summaryrefslogblamecommitdiff
path: root/drivers/firewire/fw-ohci.c
blob: 8dc872aedce797113b8e953017bef5690f3143ed (plain) (tree)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851


























                                                                          

                              























































































































                                                                  
                                                           




















                                                        

                                                
                                                                              



                                               
                                                                  



                                               
                                                           






































                                                                             

                                  




                                                            
 






























                                                          
 

                                                           








                                                                      
                               

                                                                         
                                                        
            
                                                         


























                                                                              

                                                                      




































                                                                             
                                                    



                                               
                                                      

                                            
                          















































































































































































































































































































































































































































































































                                                                                 
                          
 

                                                                               







                                              








                                                                            
                           
     
                                                   












































































































                                                                             

                                                                            



















































































































































































                                                                                 
                                                  










                                                            
                                                










































































































































































































































                                                                             
/*						-*- c-basic-offset: 8 -*-
 *
 * fw-ohci.c - Driver for OHCI 1394 boards
 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/dma-mapping.h>

#include <asm/uaccess.h>
#include <asm/semaphore.h>

#include "fw-transaction.h"
#include "fw-ohci.h"

#define descriptor_output_more		0
#define descriptor_output_last		(1 << 12)
#define descriptor_input_more		(2 << 12)
#define descriptor_input_last		(3 << 12)
#define descriptor_status		(1 << 11)
#define descriptor_key_immediate	(2 << 8)
#define descriptor_ping			(1 << 7)
#define descriptor_yy			(1 << 6)
#define descriptor_no_irq		(0 << 4)
#define descriptor_irq_error		(1 << 4)
#define descriptor_irq_always		(3 << 4)
#define descriptor_branch_always	(3 << 2)

struct descriptor {
	__le16 req_count;
	__le16 control;
	__le32 data_address;
	__le32 branch_address;
	__le16 res_count;
	__le16 transfer_status;
} __attribute__((aligned(16)));

struct ar_context {
	struct fw_ohci *ohci;
	struct descriptor descriptor;
	__le32 buffer[512];
	dma_addr_t descriptor_bus;
	dma_addr_t buffer_bus;

	u32 command_ptr;
	u32 control_set;
	u32 control_clear;

	struct tasklet_struct tasklet;
};

struct at_context {
	struct fw_ohci *ohci;
	dma_addr_t descriptor_bus;
	dma_addr_t buffer_bus;

	struct list_head list;

	struct {
		struct descriptor more;
		__le32 header[4];
		struct descriptor last;
	} d;

	u32 command_ptr;
	u32 control_set;
	u32 control_clear;

	struct tasklet_struct tasklet;
};

#define it_header_sy(v)          ((v) <<  0)
#define it_header_tcode(v)       ((v) <<  4)
#define it_header_channel(v)     ((v) <<  8)
#define it_header_tag(v)         ((v) << 14)
#define it_header_speed(v)       ((v) << 16)
#define it_header_data_length(v) ((v) << 16)

struct iso_context {
	struct fw_iso_context base;
	struct tasklet_struct tasklet;
	u32 control_set;
	u32 control_clear;
	u32 command_ptr;
	u32 context_match;

	struct descriptor *buffer;
	dma_addr_t buffer_bus;
	struct descriptor *head_descriptor;
	struct descriptor *tail_descriptor;
	struct descriptor *tail_descriptor_last;
	struct descriptor *prev_descriptor;
};

#define CONFIG_ROM_SIZE 1024

struct fw_ohci {
	struct fw_card card;

	__iomem char *registers;
	dma_addr_t self_id_bus;
	__le32 *self_id_cpu;
	struct tasklet_struct bus_reset_tasklet;
	int generation;
	int request_generation;

	/* Spinlock for accessing fw_ohci data.  Never call out of
	 * this driver with this lock held. */
	spinlock_t lock;
	u32 self_id_buffer[512];

	/* Config rom buffers */
	__be32 *config_rom;
	dma_addr_t config_rom_bus;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;
	u32 next_header;

	struct ar_context ar_request_ctx;
	struct ar_context ar_response_ctx;
	struct at_context at_request_ctx;
	struct at_context at_response_ctx;

	u32 it_context_mask;
	struct iso_context *it_context_list;
	u32 ir_context_mask;
	struct iso_context *ir_context_list;
};

static inline struct fw_ohci *fw_ohci(struct fw_card *card)
{
	return container_of(card, struct fw_ohci, card);
}

#define CONTEXT_CYCLE_MATCH_ENABLE	0x80000000

#define CONTEXT_RUN	0x8000
#define CONTEXT_WAKE	0x1000
#define CONTEXT_DEAD	0x0800
#define CONTEXT_ACTIVE	0x0400

#define OHCI1394_MAX_AT_REQ_RETRIES	0x2
#define OHCI1394_MAX_AT_RESP_RETRIES	0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES	0x8

