vgpu)
+ (g_addr - vgpu_aperture_offset(vgpu));
else
*h_addr = vgpu_hidden_gmadr_base(vgpu)
+ (g_addr - vgpu_hidden_offset(vgpu));
return 0;
}
/* translate a host gmadr to guest gmadr */
int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
{
if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
"invalid host gmadr %llx\n", h_addr))
return -EACCES;
if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
*g_addr = vgpu_aperture_gmadr_base(vgpu)
+ (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
else
*g_addr = vgpu_hidden_gmadr_base(vgpu)
+ (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
return 0;
}
int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
unsigned long *h_index)
{
u64 h_addr;
int ret;
ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
&h_addr);
if (ret)
return ret;
*h_index = h_addr >> GTT_PAGE_SHIFT;
return 0;
}
int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
unsigned long *g_index)
{
u64 g_addr;
int ret;
ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
&g_addr);
if (ret)
return ret;
*g_index = g_addr >> GTT_PAGE_SHIFT;
return 0;
}
#define gtt_type_is_entry(type) \
(type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
&& type != GTT_TYPE_PPGTT_PTE_ENTRY \
&& type != GTT_TYPE_PPGTT_ROOT_ENTRY)
#define gtt_type_is_pt(type) \
(type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
#define gtt_type_is_pte_pt(type) \
(type == GTT_TYPE_PPGTT_PTE_PT)
#define gtt_type_is_root_pointer(type) \
(gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
#define gtt_init_entry(e, t, p, v) do { \
(e)->type = t; \
(e)->pdev = p; \
memcpy(&(e)->val64, &v, sizeof(v)); \
} while (0)
/*
* Mappings between GTT_TYPE* enumerations.
* Following information can be found according to the given type:
* - type of next level page table
* - type of entry inside this level page table
* - type of entry with PSE set
*
* If the given type doesn't have such a kind of information,
* e.g. give a l4 root entry type, then request to get its PSE type,
* give a PTE page table type, then request to get its next level page
* table type, as we know l4 root entry doesn't have a PSE bit,
* and a PTE page table doesn't have a next level page table type,
* GTT_TYPE_INVALID will be returned. This is useful when traversing a
* page table.
*/
struct gtt_type_table_entry {
int entry_type;
int next_pt_type;
int pse_entry_type;
};
#define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
[type] = { \
.entry_type = e_type, \
.next_pt_type = npt_type, \
.pse_entry_type = pse_type, \
}
static struct gtt_type_table_entry gtt_type_table[] = {
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PML4_ENTRY,
GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_PPGTT_PTE_4K_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_INVALID),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
GTT_TYPE_PPGTT_PDE_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_2M_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
GTT_TYPE_PPGTT_PDP_ENTRY,
GTT_TYPE_INVALID,
GTT_TYPE_PPGTT_PTE_1G_ENTRY),
GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
GTT_TYPE_GGTT_PTE,
GTT_TYPE_INVALID,
GTT_TYPE_INVALID),
};
static inline int get_next_pt_type(int type)
{
return gtt_type_table[type].next_pt_type;
}
static inline int get_entry_type(int type)
{
return gtt_type_table[type].entry_type;
}
static inline int get_pse_type(int type)
{
return gtt_type_table[type].pse_entry_type;
}
static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
{
void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
return readq(addr);
}
static void gtt_invalidate(struct drm_i915_private *dev_priv)
{
mmio_hw_access_pre(dev_priv);
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
mmio_hw_access_post(dev_priv);
}
static void write_pte64(struct drm_i915_private *dev_priv,
unsigned long index, u64 pte)
{
void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
writeq(pte, addr);
}
static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
struct intel_gvt_gtt_entry *e,
unsigned long index, bool hypervisor_access, unsigned long gpa,
struct intel_vgpu *vgpu)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (WARN_ON(info->gtt_entry_size != 8))
return e;
if (hypervisor_access) {
ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
(index << info->gtt_entry_size_shift),
&e->val64, 8);
WARN_ON(ret);
} else if (!pt) {
e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
} else {
e->val64 = *((u64 *)pt + index);
}
return e;
}
static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
struct intel_gvt_gtt_entry *e,
unsigned long index, bool hypervisor_access, unsigned long gpa,
struct intel_vgpu *vgpu)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (WARN_ON(info->gtt_entry_size != 8))
return e;
if (hypervisor_access) {
ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
(index << info->gtt_entry_size_shift),
&e->val64, 8);
WARN_ON(ret);
} else if (!pt) {
write_pte64(vgpu->gvt->dev_priv, index, e->val64);
} else {
*((u64 *)pt + index) = e->val64;
}
return e;
}
#define GTT_HAW 46
#define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
#define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
#define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
{
unsigned long pfn;
if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
pfn = (e->val64 & ADDR_1G_MASK) >> 12;
else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
pfn = (e->val64 & ADDR_2M_MASK) >> 12;
else
pfn = (e->val64 & ADDR_4K_MASK) >> 12;
return pfn;
}
static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
{
if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
e->val64 &= ~ADDR_1G_MASK;
pfn &= (ADDR_1G_MASK >> 12);
} else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
e->val64 &= ~ADDR_2M_MASK;
pfn &= (ADDR_2M_MASK >> 12);
} else {
e->val64 &= ~ADDR_4K_MASK;
pfn &= (ADDR_4K_MASK >> 12);
}
e->val64 |= (pfn << 12);
}
static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
{
/* Entry doesn't have PSE bit. */
if (get_pse_type(e->type) == GTT_TYPE_INVALID)
return false;
e->type = get_entry_type(e->type);
if (!(e->val64 & (1 << 7)))
return false;
e->type = get_pse_type(e->type);
return true;
}
static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
{
/*
* i915 writes PDP root pointer registers without present bit,
* it also works, so we need to treat root pointer entry
* specifically.
*/
if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
|| e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
return (e->val64 != 0);
else
return (e->val64 & (1 << 0));
}
static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
{
e->val64 &= ~(1 << 0);
}
/*
* Per-platform GMA routines.
