/* -*- c-basic-offset: 8 -*-
* fw-sbp2.c -- SBP2 driver (SCSI over IEEE1394)
*
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
/* I don't know why the SCSI stack doesn't define something like this... */
typedef void (*scsi_done_fn_t) (struct scsi_cmnd *);
static const char sbp2_driver_name[] = "sbp2";
struct sbp2_device {
struct fw_unit *unit;
struct fw_address_handler address_handler;
struct list_head orb_list;
u64 management_agent_address;
u64 command_block_agent_address;
u32 workarounds;
int login_id;
/* We cache these addresses and only update them once we've
* logged in or reconnected to the sbp2 device. That way, any
* IO to the device will automatically fail and get retried if
* it happens in a window where the device is not ready to
* handle it (e.g. after a bus reset but before we reconnect). */
int node_id;
int address_high;
int generation;
struct work_struct work;
struct Scsi_Host *scsi_host;
};
#define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
#define SBP2_MAX_SECTORS 255 /* Max sectors supported */
#define SBP2_ORB_NULL 0x80000000
#define SBP2_DIRECTION_TO_MEDIA 0x0
#define SBP2_DIRECTION_FROM_MEDIA 0x1
/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER 0x38
#define SBP2_COMMAND_SET 0x39
#define SBP2_COMMAND_SET_REVISION 0x3b
#define SBP2_FIRMWARE_REVISION 0x3c
/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
#define SBP2_WORKAROUND_INQUIRY_36 0x2
#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
#define SBP2_WORKAROUND_OVERRIDE 0x100
/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST 0x0
#define SBP2_QUERY_LOGINS_REQUEST 0x1
#define SBP2_RECONNECT_REQUEST 0x3
#define SBP2_SET_PASSWORD_REQUEST 0x4
#define SBP2_LOGOUT_REQUEST 0x7
#define SBP2_ABORT_TASK_REQUEST 0xb
#define SBP2_ABORT_TASK_SET 0xc
#define SBP2_LOGICAL_UNIT_RESET 0xe
#define SBP2_TARGET_RESET_REQUEST 0xf
/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE 0x00
#define SBP2_AGENT_RESET 0x04
#define SBP2_ORB_POINTER 0x08
#define SBP2_DOORBELL 0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE 0x0
#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
#define status_get_orb_high(v) ((v).status & 0xffff)
#define status_get_sbp_status(v) (((v).status >> 16) & 0xff)
#define status_get_len(v) (((v).status >> 24) & 0x07)
#define status_get_dead(v) (((v).status >> 27) & 0x01)
#define status_get_response(v) (((v).status >> 28) & 0x03)
#define status_get_source(v) (((v).status >> 30) & 0x03)
#define status_get_orb_low(v) ((v).orb_low)
#define status_get_data(v) ((v).data)
struct sbp2_status {
u32 status;
u32 orb_low;
u8 data[24];
};
struct sbp2_pointer {
u32 high;
u32 low;
};
struct sbp2_orb {
struct fw_transaction t;
dma_addr_t request_bus;
int rcode;
struct sbp2_pointer pointer;
void (*callback) (struct sbp2_orb * orb, struct sbp2_status * status);
struct list_head link;
};
#define management_orb_lun(v) ((v))
#define management_orb_function(v) ((v) << 16)
#define management_orb_reconnect(v) ((v) << 20)
#define management_orb_exclusive ((1) << 28)
#define management_orb_request_format(v) ((v) << 29)
#define management_orb_notify ((1) << 31)
#define management_orb_response_length(v) ((v))
#define management_orb_password_length(v) ((v) << 16)
struct sbp2_management_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer password;
struct sbp2_pointer response;
u32 misc;
u32 length;
struct sbp2_pointer status_fifo;
} request;
__be32 response[4];
dma_addr_t response_bus;
struct completion done;
struct sbp2_status status;
};
#define login_response_get_login_id(v) ((v).misc & 0xffff)
#define login_response_get_length(v) (((v).misc >> 16) & 0xffff)
struct sbp2_login_response {
u32 misc;
struct sbp2_pointer command_block_agent;
u32 reconnect_hold;
};
#define command_orb_data_size(v) ((v))
#define command_orb_page_size(v) ((v) << 16)
#define command_orb_page_table_present ((1) << 19)
#define command_orb_max_payload(v) ((v) << 20)
#define command_orb_speed(v) ((v) << 24)
#define command_orb_direction(v) ((v) << 27)
#define command_orb_request_format(v) ((v) << 29)
#define command_orb_notify ((1) << 31)
struct sbp2_command_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer next;
struct sbp2_pointer data_descriptor;
u32 misc;
u8 command_block[12];
} request;
struct scsi_cmnd *cmd;
scsi_done_fn_t done;
struct fw_unit *unit;
struct sbp2_pointer page_table[SG_ALL];
dma_addr_t page_table_bus;
dma_addr_t request_buffer_bus;
};
/*
* List of devices with known bugs.