#define FW_OHCI_MAJOR			240
#define OHCI1394_REGISTER_SIZE		0x800
#define OHCI_LOOP_COUNT			500
#define OHCI1394_PCI_HCI_Control	0x40
#define SELF_ID_BUF_SIZE		0x800

static char ohci_driver_name[] = KBUILD_MODNAME;

static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
{
	writel(data, ohci->registers + offset);
}

static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
{
	return readl(ohci->registers + offset);
}

static inline void flush_writes(const struct fw_ohci *ohci)
{
	/* Do a dummy read to flush writes. */
	reg_read(ohci, OHCI1394_Version);
}

static int
ohci_update_phy_reg(struct fw_card *card, int addr,
		    int clear_bits, int set_bits)
{
	struct fw_ohci *ohci = fw_ohci(card);
	u32 val, old;

	reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
	msleep(2);
	val = reg_read(ohci, OHCI1394_PhyControl);
	if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
		fw_error("failed to set phy reg bits.\n");
		return -EBUSY;
	}

	old = OHCI1394_PhyControl_ReadData(val);
	old = (old & ~clear_bits) | set_bits;
	reg_write(ohci, OHCI1394_PhyControl,
		  OHCI1394_PhyControl_Write(addr, old));

	return 0;
}

static void ar_context_run(struct ar_context *ctx)
{
	reg_write(ctx->ohci, ctx->command_ptr, ctx->descriptor_bus | 1);
	reg_write(ctx->ohci, ctx->control_set, CONTEXT_RUN);
	flush_writes(ctx->ohci);
}

static void ar_context_tasklet(unsigned long data)
{
	struct ar_context *ctx = (struct ar_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct fw_packet p;
	u32 status, length, tcode;

	/* FIXME: What to do about evt_* errors? */
	length    = le16_to_cpu(ctx->descriptor.req_count) -
		le16_to_cpu(ctx->descriptor.res_count) - 4;
	status    = le32_to_cpu(ctx->buffer[length / 4]);

	p.ack        = ((status >> 16) & 0x1f) - 16;
	p.speed      = (status >> 21) & 0x7;
	p.timestamp  = status & 0xffff;
	p.generation = ohci->request_generation;

	p.header[0] = le32_to_cpu(ctx->buffer[0]);
	p.header[1] = le32_to_cpu(ctx->buffer[1]);
	p.header[2] = le32_to_cpu(ctx->buffer[2]);

	tcode = (p.header[0] >> 4) & 0x0f;
	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_READ_QUADLET_RESPONSE:
		p.header[3] = ctx->buffer[3];
		p.header_length = 16;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_READ_BLOCK_REQUEST :
	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_REQUEST:
	case TCODE_LOCK_RESPONSE:
		p.header[3] = le32_to_cpu(ctx->buffer[3]);
		p.header_length = 16;
		break;

	case TCODE_WRITE_RESPONSE:
	case TCODE_READ_QUADLET_REQUEST:
		p.header_length = 12;
		break;
	}

	p.payload = (void *) ctx->buffer + p.header_length;
	p.payload_length = length - p.header_length;

	/* The OHCI bus reset handler synthesizes a phy packet with
	 * the new generation number when a bus reset happens (see
	 * section 8.4.2.3).  This helps us determine when a request
	 * was received and make sure we send the response in the same
	 * generation.  We only need this for requests; for responses
	 * we use the unique tlabel for finding the matching
	 * request. */

	if (p.ack + 16 == 0x09)
		ohci->request_generation = (ctx->buffer[2] >> 16) & 0xff;
	else if (ctx == &ohci->ar_request_ctx)
		fw_core_handle_request(&ohci->card, &p);
	else
		fw_core_handle_response(&ohci->card, &p);

	ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
	ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
	ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);

	dma_sync_single_for_device(ohci->card.device, ctx->descriptor_bus,
				   sizeof ctx->descriptor_bus, DMA_TO_DEVICE);

	/* FIXME: We stop and restart the ar context here, what if we
	 * stop while a receive is in progress? Maybe we could just
	 * loop the context back to itself and use it in buffer fill
	 * mode as intended... */

	reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);
	ar_context_run(ctx);
}

static int
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 control_set)
{
	ctx->descriptor_bus =
		dma_map_single(ohci->card.device, &ctx->descriptor,
			       sizeof ctx->descriptor, DMA_TO_DEVICE);
	if (ctx->descriptor_bus == 0)
		return -ENOMEM;

	if (ctx->descriptor_bus & 0xf)
		fw_notify("descriptor not 16-byte aligned: 0x%08lx\n",
			  (unsigned long)ctx->descriptor_bus);

	ctx->buffer_bus =
		dma_map_single(ohci->card.device, ctx->buffer,
			       sizeof ctx->buffer, DMA_FROM_DEVICE);

	if (ctx->buffer_bus == 0) {
		dma_unmap_single(ohci->card.device, ctx->descriptor_bus,
				 sizeof ctx->descriptor, DMA_TO_DEVICE);
		return -ENOMEM;
	}

	memset(&ctx->descriptor, 0, sizeof ctx->descriptor);
	ctx->descriptor.control      = cpu_to_le16(descriptor_input_more |
						   descriptor_status |
						   descriptor_branch_always);
	ctx->descriptor.req_count    = cpu_to_le16(sizeof ctx->buffer);
	ctx->descriptor.data_address = cpu_to_le32(ctx->buffer_bus);
	ctx->descriptor.res_count    = cpu_to_le16(sizeof ctx->buffer);

	ctx->control_set   = control_set;
	ctx->control_clear = control_set + 4;
	ctx->command_ptr   = control_set + 12;
	ctx->ohci          = ohci;

	tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);

	ar_context_run(ctx);

	return 0;
}

static void
do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
{
	struct fw_packet *p, *next;

	list_for_each_entry_safe(p, next, list, link)
		p->callback(p, &ohci->card, p->ack);
}

static void
complete_transmission(struct fw_packet *packet,
		      int ack, struct list_head *list)
{
	list_move_tail(&packet->link, list);
	packet->ack = ack;
}