*/
static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
{
unsigned long x = (gma >> GTT_PAGE_SHIFT);
trace_gma_index(__func__, gma, x);
return x;
}
#define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
{ \
unsigned long x = (exp); \
trace_gma_index(__func__, gma, x); \
return x; \
}
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
.get_entry = gtt_get_entry64,
.set_entry = gtt_set_entry64,
.clear_present = gtt_entry_clear_present,
.test_present = gen8_gtt_test_present,
.test_pse = gen8_gtt_test_pse,
.get_pfn = gen8_gtt_get_pfn,
.set_pfn = gen8_gtt_set_pfn,
};
static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
.gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
.gma_to_pte_index = gen8_gma_to_pte_index,
.gma_to_pde_index = gen8_gma_to_pde_index,
.gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
.gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
.gma_to_pml4_index = gen8_gma_to_pml4_index,
};
static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
struct intel_gvt_gtt_entry *m)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
unsigned long gfn, mfn;
*m = *p;
if (!ops->test_present(p))
return 0;
gfn = ops->get_pfn(p);
mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
if (mfn == INTEL_GVT_INVALID_ADDR) {
gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
return -ENXIO;
}
ops->set_pfn(m, mfn);
return 0;
}
/*
* MM helpers.
*/
struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
void *page_table, struct intel_gvt_gtt_entry *e,
unsigned long index)
{
struct intel_gvt *gvt = mm->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
e->type = mm->page_table_entry_type;
ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
ops->test_pse(e);
return e;
}
struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
void *page_table, struct intel_gvt_gtt_entry *e,
unsigned long index)
{
struct intel_gvt *gvt = mm->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
}
/*
* PPGTT shadow page table helpers.
*/
static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
struct intel_vgpu_ppgtt_spt *spt,
void *page_table, int type,
struct intel_gvt_gtt_entry *e, unsigned long index,
bool guest)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
e->type = get_entry_type(type);
if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
return e;
ops->get_entry(page_table, e, index, guest,
spt->guest_page.gfn << GTT_PAGE_SHIFT,
spt->vgpu);
ops->test_pse(e);
return e;
}
static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
struct intel_vgpu_ppgtt_spt *spt,
void *page_table, int type,
struct intel_gvt_gtt_entry *e, unsigned long index,
bool guest)
{
struct intel_gvt *gvt = spt->vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
return e;
return ops->set_entry(page_table, e, index, guest,
spt->guest_page.gfn << GTT_PAGE_SHIFT,
spt->vgpu);
}
#define ppgtt_get_guest_entry(spt, e, index) \
ppgtt_spt_get_entry(spt, NULL, \
spt->guest_page_type, e, index, true)
#define ppgtt_set_guest_entry(spt, e, index) \
ppgtt_spt_set_entry(spt, NULL, \
spt->guest_page_type, e, index, true)
#define ppgtt_get_shadow_entry(spt, e, index) \
ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
spt->shadow_page.type, e, index, false)
#define ppgtt_set_shadow_entry(spt, e, index) \
ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
spt->shadow_page.type, e, index, false)
/**
* intel_vgpu_init_guest_page - init a guest page data structure
* @vgpu: a vGPU
* @p: a guest page data structure
* @gfn: guest memory page frame number
* @handler: function will be called when target guest memory page has
* been modified.
*
* This function is called when user wants to track a guest memory page.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
struct intel_vgpu_guest_page *p,
unsigned long gfn,
int (*handler)(void *, u64, void *, int),
void *data)
{
INIT_HLIST_NODE(&p->node);
p->writeprotection = false;
p->gfn = gfn;
p->handler = handler;
p->data = data;
p->oos_page = NULL;
p->write_cnt = 0;
hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
return 0;
}
static int detach_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page);
/**
* intel_vgpu_clean_guest_page - release the resource owned by guest page data
* structure
* @vgpu: a vGPU
* @p: a tracked guest page
*
* This function is called when user tries to stop tracking a guest memory
* page.
*/
void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
struct intel_vgpu_guest_page *p)
{
if (!hlist_unhashed(&p->node))
hash_del(&p->node);
if (p->oos_page)
detach_oos_page(vgpu, p->oos_page);
if (p->writeprotection)
intel_gvt_hypervisor_unset_wp_page(vgpu, p);
}
/**
* intel_vgpu_find_guest_page - find a guest page data structure by GFN.
* @vgpu: a vGPU
* @gfn: guest memory page frame number
*
* This function is called when emulation logic wants to know if a trapped GFN
* is a tracked guest page.
*
* Returns:
* Pointer to guest page data structure, NULL if failed.