*
* The firmware_revision field, masked with 0xffff00, is the best
* indicator for the type of bridge chip of a device. It yields a few
* false positives but this did not break correctly behaving devices
* so far. We use ~0 as a wildcard, since the 24 bit values we get
* from the config rom can never match that.
*/
static const struct {
u32 firmware_revision;
u32 model;
unsigned workarounds;
} sbp2_workarounds_table[] = {
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
.firmware_revision = 0x002800,
.model = 0x001010,
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
SBP2_WORKAROUND_MODE_SENSE_8,
},
/* Initio bridges, actually only needed for some older ones */ {
.firmware_revision = 0x000200,
.model = ~0,
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
},
/* Symbios bridge */ {
.firmware_revision = 0xa0b800,
.model = ~0,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/* There are iPods (2nd gen, 3rd gen) with model_id == 0, but
* these iPods do not feature the read_capacity bug according
* to one report. Read_capacity behaviour as well as model_id
* could change due to Apple-supplied firmware updates though. */
/* iPod 4th generation. */ {
.firmware_revision = 0x0a2700,
.model = 0x000021,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model = 0x000023,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod Photo */ {
.firmware_revision = 0x0a2700,
.model = 0x00007e,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
}
};
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
struct sbp2_device *sd = callback_data;
struct sbp2_orb *orb;
struct sbp2_status status;
size_t header_size;
unsigned long flags;
if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
length == 0 || length > sizeof status) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
header_size = min(length, 2 * sizeof(u32));
fw_memcpy_from_be32(&status, payload, header_size);
if (length > header_size)
memcpy(status.data, payload + 8, length - header_size);
if (status_get_source(status) == 2 || status_get_source(status) == 3) {
fw_notify("non-orb related status write, not handled\n");
fw_send_response(card, request, RCODE_COMPLETE);
return;
}
/* Lookup the orb corresponding to this status write. */
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(orb, &sd->orb_list, link) {
if (status_get_orb_high(status) == 0 &&
status_get_orb_low(status) == orb->request_bus) {
list_del(&orb->link);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&orb->link != &sd->orb_list)
orb->callback(orb, &status);
else
fw_error("status write for unknown orb\n");
fw_send_response(card, request, RCODE_COMPLETE);
}
static void
complete_transaction(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct sbp2_orb *orb = data;
unsigned long flags;
orb->rcode = rcode;
if (rcode != RCODE_COMPLETE) {
spin_lock_irqsave(&card->lock, flags);
list_del(&orb->link);
spin_unlock_irqrestore(&card->lock, flags);
orb->callback(orb, NULL);
}
}
static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
int node_id, int generation, u64 offset)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
unsigned long flags;
orb->pointer.high = 0;
orb->pointer.low = orb->request_bus;
fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof orb->pointer);
spin_lock_irqsave(&device->card->lock, flags);
list_add_tail(&orb->link, &sd->orb_list);
spin_unlock_irqrestore(&device->card->lock, flags);
fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
node_id, generation,
device->node->max_speed, offset,
&orb->pointer, sizeof orb->pointer,
complete_transaction, orb);
}
static void sbp2_cancel_orbs(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct sbp2_orb *orb, *next;
struct list_head list;
