// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Intel client SoC with integrated memory controller using IBECC
*
* Copyright (C) 2020 Intel Corporation
*
* The In-Band ECC (IBECC) IP provides ECC protection to all or specific
* regions of the physical memory space. It's used for memory controllers
* that don't support the out-of-band ECC which often needs an additional
* storage device to each channel for storing ECC data.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/irq_work.h>
#include <linux/llist.h>
#include <linux/genalloc.h>
#include <linux/edac.h>
#include <linux/bits.h>
#include <linux/io.h>
#include <asm/mach_traps.h>
#include <asm/nmi.h>
#include <asm/mce.h>
#include "edac_mc.h"
#include "edac_module.h"
#define IGEN6_REVISION "v2.5.1"
#define EDAC_MOD_STR "igen6_edac"
#define IGEN6_NMI_NAME "igen6_ibecc"
/* Debug macros */
#define igen6_printk(level, fmt, arg...) \
edac_printk(level, "igen6", fmt, ##arg)
#define igen6_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
#define NUM_IMC 2 /* Max memory controllers */
#define NUM_CHANNELS 2 /* Max channels */
#define NUM_DIMMS 2 /* Max DIMMs per channel */
#define _4GB BIT_ULL(32)
/* Size of physical memory */
#define TOM_OFFSET 0xa0
/* Top of low usable DRAM */
#define TOLUD_OFFSET 0xbc
/* Capability register C */
#define CAPID_C_OFFSET 0xec
#define CAPID_C_IBECC BIT(15)
/* Capability register E */
#define CAPID_E_OFFSET 0xf0
#define CAPID_E_IBECC BIT(12)
#define CAPID_E_IBECC_BIT18 BIT(18)
/* Error Status */
#define ERRSTS_OFFSET 0xc8
#define ERRSTS_CE BIT_ULL(6)
#define ERRSTS_UE BIT_ULL(7)
/* Error Command */
#define ERRCMD_OFFSET 0xca
#define ERRCMD_CE BIT_ULL(6)
#define ERRCMD_UE BIT_ULL(7)
/* IBECC MMIO base address */
#define IBECC_BASE (res_cfg->ibecc_base)
#define IBECC_ACTIVATE_OFFSET IBECC_BASE
#define IBECC_ACTIVATE_EN BIT(0)
/* IBECC error log */
#define ECC_ERROR_LOG_OFFSET (IBECC_BASE + res_cfg->ibecc_error_log_offset)
#define ECC_ERROR_LOG_CE BIT_ULL(62)
#define ECC_ERROR_LOG_UE BIT_ULL(63)
#define ECC_ERROR_LOG_ADDR_SHIFT 5
#define ECC_ERROR_LOG_ADDR(v) GET_BITFIELD(v, 5, 38)
#define ECC_ERROR_LOG_ADDR45(v) GET_BITFIELD(v, 5, 45)
#define ECC_ERROR_LOG_SYND(v) GET_BITFIELD(v, 46, 61)
/* Host MMIO base address */
#define MCHBAR_OFFSET 0x48
#define MCHBAR_EN BIT_ULL(0)
#define MCHBAR_BASE(v) (GET_BITFIELD(v, 16, 38) << 16)
#define MCHBAR_SIZE 0x10000
/* Parameters for the channel decode stage */
#define IMC_BASE (res_cfg->imc_base)
#define MAD_INTER_CHANNEL_OFFSET IMC_BASE
#define MAD_INTER_CHANNEL_DDR_TYPE(v) GET_BITFIELD(v, 0, 2)
#define MAD_INTER_CHANNEL_ECHM(v) GET_BITFIELD(v, 3, 3)
#define MAD_INTER_CHANNEL_CH_L_MAP(v) GET_BITFIELD(v, 4, 4)