*/
struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
struct intel_vgpu *vgpu, unsigned long gfn)
{
struct intel_vgpu_guest_page *p;
hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
p, node, gfn) {
if (p->gfn == gfn)
return p;
}
return NULL;
}
static inline int init_shadow_page(struct intel_vgpu *vgpu,
struct intel_vgpu_shadow_page *p, int type)
{
struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(kdev, daddr)) {
gvt_vgpu_err("fail to map dma addr\n");
return -EINVAL;
}
p->vaddr = page_address(p->page);
p->type = type;
INIT_HLIST_NODE(&p->node);
p->mfn = daddr >> GTT_PAGE_SHIFT;
hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
return 0;
}
static inline void clean_shadow_page(struct intel_vgpu *vgpu,
struct intel_vgpu_shadow_page *p)
{
struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
PCI_DMA_BIDIRECTIONAL);
if (!hlist_unhashed(&p->node))
hash_del(&p->node);
}
static inline struct intel_vgpu_shadow_page *find_shadow_page(
struct intel_vgpu *vgpu, unsigned long mfn)
{
struct intel_vgpu_shadow_page *p;
hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
p, node, mfn) {
if (p->mfn == mfn)
return p;
}
return NULL;
}
#define guest_page_to_ppgtt_spt(ptr) \
container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
#define shadow_page_to_ppgtt_spt(ptr) \
container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
static void *alloc_spt(gfp_t gfp_mask)
{
struct intel_vgpu_ppgtt_spt *spt;
spt = kzalloc(sizeof(*spt), gfp_mask);
if (!spt)
return NULL;
spt->shadow_page.page = alloc_page(gfp_mask);
if (!spt->shadow_page.page) {
kfree(spt);
return NULL;
}
return spt;
}
static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
{
__free_page(spt->shadow_page.page);
kfree(spt);
}
static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
{
trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
clean_shadow_page(spt->vgpu, &spt->shadow_page);
intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
list_del_init(&spt->post_shadow_list);
free_spt(spt);
}
static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
{
struct hlist_node *n;
struct intel_vgpu_shadow_page *sp;
int i;
hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
}
static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
u64 pa, void *p_data, int bytes);
static int ppgtt_write_protection_handler(void *gp, u64 pa,
void *p_data, int bytes)
{
struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
if (!gpt->writeprotection)
return -EINVAL;
ret = ppgtt_handle_guest_write_page_table_bytes(gp,
pa, p_data, bytes);
if (ret)
return ret;
return ret;
}
static int reclaim_one_mm(struct intel_gvt *gvt);
static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
struct intel_vgpu *vgpu, int type, unsigned long gfn)
{
struct intel_vgpu_ppgtt_spt *spt = NULL;
int ret;
retry:
spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
if (!spt) {
if (reclaim_one_mm(vgpu->gvt))
goto retry;
gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
return ERR_PTR(-ENOMEM);
}
spt->vgpu = vgpu;
spt->guest_page_type = type;
atomic_set(&spt->refcount, 1);
INIT_LIST_HEAD(&spt->post_shadow_list);
/*
* TODO: guest page type may be different with shadow page type,
* when we support PSE page in future.
*/
ret = init_shadow_page(vgpu, &spt->shadow_page, type);
if (ret) {
gvt_vgpu_err("fail to initialize shadow page for spt\n");
goto err;
}
ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
gfn, ppgtt_write_protection_handler, NULL);
if (ret) {
gvt_vgpu_err("fail to initialize guest page for spt\n");
goto err;
}
trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
return spt;
err:
ppgtt_free_shadow_page(spt);
return ERR_PTR(ret);
}
static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
struct intel_vgpu *vgpu, unsigned long mfn)
{
struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
if (p)
return shadow_page_to_ppgtt_spt(p);
gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
return NULL;
}
#define pt_entry_size_shift(spt) \
((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
#define pt_entries(spt) \
(GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
#define for_each_present_guest_entry(spt, e, i) \
for (i = 0; i < pt_entries(spt); i++) \
if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
ppgtt_get_guest_entry(spt, e, i)))
#define for_each_present_shadow_entry(spt, e, i) \
for (i = 0; i < pt_entries(spt); i++) \
if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
ppgtt_get_shadow_entry(spt, e, i)))
static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
{
int v = atomic_read(&spt->refcount);
trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
atomic_inc(&spt->refcount);
}
static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
struct intel_gvt_gtt_entry *e)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s;
intel_gvt_gtt_type_t cur_pt_type;
if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
return -EINVAL;
if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
&& e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
cur_pt_type = get_next_pt_type(e->type) + 1;
if (ops->get_pfn(e) ==
vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
return 0;
}
s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
if (!s) {
gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
ops->get_pfn(e));
return -ENXIO;
}
return ppgtt_invalidate_shadow_page(s);
}
static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_entry e;
unsigned long index;
int ret;
int v = atomic_read(&spt->refcount);
trace_spt_change(spt->vgpu->id, "die", spt,
spt->guest_page.gfn, spt->shadow_page.type);
trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
if (atomic_dec_return(&spt->refcount) > 0)
return 0;
if (gtt_type_is_pte_pt(spt->shadow_page.type))
goto release;
for_each_present_shadow_entry(spt, &e, index) {
if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
gvt_vgpu_err("GVT doesn't support pse bit for now\n");
return -EINVAL;
}
ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
spt->vgpu, &e);
if (ret)
goto fail;
}
release:
trace_spt_change(spt->vgpu->id, "release", spt,
spt->guest_page.gfn, spt->shadow_page.type);
ppgtt_free_shadow_page(spt);
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
spt, e.val64, e.type);
return ret;
}
static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
{
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s = NULL;
struct intel_vgpu_guest_page *g;
int ret;
if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
ret = -EINVAL;
goto fail;
}
g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
if (g) {
s = guest_page_to_ppgtt_spt(g);
ppgtt_get_shadow_page(s);
} else {
int type = get_next_pt_type(we->type);
s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
if (IS_ERR(s)) {
ret = PTR_ERR(s);
goto fail;