unsigned long flags;
INIT_LIST_HEAD(&list);
spin_lock_irqsave(&device->card->lock, flags);
list_splice_init(&sd->orb_list, &list);
spin_unlock_irqrestore(&device->card->lock, flags);
list_for_each_entry_safe(orb, next, &list, link) {
if (fw_cancel_transaction(device->card, &orb->t) == 0)
continue;
orb->rcode = RCODE_CANCELLED;
orb->callback(orb, NULL);
}
}
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
struct sbp2_management_orb *orb =
(struct sbp2_management_orb *)base_orb;
if (status)
memcpy(&orb->status, status, sizeof *status);
complete(&orb->done);
}
static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
int function, int lun, void *response)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct sbp2_management_orb *orb;
unsigned long timeout;
int retval = -ENOMEM;
orb = kzalloc(sizeof *orb, GFP_ATOMIC);
if (orb == NULL)
return -ENOMEM;
/* The sbp2 device is going to send a block read request to
* read out the request from host memory, so map it for
* dma. */
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof orb->request, DMA_TO_DEVICE);
if (orb->base.request_bus == 0)
goto out;
orb->response_bus =
dma_map_single(device->card->device, &orb->response,
sizeof orb->response, DMA_FROM_DEVICE);
if (orb->response_bus == 0)
goto out;
orb->request.response.high = 0;
orb->request.response.low = orb->response_bus;
orb->request.misc =
management_orb_notify |
management_orb_function(function) |
management_orb_lun(lun);
orb->request.length =
management_orb_response_length(sizeof orb->response);
orb->request.status_fifo.high = sd->address_handler.offset >> 32;
orb->request.status_fifo.low = sd->address_handler.offset;
/* FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
* login and 1 second reconnect time. The reconnect setting
* is probably fine, but the exclusive login should be an
* option. */
if (function == SBP2_LOGIN_REQUEST) {
orb->request.misc |=
management_orb_exclusive |
management_orb_reconnect(0);
}
fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
init_completion(&orb->done);
orb->base.callback = complete_management_orb;
sbp2_send_orb(&orb->base, unit,
node_id, generation, sd->management_agent_address);
timeout = wait_for_completion_timeout(&orb->done, 10 * HZ);
/* FIXME: Handle bus reset race here. */
retval = -EIO;
if (orb->base.rcode != RCODE_COMPLETE) {
fw_error("management write failed, rcode 0x%02x\n",
orb->base.rcode);
goto out;
}
if (timeout == 0) {
fw_error("orb reply timed out, rcode=0x%02x\n",
orb->base.rcode);
goto out;
}
if (status_get_response(orb->status) != 0 ||
status_get_sbp_status(orb->status) != 0) {
fw_error("error status: %d:%d\n",
status_get_response(orb->status),
status_get_sbp_status(orb->status));
goto out;
}
retval = 0;
out:
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof orb->request, DMA_TO_DEVICE);
dma_unmap_single(device->card->device, orb->response_bus,
sizeof orb->response, DMA_FROM_DEVICE);
if (response)
fw_memcpy_from_be32(response,
orb->response, sizeof orb->response);
kfree(orb);
return retval;
}
static void
complete_agent_reset_write(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct fw_transaction *t = data;
fw_notify("agent reset write rcode=%d\n", rcode);
kfree(t);
}
static int sbp2_agent_reset(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct fw_transaction *t;
static u32 zero;
t = kzalloc(sizeof *t, GFP_ATOMIC);
if (t == NULL)
return -ENOMEM;
fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
sd->node_id, sd->generation, SCODE_400,
sd->command_block_agent_address + SBP2_AGENT_RESET,
&zero, sizeof zero, complete_agent_reset_write, t);
return 0;
}
static int add_scsi_devices(struct fw_unit *unit);
static void remove_scsi_devices(struct fw_unit *unit);