#define MAD_INTER_CHANNEL_CH_S_SIZE(v) ((u64)GET_BITFIELD(v, 12, 19) << 29)
/* Parameters for DRAM decode stage */
#define MAD_INTRA_CH0_OFFSET (IMC_BASE + 4)
#define MAD_INTRA_CH_DIMM_L_MAP(v) GET_BITFIELD(v, 0, 0)
/* DIMM characteristics */
#define MAD_DIMM_CH0_OFFSET (IMC_BASE + 0xc)
#define MAD_DIMM_CH_DIMM_L_SIZE(v) ((u64)GET_BITFIELD(v, 0, 6) << 29)
#define MAD_DIMM_CH_DLW(v) GET_BITFIELD(v, 7, 8)
#define MAD_DIMM_CH_DIMM_S_SIZE(v) ((u64)GET_BITFIELD(v, 16, 22) << 29)
#define MAD_DIMM_CH_DSW(v) GET_BITFIELD(v, 24, 25)
/* Hash for memory controller selection */
#define MAD_MC_HASH_OFFSET (IMC_BASE + 0x1b8)
#define MAC_MC_HASH_LSB(v) GET_BITFIELD(v, 1, 3)
/* Hash for channel selection */
#define CHANNEL_HASH_OFFSET (IMC_BASE + 0x24)
/* Hash for enhanced channel selection */
#define CHANNEL_EHASH_OFFSET (IMC_BASE + 0x28)
#define CHANNEL_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
#define CHANNEL_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
#define CHANNEL_HASH_MODE(v) GET_BITFIELD(v, 28, 28)
/* Parameters for memory slice decode stage */
#define MEM_SLICE_HASH_MASK(v) (GET_BITFIELD(v, 6, 19) << 6)
#define MEM_SLICE_HASH_LSB_MASK_BIT(v) GET_BITFIELD(v, 24, 26)
static struct res_config {
bool machine_check;
int num_imc;
u32 imc_base;
u32 cmf_base;
u32 cmf_size;
u32 ms_hash_offset;
u32 ibecc_base;
u32 ibecc_error_log_offset;
bool (*ibecc_available)(struct pci_dev *pdev);
/* Extract error address logged in IBECC */
u64 (*err_addr)(u64 ecclog);
/* Convert error address logged in IBECC to system physical address */
u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
/* Convert error address logged in IBECC to integrated memory controller address */
u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
} *res_cfg;
struct igen6_imc {
int mc;
struct mem_ctl_info *mci;
struct pci_dev *pdev;
struct device dev;
void __iomem *window;
u64 size;
u64 ch_s_size;
int ch_l_map;
u64 dimm_s_size[NUM_CHANNELS];
u64 dimm_l_size[NUM_CHANNELS];
int dimm_l_map[NUM_CHANNELS];
};
static struct igen6_pvt {
struct igen6_imc imc[NUM_IMC];
u64 ms_hash;
u64 ms_s_size;
int ms_l_map;
} *igen6_pvt;
/* The top of low usable DRAM */
static u32 igen6_tolud;
/* The size of physical memory */
static u64 igen6_tom;
struct decoded_addr {
int mc;
u64 imc_addr;
u64 sys_addr;
int channel_idx;
u64 channel_addr;
int sub_channel_idx;
u64 sub_channel_addr;
};
struct ecclog_node {
struct llist_node llnode;
int mc;
u64 ecclog;
};
/*
* In the NMI handler, the driver uses the lock-less memory allocator
* to allocate memory to store the IBECC error logs and links the logs
* to the lock-less list. Delay printk() and the work of error reporting
* to EDAC core in a worker.