/* This function prepares the first packet in the context queue for
 * transmission.  Must always be called with the ochi->lock held to
 * ensure proper generation handling and locking around packet queue
 * manipulation. */
static void
at_context_setup_packet(struct at_context *ctx, struct list_head *list)
{
	struct fw_packet *packet;
	struct fw_ohci *ohci = ctx->ohci;
	int z, tcode;

	packet = fw_packet(ctx->list.next);

	memset(&ctx->d, 0, sizeof ctx->d);
	if (packet->payload_length > 0) {
		packet->payload_bus = dma_map_single(ohci->card.device,
						     packet->payload,
						     packet->payload_length,
						     DMA_TO_DEVICE);
		if (packet->payload_bus == 0) {
			complete_transmission(packet, -ENOMEM, list);
			return;
		}

		ctx->d.more.control      =
			cpu_to_le16(descriptor_output_more |
				    descriptor_key_immediate);
		ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
		ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
		ctx->d.last.control      =
			cpu_to_le16(descriptor_output_last |
				    descriptor_irq_always |
				    descriptor_branch_always);
		ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
		ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
		z = 3;
	} else {
		ctx->d.more.control   =
			cpu_to_le16(descriptor_output_last |
				    descriptor_key_immediate |
				    descriptor_irq_always |
				    descriptor_branch_always);
		ctx->d.more.req_count = cpu_to_le16(packet->header_length);
		ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
		z = 2;
	}

	/* The DMA format for asyncronous link packets is different
	 * from the IEEE1394 layout, so shift the fields around
	 * accordingly.  If header_length is 8, it's a PHY packet, to
	 * which we need to prepend an extra quadlet. */
	if (packet->header_length > 8) {
		ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
					       (packet->speed << 16));
		ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
					       (packet->header[0] & 0xffff0000));
		ctx->d.header[2] = cpu_to_le32(packet->header[2]);

		tcode = (packet->header[0] >> 4) & 0x0f;
		if (TCODE_IS_BLOCK_PACKET(tcode))
			ctx->d.header[3] = cpu_to_le32(packet->header[3]);
		else
			ctx->d.header[3] = packet->header[3];
	} else {
		ctx->d.header[0] =
			cpu_to_le32((OHCI1394_phy_tcode << 4) |
				    (packet->speed << 16));
		ctx->d.header[1] = cpu_to_le32(packet->header[0]);
		ctx->d.header[2] = cpu_to_le32(packet->header[1]);
		ctx->d.more.req_count = cpu_to_le16(12);
	}

	/* FIXME: Document how the locking works. */
	if (ohci->generation == packet->generation) {
		reg_write(ctx->ohci, ctx->command_ptr,
			  ctx->descriptor_bus | z);
		reg_write(ctx->ohci, ctx->control_set,
			  CONTEXT_RUN | CONTEXT_WAKE);
	} else {
		/* We dont return error codes from this function; all
		 * transmission errors are reported through the
		 * callback. */
		complete_transmission(packet, -ESTALE, list);
	}
}

static void at_context_stop(struct at_context *ctx)
{
	u32 reg;

	reg_write(ctx->ohci, ctx->control_clear, CONTEXT_RUN);

	reg = reg_read(ctx->ohci, ctx->control_set);
	if (reg & CONTEXT_ACTIVE)
		fw_notify("Tried to stop context, but it is still active "
			  "(0x%08x).\n", reg);
}

static void at_context_tasklet(unsigned long data)
{
	struct at_context *ctx = (struct at_context *)data;
	struct fw_ohci *ohci = ctx->ohci;
	struct fw_packet *packet;
	LIST_HEAD(list);
	unsigned long flags;
	int evt;

	spin_lock_irqsave(&ohci->lock, flags);

	packet = fw_packet(ctx->list.next);

	at_context_stop(ctx);

	if (packet->payload_length > 0) {
		dma_unmap_single(ohci->card.device, packet->payload_bus,
				 packet->payload_length, DMA_TO_DEVICE);
		evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
		packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
	}
	else {
		evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
		packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
	}

	if (evt < 16) {
		switch (evt) {
		case OHCI1394_evt_timeout:
			/* Async response transmit timed out. */
			complete_transmission(packet, -ETIMEDOUT, &list);
			break;

		case OHCI1394_evt_flushed:
			/* The packet was flushed should give same
			 * error as when we try to use a stale
			 * generation count. */
			complete_transmission(packet, -ESTALE, &list);
			break;

		case OHCI1394_evt_missing_ack:
			/* This would be a higher level software
			 * error, it is using a valid (current)
			 * generation count, but the node is not on
			 * the bus. */
			complete_transmission(packet, -ENODEV, &list);
			break;

		default:
			complete_transmission(packet, -EIO, &list);
			break;
		}
	} else
		complete_transmission(packet, evt - 16, &list);