static int sbp2_probe(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd;
struct fw_csr_iterator ci;
int i, key, value, lun, retval;
int node_id, generation, local_node_id;
struct sbp2_login_response response;
u32 model, firmware_revision;
sd = kzalloc(sizeof *sd, GFP_KERNEL);
if (sd == NULL)
return -ENOMEM;
unit->device.driver_data = sd;
sd->unit = unit;
INIT_LIST_HEAD(&sd->orb_list);
sd->address_handler.length = 0x100;
sd->address_handler.address_callback = sbp2_status_write;
sd->address_handler.callback_data = sd;
if (fw_core_add_address_handler(&sd->address_handler,
&fw_high_memory_region) < 0) {
kfree(sd);
return -EBUSY;
}
if (fw_device_enable_phys_dma(device) < 0) {
fw_core_remove_address_handler(&sd->address_handler);
kfree(sd);
return -EBUSY;
}
/* Scan unit directory to get management agent address,
* firmware revison and model. Initialize firmware_revision
* and model to values that wont match anything in our table. */
firmware_revision = 0xff000000;
model = 0xff000000;
fw_csr_iterator_init(&ci, unit->directory);
while (fw_csr_iterator_next(&ci, &key, &value)) {
switch (key) {
case CSR_DEPENDENT_INFO | CSR_OFFSET:
sd->management_agent_address =
0xfffff0000000ULL + 4 * value;
break;
case SBP2_FIRMWARE_REVISION:
firmware_revision = value;
break;
case CSR_MODEL:
model = value;
break;
}
}
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
if (sbp2_workarounds_table[i].firmware_revision !=
(firmware_revision & 0xffffff00))
continue;
if (sbp2_workarounds_table[i].model != model &&
sbp2_workarounds_table[i].model != ~0)
continue;
sd->workarounds |= sbp2_workarounds_table[i].workarounds;
break;
}
if (sd->workarounds)
fw_notify("Workarounds for node %s: 0x%x "
"(firmware_revision 0x%06x, model_id 0x%06x)\n",
unit->device.bus_id,
sd->workarounds, firmware_revision, model);
/* FIXME: Make this work for multi-lun devices. */
lun = 0;
generation = device->card->generation;
node_id = device->node->node_id;
local_node_id = device->card->local_node->node_id;
/* FIXME: We should probably do this from a keventd callback
* and handle retries by rescheduling the work. */
if (sbp2_send_management_orb(unit, node_id, generation,
SBP2_LOGIN_REQUEST, lun, &response) < 0) {
fw_core_remove_address_handler(&sd->address_handler);
kfree(sd);
return -EBUSY;
}
sd->generation = generation;
sd->node_id = node_id;
sd->address_high = local_node_id << 16;
/* Get command block agent offset and login id. */
sd->command_block_agent_address =
((u64) response.command_block_agent.high << 32) |
response.command_block_agent.low;
sd->login_id = login_response_get_login_id(response);
fw_notify("logged in to sbp2 unit %s\n", unit->device.bus_id);
fw_notify(" - management_agent_address: 0x%012llx\n",
(unsigned long long) sd->management_agent_address);
fw_notify(" - command_block_agent_address: 0x%012llx\n",
(unsigned long long) sd->command_block_agent_address);
fw_notify(" - status write address: 0x%012llx\n",
(unsigned long long) sd->address_handler.offset);
#if 0
/* FIXME: The linux1394 sbp2 does this last step. */
sbp2_set_busy_timeout(scsi_id);
#endif
sbp2_agent_reset(unit);
retval = add_scsi_devices(unit);
if (retval < 0) {
sbp2_send_management_orb(unit, sd->node_id, sd->generation,
SBP2_LOGOUT_REQUEST, sd->login_id,
NULL);
fw_core_remove_address_handler(&sd->address_handler);
kfree(sd);
return retval;
}
return 0;
}
static int sbp2_remove(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct sbp2_device *sd = unit->device.driver_data;
sbp2_send_management_orb(unit, sd->node_id, sd->generation,
SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
remove_scsi_devices(unit);
fw_core_remove_address_handler(&sd->address_handler);
kfree(sd);
fw_notify("removed sbp2 unit %s\n", dev->bus_id);