}
ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
if (ret)
goto fail;
ret = ppgtt_populate_shadow_page(s);
if (ret)
goto fail;
trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
s->shadow_page.type);
}
return s;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
s, we->val64, we->type);
return ERR_PTR(ret);
}
static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
{
struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
se->type = ge->type;
se->val64 = ge->val64;
ops->set_pfn(se, s->shadow_page.mfn);
}
static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
{
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_vgpu_ppgtt_spt *s;
struct intel_gvt_gtt_entry se, ge;
unsigned long i;
int ret;
trace_spt_change(spt->vgpu->id, "born", spt,
spt->guest_page.gfn, spt->shadow_page.type);
if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
for_each_present_guest_entry(spt, &ge, i) {
ret = gtt_entry_p2m(vgpu, &ge, &se);
if (ret)
goto fail;
ppgtt_set_shadow_entry(spt, &se, i);
}
return 0;
}
for_each_present_guest_entry(spt, &ge, i) {
if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
gvt_vgpu_err("GVT doesn't support pse bit now\n");
ret = -EINVAL;
goto fail;
}
s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
if (IS_ERR(s)) {
ret = PTR_ERR(s);
goto fail;
}
ppgtt_get_shadow_entry(spt, &se, i);
ppgtt_generate_shadow_entry(&se, s, &ge);
ppgtt_set_shadow_entry(spt, &se, i);
}
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
spt, ge.val64, ge.type);
return ret;
}
static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
unsigned long index)
{
struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_gvt_gtt_entry e;
int ret;
ppgtt_get_shadow_entry(spt, &e, index);
trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
index);
if (!ops->test_present(&e))
return 0;
if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
return 0;
if (gtt_type_is_pt(get_next_pt_type(e.type))) {
struct intel_vgpu_ppgtt_spt *s =
ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
if (!s) {
gvt_vgpu_err("fail to find guest page\n");
ret = -ENXIO;
goto fail;
}
ret = ppgtt_invalidate_shadow_page(s);
if (ret)
goto fail;
}
ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
ppgtt_set_shadow_entry(spt, &e, index);
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
spt, e.val64, e.type);
return ret;
}
static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
struct intel_gvt_gtt_entry *we, unsigned long index)
{
struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_entry m;
struct intel_vgpu_ppgtt_spt *s;
int ret;
trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
we->val64, index);
if (gtt_type_is_pt(get_next_pt_type(we->type))) {
s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
if (IS_ERR(s)) {
ret = PTR_ERR(s);
goto fail;
}
ppgtt_get_shadow_entry(spt, &m, index);
ppgtt_generate_shadow_entry(&m, s, we);
ppgtt_set_shadow_entry(spt, &m, index);
} else {
ret = gtt_entry_p2m(vgpu, we, &m);
if (ret)
goto fail;
ppgtt_set_shadow_entry(spt, &m, index);
}
return 0;
fail:
gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
spt, we->val64, we->type);
return ret;
}
static int sync_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *spt =
guest_page_to_ppgtt_spt(oos_page->guest_page);
struct intel_gvt_gtt_entry old, new, m;
int index;
int ret;
trace_oos_change(vgpu->id, "sync", oos_page->id,
oos_page->guest_page, spt->guest_page_type);
old.type = new.type = get_entry_type(spt->guest_page_type);
old.val64 = new.val64 = 0;
for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
index++) {
ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
ops->get_entry(NULL, &new, index, true,
oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
if (old.val64 == new.val64
&& !test_and_clear_bit(index, spt->post_shadow_bitmap))
continue;
trace_oos_sync(vgpu->id, oos_page->id,
oos_page->guest_page, spt->guest_page_type,
new.val64, index);
ret = gtt_entry_p2m(vgpu, &new, &m);
if (ret)
return ret;
ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
ppgtt_set_shadow_entry(spt, &m, index);
}
oos_page->guest_page->write_cnt = 0;
list_del_init(&spt->post_shadow_list);
return 0;
}
static int detach_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_vgpu_ppgtt_spt *spt =
guest_page_to_ppgtt_spt(oos_page->guest_page);
trace_oos_change(vgpu->id, "detach", oos_page->id,
oos_page->guest_page, spt->guest_page_type);
oos_page->guest_page->write_cnt = 0;
oos_page->guest_page->oos_page = NULL;
oos_page->guest_page = NULL;
list_del_init(&oos_page->vm_list);
list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
return 0;
}
static int attach_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_oos_page *oos_page,
struct intel_vgpu_guest_page *gpt)
{
struct intel_gvt *gvt = vgpu->gvt;
int ret;
ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
oos_page->mem, GTT_PAGE_SIZE);
if (ret)
return ret;
oos_page->guest_page = gpt;
gpt->oos_page = oos_page;
list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
return 0;
}
static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
struct intel_vgpu_guest_page *gpt)
{
int ret;
ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
if (ret)
return ret;
trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
list_del_init(&gpt->oos_page->vm_list);
return sync_oos_page(vgpu, gpt->oos_page);
}
static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
struct intel_vgpu_guest_page *gpt)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
int ret;
WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
if (list_empty(>t->oos_page_free_list_head)) {
oos_page = container_of(gtt->oos_page_use_list_head.next,
struct intel_vgpu_oos_page, list);
ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
if (ret)
return ret;
ret = detach_oos_page(vgpu, oos_page);
if (ret)
return ret;
} else
oos_page = container_of(gtt->oos_page_free_list_head.next,
struct intel_vgpu_oos_page, list);
return attach_oos_page(vgpu, oos_page, gpt);
}
static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
struct intel_vgpu_guest_page *gpt)
{
struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
return -EINVAL;
trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
}
/**
* intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
* @vgpu: a vGPU
*
* This function is called before submitting a guest workload to host,
* to sync all the out-of-synced shadow for vGPU
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_oos_page *oos_page;
int ret;
if (!enable_out_of_sync)
return 0;
list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
oos_page = container_of(pos,
struct intel_vgpu_oos_page, vm_list);
ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
if (ret)
return ret;
}
return 0;
}
/*
* The heart of PPGTT shadow page table.