*/
#define ECCLOG_POOL_SIZE PAGE_SIZE
static LLIST_HEAD(ecclog_llist);
static struct gen_pool *ecclog_pool;
static char ecclog_buf[ECCLOG_POOL_SIZE];
static struct irq_work ecclog_irq_work;
static struct work_struct ecclog_work;
/* Compute die IDs for Elkhart Lake with IBECC */
#define DID_EHL_SKU5 0x4514
#define DID_EHL_SKU6 0x4528
#define DID_EHL_SKU7 0x452a
#define DID_EHL_SKU8 0x4516
#define DID_EHL_SKU9 0x452c
#define DID_EHL_SKU10 0x452e
#define DID_EHL_SKU11 0x4532
#define DID_EHL_SKU12 0x4518
#define DID_EHL_SKU13 0x451a
#define DID_EHL_SKU14 0x4534
#define DID_EHL_SKU15 0x4536
/* Compute die IDs for ICL-NNPI with IBECC */
#define DID_ICL_SKU8 0x4581
#define DID_ICL_SKU10 0x4585
#define DID_ICL_SKU11 0x4589
#define DID_ICL_SKU12 0x458d
/* Compute die IDs for Tiger Lake with IBECC */
#define DID_TGL_SKU 0x9a14
/* Compute die IDs for Alder Lake with IBECC */
#define DID_ADL_SKU1 0x4601
#define DID_ADL_SKU2 0x4602
#define DID_ADL_SKU3 0x4621
#define DID_ADL_SKU4 0x4641
/* Compute die IDs for Alder Lake-N with IBECC */
#define DID_ADL_N_SKU1 0x4614
#define DID_ADL_N_SKU2 0x4617
#define DID_ADL_N_SKU3 0x461b
#define DID_ADL_N_SKU4 0x461c
#define DID_ADL_N_SKU5 0x4673
#define DID_ADL_N_SKU6 0x4674
#define DID_ADL_N_SKU7 0x4675
#define DID_ADL_N_SKU8 0x4677
#define DID_ADL_N_SKU9 0x4678
#define DID_ADL_N_SKU10 0x4679
#define DID_ADL_N_SKU11 0x467c
/* Compute die IDs for Raptor Lake-P with IBECC */
#define DID_RPL_P_SKU1 0xa706
#define DID_RPL_P_SKU2 0xa707
#define DID_RPL_P_SKU3 0xa708
#define DID_RPL_P_SKU4 0xa716
#define DID_RPL_P_SKU5 0xa718
/* Compute die IDs for Meteor Lake-PS with IBECC */
#define DID_MTL_PS_SKU1 0x7d21
#define DID_MTL_PS_SKU2 0x7d22
#define DID_MTL_PS_SKU3 0x7d23
#define DID_MTL_PS_SKU4 0x7d24
/* Compute die IDs for Meteor Lake-P with IBECC */
#define DID_MTL_P_SKU1 0x7d01
#define DID_MTL_P_SKU2 0x7d02
#define DID_MTL_P_SKU3 0x7d14
static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
{
union {
u64 v;
struct {
u32 v_lo;
u32 v_hi;
};
} u;
if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
return -ENODEV;
}
if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
return -ENODEV;
}
if (!(u.v & MCHBAR_EN)) {
igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
return -ENODEV;
}
*mchbar = MCHBAR_BASE(u.v);
return 0;
}
static bool ehl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
return false;
return !!(CAPID_C_IBECC & v);
}
static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
return eaddr;
}
static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
if (eaddr < igen6_tolud)
return eaddr;
if (igen6_tom <= _4GB)
return eaddr + igen6_tolud - _4GB;
if (eaddr < _4GB)
return eaddr + igen6_tolud - igen6_tom;
return eaddr;
}
static bool icl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
return false;
return !(CAPID_C_IBECC & v) &&
(boot_cpu_data.x86_stepping >= 1);
}
static bool tgl_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
return false;
return !(CAPID_E_IBECC & v);
}
static bool mtl_p_ibecc_available(struct pci_dev *pdev)
{
u32 v;
if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
return false;
return !(CAPID_E_IBECC_BIT18 & v);
}
static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
{
#define MCHBAR_MEMSS_IBECCDIS 0x13c00
void __iomem *window;
u64 mchbar;
u32 val;
if (get_mchbar(pdev, &mchbar))
return false;
window = ioremap(mchbar, MCHBAR_SIZE * 2);
if (!window) {
igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
return false;
}
val = readl(window + MCHBAR_MEMSS_IBECCDIS);
iounmap(window);
/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
return !GET_BITFIELD(val, 6, 6);
}