	/* If more packets are queued, set up the next one. */
	if (!list_empty(&ctx->list))
		at_context_setup_packet(ctx, &list);

	spin_unlock_irqrestore(&ohci->lock, flags);

	do_packet_callbacks(ohci, &list);
}

static int
at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 control_set)
{
	INIT_LIST_HEAD(&ctx->list);

	ctx->descriptor_bus =
		dma_map_single(ohci->card.device, &ctx->d,
			       sizeof ctx->d, DMA_TO_DEVICE);
	if (ctx->descriptor_bus == 0)
		return -ENOMEM;

	ctx->control_set   = control_set;
	ctx->control_clear = control_set + 4;
	ctx->command_ptr   = control_set + 12;
	ctx->ohci          = ohci;

	tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);

	return 0;
}

static void
at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
{
	LIST_HEAD(list);
	unsigned long flags;
	int was_empty;

	spin_lock_irqsave(&ctx->ohci->lock, flags);

	was_empty = list_empty(&ctx->list);
	list_add_tail(&packet->link, &ctx->list);
	if (was_empty)
		at_context_setup_packet(ctx, &list);

	spin_unlock_irqrestore(&ctx->ohci->lock, flags);

	do_packet_callbacks(ctx->ohci, &list);
}

static void bus_reset_tasklet(unsigned long data)
{
	struct fw_ohci *ohci = (struct fw_ohci *)data;
	int self_id_count, i, j, reg, node_id;
	int generation, new_generation;
	unsigned long flags;

	reg = reg_read(ohci, OHCI1394_NodeID);
	if (!(reg & OHCI1394_NodeID_idValid)) {
		fw_error("node ID not valid, new bus reset in progress\n");
		return;
	}
	node_id = reg & 0xffff;

	/* The count in the SelfIDCount register is the number of
	 * bytes in the self ID receive buffer.  Since we also receive
	 * the inverted quadlets and a header quadlet, we shift one
	 * bit extra to get the actual number of self IDs. */

	self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
	generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;

	for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
		if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
			fw_error("inconsistent self IDs\n");
		ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
	}

	/* Check the consistency of the self IDs we just read.  The
	 * problem we face is that a new bus reset can start while we
	 * read out the self IDs from the DMA buffer. If this happens,
	 * the DMA buffer will be overwritten with new self IDs and we
	 * will read out inconsistent data.  The OHCI specification
	 * (section 11.2) recommends a technique similar to
	 * linux/seqlock.h, where we remember the generation of the
	 * self IDs in the buffer before reading them out and compare
	 * it to the current generation after reading them out.  If
	 * the two generations match we know we have a consistent set
	 * of self IDs. */

	new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
	if (new_generation != generation) {
		fw_notify("recursive bus reset detected, "
			  "discarding self ids\n");
		return;
	}

	/* FIXME: Document how the locking works. */
	spin_lock_irqsave(&ohci->lock, flags);

	ohci->generation = generation;
	at_context_stop(&ohci->at_request_ctx);
	at_context_stop(&ohci->at_response_ctx);
	reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);

	/* This next bit is unrelated to the AT context stuff but we
	 * have to do it under the spinlock also.  If a new config rom
	 * was set up before this reset, the old one is now no longer
	 * in use and we can free it. Update the config rom pointers
	 * to point to the current config rom and clear the
	 * next_config_rom pointer so a new udpate can take place. */

	if (ohci->next_config_rom != NULL) {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		ohci->config_rom      = ohci->next_config_rom;
		ohci->config_rom_bus  = ohci->next_config_rom_bus;
		ohci->next_config_rom = NULL;

		/* Restore config_rom image and manually update
		 * config_rom registers.  Writing the header quadlet
		 * will indicate that the config rom is ready, so we
		 * do that last. */
		reg_write(ohci, OHCI1394_BusOptions,
			  be32_to_cpu(ohci->config_rom[2]));
		ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
		reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

	fw_core_handle_bus_reset(&ohci->card, node_id, generation,
				 self_id_count, ohci->self_id_buffer);
}

static irqreturn_t irq_handler(int irq, void *data)
{
	struct fw_ohci *ohci = data;
	u32 event, iso_event;
	int i;

	event = reg_read(ohci, OHCI1394_IntEventClear);

	if (!event)
		return IRQ_NONE;

	reg_write(ohci, OHCI1394_IntEventClear, event);

	if (event & OHCI1394_selfIDComplete)
		tasklet_schedule(&ohci->bus_reset_tasklet);

	if (event & OHCI1394_RQPkt)
		tasklet_schedule(&ohci->ar_request_ctx.tasklet);

	if (event & OHCI1394_RSPkt)
		tasklet_schedule(&ohci->ar_response_ctx.tasklet);

	if (event & OHCI1394_reqTxComplete)
		tasklet_schedule(&ohci->at_request_ctx.tasklet);

	if (event & OHCI1394_respTxComplete)
		tasklet_schedule(&ohci->at_response_ctx.tasklet);

	iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
	reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
		tasklet_schedule(&ohci->ir_context_list[i].tasklet);
		iso_event &= ~(1 << i);
	}

	iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
	reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);

	while (iso_event) {
		i = ffs(iso_event) - 1;
		tasklet_schedule(&ohci->it_context_list[i].tasklet);
		iso_event &= ~(1 << i);
	}

	return IRQ_HANDLED;
}

static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct pci_dev *dev = to_pci_dev(card->device);