*/
static int ppgtt_handle_guest_write_page_table(
struct intel_vgpu_guest_page *gpt,
struct intel_gvt_gtt_entry *we, unsigned long index)
{
struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
int ret;
int new_present;
new_present = ops->test_present(we);
ret = ppgtt_handle_guest_entry_removal(gpt, index);
if (ret)
goto fail;
if (new_present) {
ret = ppgtt_handle_guest_entry_add(gpt, we, index);
if (ret)
goto fail;
}
return 0;
fail:
gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
spt, we->val64, we->type);
return ret;
}
static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
{
return enable_out_of_sync
&& gtt_type_is_pte_pt(
guest_page_to_ppgtt_spt(gpt)->guest_page_type)
&& gpt->write_cnt >= 2;
}
static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
unsigned long index)
{
set_bit(index, spt->post_shadow_bitmap);
if (!list_empty(&spt->post_shadow_list))
return;
list_add_tail(&spt->post_shadow_list,
&spt->vgpu->gtt.post_shadow_list_head);
}
/**
* intel_vgpu_flush_post_shadow - flush the post shadow transactions
* @vgpu: a vGPU
*
* This function is called before submitting a guest workload to host,
* to flush all the post shadows for a vGPU.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
{
struct list_head *pos, *n;
struct intel_vgpu_ppgtt_spt *spt;
struct intel_gvt_gtt_entry ge;
unsigned long index;
int ret;
list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
post_shadow_list);
for_each_set_bit(index, spt->post_shadow_bitmap,
GTT_ENTRY_NUM_IN_ONE_PAGE) {
ppgtt_get_guest_entry(spt, &ge, index);
ret = ppgtt_handle_guest_write_page_table(
&spt->guest_page, &ge, index);
if (ret)
return ret;
clear_bit(index, spt->post_shadow_bitmap);
}
list_del_init(&spt->post_shadow_list);
}
return 0;
}
static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
u64 pa, void *p_data, int bytes)
{
struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
struct intel_vgpu *vgpu = spt->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
struct intel_gvt_gtt_entry we;
unsigned long index;
int ret;
index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
ppgtt_get_guest_entry(spt, &we, index);
ops->test_pse(&we);
if (bytes == info->gtt_entry_size) {
ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
if (ret)
return ret;
} else {
if (!test_bit(index, spt->post_shadow_bitmap)) {
ret = ppgtt_handle_guest_entry_removal(gpt, index);
if (ret)
return ret;
}
ppgtt_set_post_shadow(spt, index);
}
if (!enable_out_of_sync)
return 0;
gpt->write_cnt++;
if (gpt->oos_page)
ops->set_entry(gpt->oos_page->mem, &we, index,
false, 0, vgpu);
if (can_do_out_of_sync(gpt)) {
if (!gpt->oos_page)
ppgtt_allocate_oos_page(vgpu, gpt);
ret = ppgtt_set_guest_page_oos(vgpu, gpt);
if (ret < 0)
return ret;
}
return 0;
}
/*
* mm page table allocation policy for bdw+
* - for ggtt, only virtual page table will be allocated.
* - for ppgtt, dedicated virtual/shadow page table will be allocated.
*/
static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
const struct intel_gvt_device_info *info = &gvt->device_info;
void *mem;
if (mm->type == INTEL_GVT_MM_PPGTT) {
mm->page_table_entry_cnt = 4;
mm->page_table_entry_size = mm->page_table_entry_cnt *
info->gtt_entry_size;
mem = kzalloc(mm->has_shadow_page_table ?
mm->page_table_entry_size * 2
: mm->page_table_entry_size, GFP_KERNEL);
if (!mem)
return -ENOMEM;
mm->virtual_page_table = mem;
if (!mm->has_shadow_page_table)
return 0;
mm->shadow_page_table = mem + mm->page_table_entry_size;
} else if (mm->type == INTEL_GVT_MM_GGTT) {
mm->page_table_entry_cnt =
(gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
mm->page_table_entry_size = mm->page_table_entry_cnt *
info->gtt_entry_size;
mem = vzalloc(mm->page_table_entry_size);
if (!mem)
return -ENOMEM;
mm->virtual_page_table = mem;
}
return 0;
}
static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
{
if (mm->type == INTEL_GVT_MM_PPGTT) {
kfree(mm->virtual_page_table);
} else if (mm->type == INTEL_GVT_MM_GGTT) {
if (mm->virtual_page_table)
vfree(mm->virtual_page_table);
}
mm->virtual_page_table = mm->shadow_page_table = NULL;
}
static void invalidate_mm(struct intel_vgpu_mm *mm)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
struct intel_gvt_gtt_entry se;
int i;
if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
return;
for (i = 0; i < mm->page_table_entry_cnt; i++) {
ppgtt_get_shadow_root_entry(mm, &se, i);
if (!ops->test_present(&se))
continue;
ppgtt_invalidate_shadow_page_by_shadow_entry(
vgpu, &se);
se.val64 = 0;
ppgtt_set_shadow_root_entry(mm, &se, i);
trace_gpt_change(vgpu->id, "destroy root pointer",
NULL, se.type, se.val64, i);
}
mm->shadowed = false;
}
/**
* intel_vgpu_destroy_mm - destroy a mm object
* @mm: a kref object
*
* This function is used to destroy a mm object for vGPU
*
*/
void intel_vgpu_destroy_mm(struct kref *mm_ref)
{
struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
if (!mm->initialized)
goto out;
list_del(&mm->list);
list_del(&mm->lru_list);
if (mm->has_shadow_page_table)
invalidate_mm(mm);
gtt->mm_free_page_table(mm);
out:
kfree(mm);
}
static int shadow_mm(struct intel_vgpu_mm *mm)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
struct intel_vgpu_ppgtt_spt *spt;
struct intel_gvt_gtt_entry ge, se;
int i;
int ret;
if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
return 0;
mm->shadowed = true;
for (i = 0; i < mm->page_table_entry_cnt; i++) {
ppgtt_get_guest_root_entry(mm, &ge, i);
if (!ops->test_present(&ge))
continue;
trace_gpt_change(vgpu->id, __func__, NULL,
ge.type, ge.val64, i);
spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
if (IS_ERR(spt)) {
gvt_vgpu_err("fail to populate guest root pointer\n");
ret = PTR_ERR(spt);
goto fail;
}
ppgtt_generate_shadow_entry(&se, spt, &ge);
ppgtt_set_shadow_root_entry(mm, &se, i);
trace_gpt_change(vgpu->id, "populate root pointer",
NULL, se.type, se.val64, i);
}
return 0;
fail:
invalidate_mm(mm);
return ret;
}
/**
* intel_vgpu_create_mm - create a mm object for a vGPU
* @vgpu: a vGPU
* @mm_type: mm object type, should be PPGTT or GGTT
* @virtual_page_table: page table root pointers. Could be NULL if user wants
* to populate shadow later.