return 0;
}
static void sbp2_reconnect(struct work_struct *work)
{
struct sbp2_device *sd = container_of(work, struct sbp2_device, work);
struct fw_unit *unit = sd->unit;
struct fw_device *device = fw_device(unit->device.parent);
int generation, node_id, local_node_id;
fw_notify("in sbp2_reconnect, reconnecting to unit %s\n",
unit->device.bus_id);
generation = device->card->generation;
node_id = device->node->node_id;
local_node_id = device->card->local_node->node_id;
sbp2_send_management_orb(unit, node_id, generation,
SBP2_RECONNECT_REQUEST, sd->login_id, NULL);
/* FIXME: handle reconnect failures. */
sbp2_cancel_orbs(unit);
sd->generation = generation;
sd->node_id = node_id;
sd->address_high = local_node_id << 16;
}
static void sbp2_update(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
fw_device_enable_phys_dma(device);
INIT_WORK(&sd->work, sbp2_reconnect);
schedule_work(&sd->work);
}
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
#define SBP2_SW_VERSION_ENTRY 0x00010483
static const struct fw_device_id sbp2_id_table[] = {
{
.match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
.version = SBP2_SW_VERSION_ENTRY,
},
{ }
};
static struct fw_driver sbp2_driver = {
.driver = {
.owner = THIS_MODULE,
.name = sbp2_driver_name,
.bus = &fw_bus_type,
.probe = sbp2_probe,
.remove = sbp2_remove,
},
.update = sbp2_update,
.id_table = sbp2_id_table,
};
static unsigned int sbp2_status_to_sense_data(u8 * sbp2_status, u8 * sense_data)
{
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[1];
sense_data[3] = sbp2_status[4];
sense_data[4] = sbp2_status[5];
sense_data[5] = sbp2_status[6];
sense_data[6] = sbp2_status[7];
sense_data[7] = 10;
sense_data[8] = sbp2_status[8];
sense_data[9] = sbp2_status[9];
sense_data[10] = sbp2_status[10];
sense_data[11] = sbp2_status[11];
sense_data[12] = sbp2_status[2];
sense_data[13] = sbp2_status[3];
sense_data[14] = sbp2_status[12];
sense_data[15] = sbp2_status[13];
switch (sbp2_status[0] & 0x3f) {
case SAM_STAT_GOOD:
return DID_OK;
case SAM_STAT_CHECK_CONDITION:
/* return CHECK_CONDITION << 1 | DID_OK << 16; */
return DID_OK;
case SAM_STAT_BUSY:
return DID_BUS_BUSY;
case SAM_STAT_CONDITION_MET:
case SAM_STAT_RESERVATION_CONFLICT:
case SAM_STAT_COMMAND_TERMINATED:
default:
return DID_ERROR;
}
}
static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
struct fw_unit *unit = orb->unit;
struct fw_device *device = fw_device(unit->device.parent);
struct scatterlist *sg;
int result;
if (status != NULL) {
if (status_get_dead(*status)) {
fw_notify("agent died, issuing agent reset\n");
sbp2_agent_reset(unit);
}
switch (status_get_response(*status)) {
case SBP2_STATUS_REQUEST_COMPLETE:
result = DID_OK;
break;
case SBP2_STATUS_TRANSPORT_FAILURE:
result = DID_BUS_BUSY;
break;
case SBP2_STATUS_ILLEGAL_REQUEST:
case SBP2_STATUS_VENDOR_DEPENDENT:
default:
result = DID_ERROR;
break;
}
if (result == DID_OK && status_get_len(*status) > 1)
result = sbp2_status_to_sense_data(status_get_data(*status),
orb->cmd->sense_buffer);
} else {
/* If the orb completes with status == NULL, something
* went wrong, typically a bus reset happened mid-orb
* or when sending the write (less likely). */
fw_notify("no command orb status, rcode=%d\n",
orb->base.rcode);
result = DID_ERROR;
}
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof orb->request, DMA_TO_DEVICE);
if (orb->cmd->use_sg > 0) {
sg = (struct scatterlist *)orb->cmd->request_buffer;
dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
orb->cmd->sc_data_direction);
}
if (orb->page_table_bus != 0)
dma_unmap_single(device->card->device, orb->page_table_bus,
sizeof orb->page_table_bus, DMA_TO_DEVICE);
if (orb->request_buffer_bus != 0)
dma_unmap_single(device->card->device, orb->request_buffer_bus,