	/* When the link is not yet enabled, the atomic config rom
	 * update mechanism described below in ohci_set_config_rom()
	 * is not active.  We have to update ConfigRomHeader and
	 * BusOptions manually, and the write to ConfigROMmap takes
	 * effect immediately.  We tie this to the enabling of the
	 * link, so we have a valid config rom before enabling - the
	 * OHCI requires that ConfigROMhdr and BusOptions have valid
	 * values before enabling.
	 *
	 * However, when the ConfigROMmap is written, some controllers
	 * always read back quadlets 0 and 2 from the config rom to
	 * the ConfigRomHeader and BusOptions registers on bus reset.
	 * They shouldn't do that in this initial case where the link
	 * isn't enabled.  This means we have to use the same
	 * workaround here, setting the bus header to 0 and then write
	 * the right values in the bus reset tasklet.
	 */

	ohci->next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &ohci->next_config_rom_bus, GFP_KERNEL);
	if (ohci->next_config_rom == NULL)
		return -ENOMEM;

	memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
	fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);

	ohci->next_header = config_rom[0];
	ohci->next_config_rom[0] = 0;
	reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
	reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
	reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);

	reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);

	if (request_irq(dev->irq, irq_handler,
			SA_SHIRQ, ohci_driver_name, ohci)) {
		fw_error("Failed to allocate shared interrupt %d.\n",
			 dev->irq);
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  ohci->config_rom, ohci->config_rom_bus);
		return -EIO;
	}

	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_linkEnable |
		  OHCI1394_HCControl_BIBimageValid);
	flush_writes(ohci);

	/* We are ready to go, initiate bus reset to finish the
	 * initialization. */

	fw_core_initiate_bus_reset(&ohci->card, 1);

	return 0;
}

static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
	struct fw_ohci *ohci;
	unsigned long flags;
	int retval = 0;
	__be32 *next_config_rom;
	dma_addr_t next_config_rom_bus;

	ohci = fw_ohci(card);

	/* When the OHCI controller is enabled, the config rom update
	 * mechanism is a bit tricky, but easy enough to use.  See
	 * section 5.5.6 in the OHCI specification.
	 *
	 * The OHCI controller caches the new config rom address in a
	 * shadow register (ConfigROMmapNext) and needs a bus reset
	 * for the changes to take place.  When the bus reset is
	 * detected, the controller loads the new values for the
	 * ConfigRomHeader and BusOptions registers from the specified
	 * config rom and loads ConfigROMmap from the ConfigROMmapNext
	 * shadow register. All automatically and atomically.
	 *
	 * Now, there's a twist to this story.  The automatic load of
	 * ConfigRomHeader and BusOptions doesn't honor the
	 * noByteSwapData bit, so with a be32 config rom, the
	 * controller will load be32 values in to these registers
	 * during the atomic update, even on litte endian
	 * architectures.  The workaround we use is to put a 0 in the
	 * header quadlet; 0 is endian agnostic and means that the
	 * config rom isn't ready yet.  In the bus reset tasklet we
	 * then set up the real values for the two registers.
	 *
	 * We use ohci->lock to avoid racing with the code that sets
	 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
	 */

	next_config_rom =
		dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				   &next_config_rom_bus, GFP_KERNEL);
	if (next_config_rom == NULL)
		return -ENOMEM;

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->next_config_rom == NULL) {
		ohci->next_config_rom = next_config_rom;
		ohci->next_config_rom_bus = next_config_rom_bus;

		memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
		fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
				  length * 4);

		ohci->next_header = config_rom[0];
		ohci->next_config_rom[0] = 0;

		reg_write(ohci, OHCI1394_ConfigROMmap,
			  ohci->next_config_rom_bus);
	} else {
		dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
				  next_config_rom, next_config_rom_bus);
		retval = -EBUSY;
	}

	spin_unlock_irqrestore(&ohci->lock, flags);

	/* Now initiate a bus reset to have the changes take
	 * effect. We clean up the old config rom memory and DMA
	 * mappings in the bus reset tasklet, since the OHCI
	 * controller could need to access it before the bus reset
	 * takes effect. */
	if (retval == 0)
		fw_core_initiate_bus_reset(&ohci->card, 1);

	return retval;
}

static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_request_ctx, packet);
}

static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
	struct fw_ohci *ohci = fw_ohci(card);

	at_context_transmit(&ohci->at_response_ctx, packet);
}

static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
	struct fw_ohci *ohci = fw_ohci(card);
	unsigned long flags;
	int n, retval = 0;

	/* FIXME:  Make sure this bitmask is cleared when we clear the busReset
	 * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */

	spin_lock_irqsave(&ohci->lock, flags);

	if (ohci->generation != generation) {
		retval = -ESTALE;
		goto out;
	}

	/* NOTE, if the node ID contains a non-local bus ID, physical DMA is
	 * enabled for _all_ nodes on remote buses. */

	n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
	if (n < 32)
		reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
	else
		reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));

	flush_writes(ohci);
 out:
	spin_unlock_irqrestore(&ohci->lock, flags);
	return retval;
}

static void ir_context_tasklet(unsigned long data)
{
	struct iso_context *ctx = (struct iso_context *)data;