static u64 mem_addr_to_sys_addr(u64 maddr)
{
if (maddr < igen6_tolud)
return maddr;
if (igen6_tom <= _4GB)
return maddr - igen6_tolud + _4GB;
if (maddr < _4GB)
return maddr - igen6_tolud + igen6_tom;
return maddr;
}
static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
{
u64 hash_addr = addr & mask, hash = hash_init;
u64 intlv = (addr >> intlv_bit) & 1;
int i;
for (i = 6; i < 20; i++)
hash ^= (hash_addr >> i) & 1;
return hash ^ intlv;
}
static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
{
u64 maddr, hash, mask, ms_s_size;
int intlv_bit;
u32 ms_hash;
ms_s_size = igen6_pvt->ms_s_size;
if (eaddr >= ms_s_size)
return eaddr + ms_s_size;
ms_hash = igen6_pvt->ms_hash;
mask = MEM_SLICE_HASH_MASK(ms_hash);
intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
return maddr | (hash << intlv_bit);
}
static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
return mem_addr_to_sys_addr(maddr);
}
static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
return eaddr;
}
static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
{
return mem_addr_to_sys_addr(eaddr);
}
static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
{
u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
struct igen6_imc *imc = &igen6_pvt->imc[mc];
int intlv_bit;
u32 mc_hash;
if (eaddr >= 2 * ms_s_size)
return eaddr - ms_s_size;
mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
GET_BITFIELD(eaddr, 0, intlv_bit - 1);
return imc_addr;
}
static u64 rpl_p_err_addr(u64 ecclog)
{
return ECC_ERROR_LOG_ADDR45(ecclog);
}
static struct res_config ehl_cfg = {
.num_imc = 1,
.imc_base = 0x5000,
.ibecc_base = 0xdc00,
.ibecc_available = ehl_ibecc_available,
.ibecc_error_log_offset = 0x170,
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
};
static struct res_config icl_cfg = {
.num_imc = 1,
.imc_base = 0x5000,
.ibecc_base = 0xd800,
.ibecc_error_log_offset = 0x170,
.ibecc_available = icl_ibecc_available,
.err_addr_to_sys_addr = ehl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = ehl_err_addr_to_imc_addr,
};
static struct res_config tgl_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0x5000,
.cmf_base = 0x11000,
.cmf_size = 0x800,
.ms_hash_offset = 0xac,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = tgl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = tgl_err_addr_to_imc_addr,
};
static struct res_config adl_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config adl_n_cfg = {
.machine_check = true,
.num_imc = 1,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config rpl_p_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x68,
.ibecc_available = tgl_ibecc_available,
.err_addr = rpl_p_err_addr,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config mtl_ps_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = mtl_ps_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static struct res_config mtl_p_cfg = {
.machine_check = true,
.num_imc = 2,
.imc_base = 0xd800,
.ibecc_base = 0xd400,
.ibecc_error_log_offset = 0x170,
.ibecc_available = mtl_p_ibecc_available,
.err_addr_to_sys_addr = adl_err_addr_to_sys_addr,
.err_addr_to_imc_addr = adl_err_addr_to_imc_addr,
};
static const struct pci_device_id igen6_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
{ },
};
MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
static enum dev_type get_width(int dimm_l, u32 mad_dimm)
{
u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
MAD_DIMM_CH_DSW(mad_dimm);
switch (w) {
case 0:
return DEV_X8;
case 1:
return DEV_X16;
case 2:
return DEV_X32;
default:
return DEV_UNKNOWN;
}
}
static enum mem_type get_memory_type(u32 mad_inter)
{
u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