sizeof orb->request_buffer_bus,
DMA_FROM_DEVICE);
orb->cmd->result = result << 16;
orb->done(orb->cmd);
kfree(orb);
}
static void sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
{
struct fw_unit *unit =
(struct fw_unit *)orb->cmd->device->host->hostdata[0];
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct scatterlist *sg;
int sg_len, l, i, j, count;
size_t size;
dma_addr_t sg_addr;
sg = (struct scatterlist *)orb->cmd->request_buffer;
count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
orb->cmd->sc_data_direction);
/* Handle the special case where there is only one element in
* the scatter list by converting it to an immediate block
* request. This is also a workaround for broken devices such
* as the second generation iPod which doesn't support page
* tables. */
if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
orb->request.data_descriptor.high = sd->address_high;
orb->request.data_descriptor.low = sg_dma_address(sg);
orb->request.misc |=
command_orb_data_size(sg_dma_len(sg));
return;
}
/* Convert the scatterlist to an sbp2 page table. If any
* scatterlist entries are too big for sbp2 we split the as we go. */
for (i = 0, j = 0; i < count; i++) {
sg_len = sg_dma_len(sg + i);
sg_addr = sg_dma_address(sg + i);
while (sg_len) {
l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
orb->page_table[j].low = sg_addr;
orb->page_table[j].high = (l << 16);
sg_addr += l;
sg_len -= l;
j++;
}
}
size = sizeof orb->page_table[0] * j;
/* The data_descriptor pointer is the one case where we need
* to fill in the node ID part of the address. All other
* pointers assume that the data referenced reside on the
* initiator (i.e. us), but data_descriptor can refer to data
* on other nodes so we need to put our ID in descriptor.high. */
orb->page_table_bus =
dma_map_single(device->card->device, orb->page_table,
size, DMA_TO_DEVICE);
orb->request.data_descriptor.high = sd->address_high;
orb->request.data_descriptor.low = orb->page_table_bus;
orb->request.misc |=
command_orb_page_table_present |
command_orb_data_size(j);
fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
}
static void sbp2_command_orb_map_buffer(struct sbp2_command_orb *orb)
{
struct fw_unit *unit =
(struct fw_unit *)orb->cmd->device->host->hostdata[0];
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
/* As for map_scatterlist, we need to fill in the high bits of
* the data_descriptor pointer. */
orb->request_buffer_bus =
dma_map_single(device->card->device,
orb->cmd->request_buffer,
orb->cmd->request_bufflen,
orb->cmd->sc_data_direction);
orb->request.data_descriptor.high = sd->address_high;
orb->request.data_descriptor.low = orb->request_buffer_bus;
orb->request.misc |=
command_orb_data_size(orb->cmd->request_bufflen);
}
/* SCSI stack integration */
static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct sbp2_command_orb *orb;
/* Bidirectional commands are not yet implemented, and unknown
* transfer direction not handled. */
if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
cmd->result = DID_ERROR << 16;
done(cmd);
return 0;
}
orb = kzalloc(sizeof *orb, GFP_ATOMIC);
if (orb == NULL) {
fw_notify("failed to alloc orb\n");
cmd->result = DID_NO_CONNECT << 16;
done(cmd);
return 0;
}
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof orb->request, DMA_TO_DEVICE);
orb->unit = unit;
orb->done = done;
orb->cmd = cmd;
orb->request.next.high = SBP2_ORB_NULL;
orb->request.next.low = 0x0;
/* At speed 100 we can do 512 bytes per packet, at speed 200,
* 1024 bytes per packet etc. The SBP-2 max_payload field
* specifies the max payload size as 2 ^ (max_payload + 2), so
* if we set this to max_speed + 7, we get the right value. */