	(void)ctx;
}

#define ISO_BUFFER_SIZE (64 * 1024)

static void flush_iso_context(struct iso_context *ctx)
{
	struct fw_ohci *ohci = fw_ohci(ctx->base.card);
	struct descriptor *d, *last;
	u32 address;
	int z;

	dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
				ISO_BUFFER_SIZE, DMA_TO_DEVICE);

	d    = ctx->tail_descriptor;
	last = ctx->tail_descriptor_last;

	while (last->branch_address != 0 && last->transfer_status != 0) {
		address = le32_to_cpu(last->branch_address);
		z = address & 0xf;
		d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;

		if (z == 2)
			last = d;
		else
			last = d + z - 1;

		if (le16_to_cpu(last->control) & descriptor_irq_always)
			ctx->base.callback(&ctx->base,
					   0, le16_to_cpu(last->res_count),
					   ctx->base.callback_data);
	}

	ctx->tail_descriptor      = d;
	ctx->tail_descriptor_last = last;
}

static void it_context_tasklet(unsigned long data)
{
	struct iso_context *ctx = (struct iso_context *)data;

	flush_iso_context(ctx);
}

static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
							int type)
{
	struct fw_ohci *ohci = fw_ohci(card);
	struct iso_context *ctx, *list;
	void (*tasklet) (unsigned long data);
	u32 *mask;
	unsigned long flags;
	int index;

	if (type == FW_ISO_CONTEXT_TRANSMIT) {
		mask = &ohci->it_context_mask;
		list = ohci->it_context_list;
		tasklet = it_context_tasklet;
	} else {
		mask = &ohci->ir_context_mask;
		list = ohci->ir_context_list;
		tasklet = ir_context_tasklet;
	}

	spin_lock_irqsave(&ohci->lock, flags);
	index = ffs(*mask) - 1;
	if (index >= 0)
		*mask &= ~(1 << index);
	spin_unlock_irqrestore(&ohci->lock, flags);

	if (index < 0)
		return ERR_PTR(-EBUSY);

	ctx = &list[index];
	memset(ctx, 0, sizeof *ctx);
	tasklet_init(&ctx->tasklet, tasklet, (unsigned long)ctx);

	ctx->buffer = kmalloc(ISO_BUFFER_SIZE, GFP_KERNEL);
	if (ctx->buffer == NULL) {
		spin_lock_irqsave(&ohci->lock, flags);
		*mask |= 1 << index;
		spin_unlock_irqrestore(&ohci->lock, flags);
		return ERR_PTR(-ENOMEM);
	}

	ctx->buffer_bus =
	    dma_map_single(card->device, ctx->buffer,
			   ISO_BUFFER_SIZE, DMA_TO_DEVICE);

	ctx->head_descriptor      = ctx->buffer;
	ctx->prev_descriptor      = ctx->buffer;
	ctx->tail_descriptor      = ctx->buffer;
	ctx->tail_descriptor_last = ctx->buffer;

	/* We put a dummy descriptor in the buffer that has a NULL
	 * branch address and looks like it's been sent.  That way we
	 * have a descriptor to append DMA programs to.  Also, the
	 * ring buffer invariant is that it always has at least one
	 * element so that head == tail means buffer full. */

	memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
	ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
	ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
	ctx->head_descriptor++;

	return &ctx->base;
}

static int ohci_send_iso(struct fw_iso_context *base, s32 cycle)
{
	struct iso_context *ctx = (struct iso_context *)base;
	struct fw_ohci *ohci = fw_ohci(ctx->base.card);
	u32 cycle_match = 0;
	int index;

	index = ctx - ohci->it_context_list;
	if (cycle > 0)
		cycle_match = CONTEXT_CYCLE_MATCH_ENABLE |
			(cycle & 0x7fff) << 16;

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
	reg_write(ohci, OHCI1394_IsoXmitCommandPtr(index),
		  le32_to_cpu(ctx->tail_descriptor_last->branch_address));
	reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index),
		  CONTEXT_RUN | cycle_match);
	flush_writes(ohci);

	return 0;
}

static void ohci_free_iso_context(struct fw_iso_context *base)
{
	struct fw_ohci *ohci = fw_ohci(base->card);
	struct iso_context *ctx = (struct iso_context *)base;
	unsigned long flags;
	int index;

	flush_iso_context(ctx);

	spin_lock_irqsave(&ohci->lock, flags);

	if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
		index = ctx - ohci->it_context_list;
		reg_write(ohci, OHCI1394_IsoXmitContextControlClear(index), ~0);
		reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
		ohci->it_context_mask |= 1 << index;
	} else {
		index = ctx - ohci->ir_context_list;
		reg_write(ohci, OHCI1394_IsoRcvContextControlClear(index), ~0);
		reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
		ohci->ir_context_mask |= 1 << index;
	}
	flush_writes(ohci);

	dma_unmap_single(ohci->card.device, ctx->buffer_bus,
			 ISO_BUFFER_SIZE, DMA_TO_DEVICE);

	spin_unlock_irqrestore(&ohci->lock, flags);
}

static int
ohci_queue_iso(struct fw_iso_context *base,
	       struct fw_iso_packet *packet, void *payload)
{
	struct iso_context *ctx = (struct iso_context *)base;
	struct fw_ohci *ohci = fw_ohci(ctx->base.card);
	struct descriptor *d, *end, *last, *tail, *pd;
	struct fw_iso_packet *p;
	__le32 *header;
	dma_addr_t d_bus;
	u32 z, header_z, payload_z, irq;
	u32 payload_index, payload_end_index, next_page_index;
	int index, page, end_page, i, length, offset;