* @page_table_level: describe the page table level of the mm object
* @pde_base_index: pde root pointer base in GGTT MMIO.
*
* This function is used to create a mm object for a vGPU.
*
* Returns:
* Zero on success, negative error code in pointer if failed.
*/
struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
int mm_type, void *virtual_page_table, int page_table_level,
u32 pde_base_index)
{
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_vgpu_mm *mm;
int ret;
mm = kzalloc(sizeof(*mm), GFP_KERNEL);
if (!mm) {
ret = -ENOMEM;
goto fail;
}
mm->type = mm_type;
if (page_table_level == 1)
mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
else if (page_table_level == 3)
mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
else if (page_table_level == 4)
mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
else {
WARN_ON(1);
ret = -EINVAL;
goto fail;
}
mm->page_table_level = page_table_level;
mm->pde_base_index = pde_base_index;
mm->vgpu = vgpu;
mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
kref_init(&mm->ref);
atomic_set(&mm->pincount, 0);
INIT_LIST_HEAD(&mm->list);
INIT_LIST_HEAD(&mm->lru_list);
list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
ret = gtt->mm_alloc_page_table(mm);
if (ret) {
gvt_vgpu_err("fail to allocate page table for mm\n");
goto fail;
}
mm->initialized = true;
if (virtual_page_table)
memcpy(mm->virtual_page_table, virtual_page_table,
mm->page_table_entry_size);
if (mm->has_shadow_page_table) {
ret = shadow_mm(mm);
if (ret)
goto fail;
list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
}
return mm;
fail:
gvt_vgpu_err("fail to create mm\n");
if (mm)
intel_gvt_mm_unreference(mm);
return ERR_PTR(ret);
}
/**
* intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
* @mm: a vGPU mm object
*
* This function is called when user doesn't want to use a vGPU mm object
*/
void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
{
if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
return;
atomic_dec(&mm->pincount);
}
/**
* intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
* @vgpu: a vGPU
*
* This function is called when user wants to use a vGPU mm object. If this
* mm object hasn't been shadowed yet, the shadow will be populated at this
* time.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
{
int ret;
if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
return 0;
atomic_inc(&mm->pincount);
if (!mm->shadowed) {
ret = shadow_mm(mm);
if (ret)
return ret;
}
list_del_init(&mm->lru_list);
list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
return 0;
}
static int reclaim_one_mm(struct intel_gvt *gvt)
{
struct intel_vgpu_mm *mm;
struct list_head *pos, *n;
list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, lru_list);
if (mm->type != INTEL_GVT_MM_PPGTT)
continue;
if (atomic_read(&mm->pincount))
continue;
list_del_init(&mm->lru_list);
invalidate_mm(mm);
return 1;
}
return 0;
}
/*
* GMA translation APIs.
*/
static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
struct intel_vgpu_ppgtt_spt *s;
if (WARN_ON(!mm->has_shadow_page_table))
return -EINVAL;
s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
if (!s)
return -ENXIO;
if (!guest)
ppgtt_get_shadow_entry(s, e, index);
else
ppgtt_get_guest_entry(s, e, index);
return 0;
}
/**
* intel_vgpu_gma_to_gpa - translate a gma to GPA
* @mm: mm object. could be a PPGTT or GGTT mm object
* @gma: graphics memory address in this mm object
*
* This function is used to translate a graphics memory address in specific
* graphics memory space to guest physical address.
*
* Returns:
* Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
*/
unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
{
struct intel_vgpu *vgpu = mm->vgpu;
struct intel_gvt *gvt = vgpu->gvt;
struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
unsigned long gpa = INTEL_GVT_INVALID_ADDR;
unsigned long gma_index[4];
struct intel_gvt_gtt_entry e;
int i, index;
int ret;
if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
return INTEL_GVT_INVALID_ADDR;
if (mm->type == INTEL_GVT_MM_GGTT) {
if (!vgpu_gmadr_is_valid(vgpu, gma))
goto err;
ggtt_get_guest_entry(mm, &e,
gma_ops->gma_to_ggtt_pte_index(gma));
gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
+ (gma & ~GTT_PAGE_MASK);
trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
return gpa;
}
switch (mm->page_table_level) {
case 4:
ppgtt_get_shadow_root_entry(mm, &e, 0);
gma_index[0] = gma_ops->gma_to_pml4_index(gma);
gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
gma_index[2] = gma_ops->gma_to_pde_index(gma);
gma_index[3] = gma_ops->gma_to_pte_index(gma);
index = 4;
break;
case 3:
ppgtt_get_shadow_root_entry(mm, &e,
gma_ops->gma_to_l3_pdp_index(gma));
gma_index[0] = gma_ops->gma_to_pde_index(gma);
gma_index[1] = gma_ops->gma_to_pte_index(gma);
index = 2;
break;
case 2:
ppgtt_get_shadow_root_entry(mm, &e,
gma_ops->gma_to_pde_index(gma));
gma_index[0] = gma_ops->gma_to_pte_index(gma);
index = 1;
break;
default:
WARN_ON(1);
goto err;
}
/* walk into the shadow page table and get gpa from guest entry */
for (i = 0; i < index; i++) {
ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
(i == index - 1));
if (ret)
goto err;
}
gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
+ (gma & ~GTT_PAGE_MASK);
trace_gma_translate(vgpu->id, "ppgtt", 0,
mm->page_table_level, gma, gpa);
return gpa;
err:
gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
return INTEL_GVT_INVALID_ADDR;
}
static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
unsigned int off, void *p_data, unsigned int bytes)
{
struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
unsigned long index = off >> info->gtt_entry_size_shift;
struct intel_gvt_gtt_entry e;
if (bytes != 4 && bytes != 8)
return -EINVAL;
ggtt_get_guest_entry(ggtt_mm, &e, index);
memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
bytes);