orb->request.misc =
command_orb_max_payload(device->node->max_speed + 7) |
command_orb_speed(device->node->max_speed) |
command_orb_notify;
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
orb->request.misc |=
command_orb_direction(SBP2_DIRECTION_FROM_MEDIA);
else if (cmd->sc_data_direction == DMA_TO_DEVICE)
orb->request.misc |=
command_orb_direction(SBP2_DIRECTION_TO_MEDIA);
if (cmd->use_sg) {
sbp2_command_orb_map_scatterlist(orb);
} else if (cmd->request_bufflen > SBP2_MAX_SG_ELEMENT_LENGTH) {
/* FIXME: Need to split this into a sg list... but
* could we get the scsi or blk layer to do that by
* reporting our max supported block size? */
fw_error("command > 64k\n");
cmd->result = DID_ERROR << 16;
done(cmd);
return 0;
} else if (cmd->request_bufflen > 0) {
sbp2_command_orb_map_buffer(orb);
}
fw_memcpy_to_be32(&orb->request, &orb->request, sizeof orb->request);
memset(orb->request.command_block,
0, sizeof orb->request.command_block);
memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
orb->base.callback = complete_command_orb;
sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
sd->command_block_agent_address + SBP2_ORB_POINTER);
return 0;
}
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
struct sbp2_device *sd = unit->device.driver_data;
sdev->allow_restart = 1;
if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
sdev->inquiry_len = 36;
return 0;
}
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
struct fw_unit *unit = (struct fw_unit *)sdev->host->hostdata[0];
struct sbp2_device *sd = unit->device.driver_data;
sdev->use_10_for_rw = 1;
if (sdev->type == TYPE_ROM)
sdev->use_10_for_ms = 1;
if (sdev->type == TYPE_DISK &&
sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
sdev->skip_ms_page_8 = 1;
if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
sdev->fix_capacity = 1;
}
return 0;
}
/*
* Called by scsi stack when something has really gone wrong. Usually
* called when a command has timed-out for some reason.
*/
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
struct fw_unit *unit = (struct fw_unit *)cmd->device->host->hostdata[0];
fw_notify("sbp2_scsi_abort\n");
sbp2_cancel_orbs(unit);
return SUCCESS;
}
static struct scsi_host_template scsi_driver_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = (char *)sbp2_driver_name,
.queuecommand = sbp2_scsi_queuecommand,
.slave_alloc = sbp2_scsi_slave_alloc,
.slave_configure = sbp2_scsi_slave_configure,
.eh_abort_handler = sbp2_scsi_abort,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = 1,
.can_queue = 1,
};
static int add_scsi_devices(struct fw_unit *unit)
{
struct sbp2_device *sd = unit->device.driver_data;
int retval, lun;
sd->scsi_host = scsi_host_alloc(&scsi_driver_template,
sizeof(unsigned long));
if (sd->scsi_host == NULL) {
fw_error("failed to register scsi host\n");
return -1;
}
sd->scsi_host->hostdata[0] = (unsigned long)unit;
retval = scsi_add_host(sd->scsi_host, &unit->device);
if (retval < 0) {
fw_error("failed to add scsi host\n");
scsi_host_put(sd->scsi_host);
return retval;
}
/* FIXME: Loop over luns here. */
lun = 0;
retval = scsi_add_device(sd->scsi_host, 0, 0, lun);
if (retval < 0) {
fw_error("failed to add scsi device\n");
scsi_remove_host(sd->scsi_host);
scsi_host_put(sd->scsi_host);
return retval;
}
return 0;
}
static void remove_scsi_devices(struct fw_unit *unit)
{
struct sbp2_device *sd = unit->device.driver_data;
scsi_remove_host(sd->scsi_host);
scsi_host_put(sd->scsi_host);
}
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
static int __init sbp2_init(void)
{
return driver_register(&sbp2_driver.driver);
}
static void __exit sbp2_cleanup(void)
{
driver_unregister(&sbp2_driver.driver);
}
module_init(sbp2_init);
module_exit(sbp2_cleanup);