	/* FIXME: Cycle lost behavior should be configurable: lose
	 * packet, retransmit or terminate.. */

	p = packet;
	payload_index = payload - ctx->base.buffer;
	d = ctx->head_descriptor;
	tail = ctx->tail_descriptor;
	end = ctx->buffer + ISO_BUFFER_SIZE / sizeof(struct descriptor);

	if (p->skip)
		z = 1;
	else
		z = 2;
	if (p->header_length > 0)
		z++;

	/* Determine the first page the payload isn't contained in. */
	end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
	if (p->payload_length > 0)
		payload_z = end_page - (payload_index >> PAGE_SHIFT);
	else
		payload_z = 0;

	z += payload_z;

	/* Get header size in number of descriptors. */
	header_z = DIV_ROUND_UP(p->header_length, sizeof *d);

	if (d + z + header_z <= tail) {
		goto has_space;
	} else if (d > tail && d + z + header_z <= end) {
		goto has_space;
	} else if (d > tail && ctx->buffer + z + header_z <= tail) {
		d = ctx->buffer;
		goto has_space;
	}

	/* No space in buffer */
	return -1;

 has_space:
	memset(d, 0, (z + header_z) * sizeof *d);
	d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;

	if (!p->skip) {
		d[0].control   = cpu_to_le16(descriptor_key_immediate);
		d[0].req_count = cpu_to_le16(8);

		header = (__le32 *) &d[1];
		header[0] = cpu_to_le32(it_header_sy(p->sy) |
					it_header_tag(p->tag) |
					it_header_tcode(TCODE_STREAM_DATA) |
					it_header_channel(ctx->base.channel) |
					it_header_speed(ctx->base.speed));
		header[1] =
			cpu_to_le32(it_header_data_length(p->header_length +
							  p->payload_length));
	}

	if (p->header_length > 0) {
		d[2].req_count    = cpu_to_le16(p->header_length);
		d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
		memcpy(&d[z], p->header, p->header_length);
	}

	pd = d + z - payload_z;
	payload_end_index = payload_index + p->payload_length;
	for (i = 0; i < payload_z; i++) {
		page               = payload_index >> PAGE_SHIFT;
		offset             = payload_index & ~PAGE_MASK;
		next_page_index    = (page + 1) << PAGE_SHIFT;
		length             =
			min(next_page_index, payload_end_index) - payload_index;
		pd[i].req_count    = cpu_to_le16(length);
		pd[i].data_address = cpu_to_le32(ctx->base.pages[page] + offset);

		payload_index += length;
	}

	if (z == 2)
		last = d;
	else
		last = d + z - 1;

	if (p->interrupt)
		irq = descriptor_irq_always;
	else
		irq = descriptor_no_irq;

	last->control = cpu_to_le16(descriptor_output_last |
				    descriptor_status |
				    descriptor_branch_always |
				    irq);

	dma_sync_single_for_device(ohci->card.device, ctx->buffer_bus,
				   ISO_BUFFER_SIZE, DMA_TO_DEVICE);

	ctx->head_descriptor = d + z + header_z;
	ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
	ctx->prev_descriptor = last;

	index = ctx - ohci->it_context_list;
	reg_write(ohci, OHCI1394_IsoXmitContextControlSet(index), CONTEXT_WAKE);
	flush_writes(ohci);

	return 0;
}

static const struct fw_card_driver ohci_driver = {
	.name			= ohci_driver_name,
	.enable			= ohci_enable,
	.update_phy_reg		= ohci_update_phy_reg,
	.set_config_rom		= ohci_set_config_rom,
	.send_request		= ohci_send_request,
	.send_response		= ohci_send_response,
	.enable_phys_dma	= ohci_enable_phys_dma,

	.allocate_iso_context	= ohci_allocate_iso_context,
	.free_iso_context	= ohci_free_iso_context,
	.queue_iso		= ohci_queue_iso,
	.send_iso		= ohci_send_iso,
};

static int software_reset(struct fw_ohci *ohci)
{
	int i;

	reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);

	for (i = 0; i < OHCI_LOOP_COUNT; i++) {
		if ((reg_read(ohci, OHCI1394_HCControlSet) &
		     OHCI1394_HCControl_softReset) == 0)
			return 0;
		msleep(1);
	}

	return -EBUSY;
}

/* ---------- pci subsystem interface ---------- */

enum {
	CLEANUP_SELF_ID,
	CLEANUP_REGISTERS,
	CLEANUP_IOMEM,
	CLEANUP_DISABLE,
	CLEANUP_PUT_CARD,
};

static int cleanup(struct fw_ohci *ohci, int stage, int code)
{
	struct pci_dev *dev = to_pci_dev(ohci->card.device);

	switch (stage) {
	case CLEANUP_SELF_ID:
		dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
				  ohci->self_id_cpu, ohci->self_id_bus);
	case CLEANUP_REGISTERS:
		kfree(ohci->it_context_list);
		kfree(ohci->ir_context_list);
		pci_iounmap(dev, ohci->registers);
	case CLEANUP_IOMEM:
		pci_release_region(dev, 0);
	case CLEANUP_DISABLE:
		pci_disable_device(dev);
	case CLEANUP_PUT_CARD:
		fw_card_put(&ohci->card);
	}

	return code;
}

static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
	struct fw_ohci *ohci;
	u32 bus_options, max_receive, link_speed;
	u64 guid;
	int error_code;
	size_t size;

	ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
	if (ohci == NULL) {
		fw_error("Could not malloc fw_ohci data.\n");
		return -ENOMEM;
	}

	fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);

	if (pci_enable_device(dev)) {
		fw_error("Failed to enable OHCI hardware.\n");
		return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
	}

	pci_set_master(dev);
	pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
	pci_set_drvdata(dev, ohci);

	spin_lock_init(&ohci->lock);

	tasklet_init(&ohci->bus_reset_tasklet,
		     bus_reset_tasklet, (unsigned long)ohci);

	if (pci_request_region(dev, 0, ohci_driver_name)) {
		fw_error("MMIO resource unavailable\n");
		return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
	}

	ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
	if (ohci->registers == NULL) {
		fw_error("Failed to remap registers\n");
		return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
	}

	if (software_reset(ohci)) {
		fw_error("Failed to reset ohci card.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
	}

	/* Now enable LPS, which we need in order to start accessing
	 * most of the registers.  In fact, on some cards (ALI M5251),
	 * accessing registers in the SClk domain without LPS enabled
	 * will lock up the machine.  Wait 50msec to make sure we have
	 * full link enabled.  */
	reg_write(ohci, OHCI1394_HCControlSet,
		  OHCI1394_HCControl_LPS |
		  OHCI1394_HCControl_postedWriteEnable);
	flush_writes(ohci);
	msleep(50);

	reg_write(ohci, OHCI1394_HCControlClear,
		  OHCI1394_HCControl_noByteSwapData);

	reg_write(ohci, OHCI1394_LinkControlSet,
		  OHCI1394_LinkControl_rcvSelfID |
		  OHCI1394_LinkControl_cycleTimerEnable |
		  OHCI1394_LinkControl_cycleMaster);

	ar_context_init(&ohci->ar_request_ctx, ohci,
			OHCI1394_AsReqRcvContextControlSet);

	ar_context_init(&ohci->ar_response_ctx, ohci,
			OHCI1394_AsRspRcvContextControlSet);

	at_context_init(&ohci->at_request_ctx, ohci,
			OHCI1394_AsReqTrContextControlSet);

	at_context_init(&ohci->at_response_ctx, ohci,
			OHCI1394_AsRspTrContextControlSet);

	reg_write(ohci, OHCI1394_ATRetries,
		  OHCI1394_MAX_AT_REQ_RETRIES |
		  (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
		  (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));

	reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
	ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
	reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
	ohci->it_context_list = kzalloc(size, GFP_KERNEL);

	reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
	ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
	reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
	size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
	ohci->ir_context_list = kzalloc(size, GFP_KERNEL);

	if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
		fw_error("Out of memory for it/ir contexts.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	/* self-id dma buffer allocation */
	ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
					       SELF_ID_BUF_SIZE,
					       &ohci->self_id_bus,
					       GFP_KERNEL);
	if (ohci->self_id_cpu == NULL) {
		fw_error("Out of memory for self ID buffer.\n");
		return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
	}

	reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
	reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
	reg_write(ohci, OHCI1394_IntEventClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskClear, ~0);
	reg_write(ohci, OHCI1394_IntMaskSet,
		  OHCI1394_selfIDComplete |
		  OHCI1394_RQPkt | OHCI1394_RSPkt |
		  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
		  OHCI1394_isochRx | OHCI1394_isochTx |
		  OHCI1394_masterIntEnable);

	bus_options = reg_read(ohci, OHCI1394_BusOptions);
	max_receive = (bus_options >> 12) & 0xf;
	link_speed = bus_options & 0x7;
	guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
		reg_read(ohci, OHCI1394_GUIDLo);

	error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
	if (error_code < 0)
		return cleanup(ohci, CLEANUP_SELF_ID, error_code);

	fw_notify("Added fw-ohci device %s.\n", dev->dev.bus_id);

	return 0;
}

static void pci_remove(struct pci_dev *dev)
{
	struct fw_ohci *ohci;

	ohci = pci_get_drvdata(dev);
	reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
	fw_core_remove_card(&ohci->card);

	/* FIXME: Fail all pending packets here, now that the upper
	 * layers can't queue any more. */

	software_reset(ohci);
	free_irq(dev->irq, ohci);
	cleanup(ohci, CLEANUP_SELF_ID, 0);

	fw_notify("Removed fw-ohci device.\n");
}

static struct pci_device_id pci_table[] = {
	{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
	{ }
};

MODULE_DEVICE_TABLE(pci, pci_table);

static struct pci_driver fw_ohci_pci_driver = {
	.name		= ohci_driver_name,
	.id_table	= pci_table,
	.probe		= pci_probe,
	.remove		= pci_remove,
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");

static int __init fw_ohci_init(void)
{
	return pci_register_driver(&fw_ohci_pci_driver);
}

static void __exit fw_ohci_cleanup(void)
{
	pci_unregister_driver(&fw_ohci_pci_driver);
}

module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);