return 0;
}
/**
* intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
* @vgpu: a vGPU
* @off: register offset
* @p_data: data will be returned to guest
* @bytes: data length
*
* This function is used to emulate the GTT MMIO register read
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
off -= info->gtt_start_offset;
ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
return ret;
}
static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
struct intel_gvt *gvt = vgpu->gvt;
const struct intel_gvt_device_info *info = &gvt->device_info;
struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
unsigned long gma;
struct intel_gvt_gtt_entry e, m;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
gma = g_gtt_index << GTT_PAGE_SHIFT;
/* the VM may configure the whole GM space when ballooning is used */
if (!vgpu_gmadr_is_valid(vgpu, gma))
return 0;
ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
bytes);
if (ops->test_present(&e)) {
ret = gtt_entry_p2m(vgpu, &e, &m);
if (ret) {
gvt_vgpu_err("fail to translate guest gtt entry\n");
/* guest driver may read/write the entry when partial
* update the entry in this situation p2m will fail
* settting the shadow entry to point to a scratch page
*/
ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
}
} else {
m = e;
ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
}
ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
gtt_invalidate(gvt->dev_priv);
ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
return 0;
}
/*
* intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
* @vgpu: a vGPU
* @off: register offset
* @p_data: data from guest write
* @bytes: data length
*
* This function is used to emulate the GTT MMIO register write
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
void *p_data, unsigned int bytes)
{
const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
int ret;
if (bytes != 4 && bytes != 8)
return -EINVAL;
off -= info->gtt_start_offset;
ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
return ret;
}
static int alloc_scratch_pages(struct intel_vgpu *vgpu,
intel_gvt_gtt_type_t type)
{
struct intel_vgpu_gtt *gtt = &vgpu->gtt;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
int page_entry_num = GTT_PAGE_SIZE >>
vgpu->gvt->device_info.gtt_entry_size_shift;
void *scratch_pt;
int i;
struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
return -EINVAL;
scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
if (!scratch_pt) {
gvt_vgpu_err("fail to allocate scratch page\n");
return -ENOMEM;
}
daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, daddr)) {
gvt_vgpu_err("fail to dmamap scratch_pt\n");
__free_page(virt_to_page(scratch_pt));
return -ENOMEM;
}
gtt->scratch_pt[type].page_mfn =
(unsigned long)(daddr >> GTT_PAGE_SHIFT);
gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
vgpu->id, type, gtt->scratch_pt[type].page_mfn);
/* Build the tree by full filled the scratch pt with the entries which
* point to the next level scratch pt or scratch page. The
* scratch_pt[type] indicate the scratch pt/scratch page used by the
* 'type' pt.
* e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
* GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
* is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
*/
if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
struct intel_gvt_gtt_entry se;
memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
se.type = get_entry_type(type - 1);
ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
/* The entry parameters like present/writeable/cache type
* set to the same as i915's scratch page tree.
*/
se.val64 |= _PAGE_PRESENT | _PAGE_RW;
if (type == GTT_TYPE_PPGTT_PDE_PT)
se.val64 |= PPAT_CACHED_INDEX;
for (i = 0; i < page_entry_num; i++)
ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
}
return 0;
}
static int release_scratch_page_tree(struct intel_vgpu *vgpu)
{
int i;
struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
if (vgpu->gtt.scratch_pt[i].page != NULL) {
daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
GTT_PAGE_SHIFT);
dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(vgpu->gtt.scratch_pt[i].page);
vgpu->gtt.scratch_pt[i].page = NULL;
vgpu->gtt.scratch_pt[i].page_mfn = 0;
}
}
return 0;
}
static int create_scratch_page_tree(struct intel_vgpu *vgpu)
{
int i, ret;
for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
ret = alloc_scratch_pages(vgpu, i);
if (ret)
goto err;
}
return 0;
err:
release_scratch_page_tree(vgpu);
return ret;
}
/**
* intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
* @vgpu: a vGPU
*
* This function is used to initialize per-vGPU graphics memory virtualization
* components.
*
* Returns:
* Zero on success, error code if failed.
*/
int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
{
struct intel_vgpu_gtt *gtt = &vgpu->gtt;
struct intel_vgpu_mm *ggtt_mm;
hash_init(gtt->guest_page_hash_table);
hash_init(gtt->shadow_page_hash_table);
INIT_LIST_HEAD(>t->mm_list_head);
INIT_LIST_HEAD(>t->oos_page_list_head);
INIT_LIST_HEAD(>t->post_shadow_list_head);
intel_vgpu_reset_ggtt(vgpu);
ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
NULL, 1, 0);
if (IS_ERR(ggtt_mm)) {
gvt_vgpu_err("fail to create mm for ggtt.\n");
return PTR_ERR(ggtt_mm);
}
gtt->ggtt_mm = ggtt_mm;
return create_scratch_page_tree(vgpu);
}
static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
{
struct list_head *pos, *n;
struct intel_vgpu_mm *mm;
list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, list);
if (mm->type == type) {
vgpu->gvt->gtt.mm_free_page_table(mm);
list_del(&mm->list);
list_del(&mm->lru_list);
kfree(mm);
}
}
}
/**
* intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
* @vgpu: a vGPU
*
* This function is used to clean up per-vGPU graphics memory virtualization
* components.
*
* Returns:
* Zero on success, error code if failed.
*/
void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
{
ppgtt_free_all_shadow_page(vgpu);
release_scratch_page_tree(vgpu);
intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
}
static void clean_spt_oos(struct intel_gvt *gvt)
{
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct list_head *pos, *n;
struct intel_vgpu_oos_page *oos_page;
WARN(!list_empty(>t->oos_page_use_list_head),
"someone is still using oos page\n");
list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
list_del(&oos_page->list);
kfree(oos_page);
}
}
static int setup_spt_oos(struct intel_gvt *gvt)
{
struct intel_gvt_gtt *gtt = &gvt->gtt;
struct intel_vgpu_oos_page *oos_page;
int i;
int ret;
INIT_LIST_HEAD(>t->oos_page_free_list_head);
INIT_LIST_HEAD(>t->oos_page_use_list_head);
for (i = 0; i < preallocated_oos_pages; i++) {
oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
if (!oos_page) {
ret = -ENOMEM;
goto fail;
}
INIT_LIST_HEAD(&oos_page->list);
INIT_LIST_HEAD(&oos_page->vm_list);
oos_page->id = i;
list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
}
gvt_dbg_mm("%d oos pages preallocated\n", i);
return 0;
fail:
clean_spt_oos(gvt);
return ret;
}
/**
* intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
* @vgpu: a vGPU
* @page_table_level: PPGTT page table level
* @root_entry: PPGTT page table root pointers
*
* This function is used to find a PPGTT mm object from mm object pool
*
* Returns:
* pointer to mm object on success, NULL if failed.
*/
struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
int page_table_level, void *root_entry)
{
struct list_head *pos;
struct intel_vgpu_mm *mm;
u64 *src, *dst;
list_for_each(pos, &vgpu->gtt.mm_list_head) {
mm = container_of(pos, struct intel_vgpu_mm, list);
if (mm->type != INTEL_GVT_MM_PPGTT)
continue;
if (mm->page_table_level != page_table_level)
continue;
src = root_entry;
dst = mm->virtual_page_table;
if (page_table_level == 3) {
if (src[0] == dst[0]
&& src[1] == dst[1]
&& src[2] == dst[2]
&& src[3] == dst[3])
return mm;
} else {
if (src[0] == dst[0])
return mm;
}
}
return NULL;
}
/**
* intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
* g2v notification
* @vgpu: a vGPU
* @page_table_level: PPGTT page table level
*
* This function is used to create a PPGTT mm object from a guest to GVT-g
* notification.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
int page_table_level)
{
u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
struct intel_vgpu_mm *mm;
if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
return -EINVAL;
mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
if (mm) {
intel_gvt_mm_reference(mm);
} else {
mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
pdp, page_table_level, 0);
if (IS_ERR(mm)) {
gvt_vgpu_err("fail to create mm\n");
return PTR_ERR(mm);
}
}
return 0;
}
/**
* intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
* g2v notification
* @vgpu: a vGPU
* @page_table_level: PPGTT page table level
*
* This function is used to create a PPGTT mm object from a guest to GVT-g
* notification.
*
* Returns:
* Zero on success, negative error code if failed.
*/
int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
int page_table_level)
{
u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
struct intel_vgpu_mm *mm;
if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
return -EINVAL;
mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
if (!mm) {
gvt_vgpu_err("fail to find ppgtt instance.\n");
return -EINVAL;
}
intel_gvt_mm_unreference(mm);
return 0;
}
/**
* intel_gvt_init_gtt - initialize mm components of a GVT device
* @gvt: GVT device
*
* This function is called at the initialization stage, to initialize
* the mm components of a GVT device.
*
* Returns:
* zero on success, negative error code if failed.
*/
int intel_gvt_init_gtt(struct intel_gvt *gvt)
{
int ret;
void *page;
struct device *dev = &gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr;
gvt_dbg_core("init gtt\n");
if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
|| IS_KABYLAKE(gvt->dev_priv)) {
gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
} else {
return -ENODEV;
}
page = (void *)get_zeroed_page(GFP_KERNEL);
if (!page) {
gvt_err("fail to allocate scratch ggtt page\n");
return -ENOMEM;
}
daddr = dma_map_page(dev, virt_to_page(page), 0,
4096, PCI_DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, daddr)) {
gvt_err("fail to dmamap scratch ggtt page\n");
__free_page(virt_to_page(page));
return -ENOMEM;
}
gvt->gtt.scratch_ggtt_page = virt_to_page(page);
gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
if (enable_out_of_sync) {
ret = setup_spt_oos(gvt);
if (ret) {
gvt_err("fail to initialize SPT oos\n");
return ret;
}
}
INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
return 0;
}
/**
* intel_gvt_clean_gtt - clean up mm components of a GVT device
* @gvt: GVT device
*
* This function is called at the driver unloading stage, to clean up the
* the mm components of a GVT device.
*
*/
void intel_gvt_clean_gtt(struct intel_gvt *gvt)
{
struct device *dev = &gvt->dev_priv->drm.pdev->dev;
dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
GTT_PAGE_SHIFT);
dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
__free_page(gvt->gtt.scratch_ggtt_page);
if (enable_out_of_sync)
clean_spt_oos(gvt);
}
/**
* intel_vgpu_reset_ggtt - reset the GGTT entry
* @vgpu: a vGPU
*
* This function is called at the vGPU create stage
* to reset all the GGTT entries.
*
*/
void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
{
struct intel_gvt *gvt = vgpu->gvt;
struct drm_i915_private *dev_priv = gvt->dev_priv;
struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
u32 index;
u32 offset;
u32 num_entries;
struct intel_gvt_gtt_entry e;
memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
e.type = GTT_TYPE_GGTT_PTE;
ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
e.val64 |= _PAGE_PRESENT;
index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
for (offset = 0; offset < num_entries; offset++)
ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
for (offset = 0; offset < num_entries; offset++)
ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
gtt_invalidate(dev_priv);
}
/**
* intel_vgpu_reset_gtt - reset the all GTT related status
* @vgpu: a vGPU
* @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
*
* This function is called from vfio core to reset reset all
* GTT related status, including GGTT, PPGTT, scratch page.
*
*/
void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
{
int i;
ppgtt_free_all_shadow_page(vgpu);
/* Shadow pages are only created when there is no page
* table tracking data, so remove page tracking data after
* removing the shadow pages.
*/
intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
if (!dmlr)
return;
intel_vgpu_reset_ggtt(vgpu);
/* clear scratch page for security */
for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
if (vgpu->gtt.scratch_pt[i].page != NULL)
memset(page_address(vgpu->gtt.scratch_pt[i].page),
0, PAGE_SIZE);
}
}