switch (t) {
case 0:
return MEM_DDR4;
case 1:
return MEM_DDR3;
case 2:
return MEM_LPDDR3;
case 3:
return MEM_LPDDR4;
case 4:
return MEM_WIO2;
default:
return MEM_UNKNOWN;
}
}
static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
{
u64 hash_addr = addr & mask, hash = 0;
u64 intlv = (addr >> intlv_bit) & 1;
int i;
for (i = 6; i < 20; i++)
hash ^= (hash_addr >> i) & 1;
return (int)hash ^ intlv;
}
static u64 decode_channel_addr(u64 addr, int intlv_bit)
{
u64 channel_addr;
/* Remove the interleave bit and shift upper part down to fill gap */
channel_addr = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
return channel_addr;
}
static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
int *idx, u64 *sub_addr)
{
int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
if (addr > 2 * s_size) {
*sub_addr = addr - s_size;
*idx = l_map;
return;
}
if (CHANNEL_HASH_MODE(hash)) {
*sub_addr = decode_channel_addr(addr, intlv_bit);
*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
} else {
*sub_addr = decode_channel_addr(addr, 6);
*idx = GET_BITFIELD(addr, 6, 6);
}
}
static int igen6_decode(struct decoded_addr *res)
{
struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
u64 addr = res->imc_addr, sub_addr, s_size;
int idx, l_map;
u32 hash;
if (addr >= igen6_tom) {
edac_dbg(0, "Address 0x%llx out of range\n", addr);
return -EINVAL;
}
/* Decode channel */
hash = readl(imc->window + CHANNEL_HASH_OFFSET);
s_size = imc->ch_s_size;
l_map = imc->ch_l_map;
decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
res->channel_idx = idx;
res->channel_addr = sub_addr;
/* Decode sub-channel/DIMM */
hash = readl(imc->window + CHANNEL_EHASH_OFFSET);
s_size = imc->dimm_s_size[idx];
l_map = imc->dimm_l_map[idx];
decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
res->sub_channel_idx = idx;
res->sub_channel_addr = sub_addr;
return 0;
}
static void igen6_output_error(struct decoded_addr *res,
struct mem_ctl_info *mci, u64 ecclog)
{
enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
HW_EVENT_ERR_UNCORRECTED :
HW_EVENT_ERR_CORRECTED;
edac_mc_handle_error(type, mci, 1,
res->sys_addr >> PAGE_SHIFT,
res->sys_addr & ~PAGE_MASK,
ECC_ERROR_LOG_SYND(ecclog),
res->channel_idx, res->sub_channel_idx,
-1, "", "");
}
static struct gen_pool *ecclog_gen_pool_create(void)
{
struct gen_pool *pool;
pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
if (!pool)
return NULL;
if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
gen_pool_destroy(pool);
return NULL;
}
return pool;
}
static int ecclog_gen_pool_add(int mc, u64 ecclog)
{
struct ecclog_node *node;
node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
if (!node)
return -ENOMEM;
node->mc = mc;
node->ecclog = ecclog;
llist_add(&node->llnode, &ecclog_llist);
return 0;
}
/*
* Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
* configuration space status register ERRSTS can indicate whether a
* correctable error or an uncorrectable error occurred. We only use the
* ECC_ERROR_LOG register to check error type, but need to clear both
* registers to enable future error events.
*/
static u64 ecclog_read_and_clear(struct igen6_imc *imc)
{
u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
/* Clear CE/UE bits by writing 1s */
writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
return ecclog;
}
return 0;
}
static void errsts_clear(struct igen6_imc *imc)
{
u16 errsts;
if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
return;
}
/* Clear CE/UE bits by writing 1s */
if (errsts & (ERRSTS_CE | ERRSTS_UE))
pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
}
static int errcmd_enable_error_reporting(bool enable)
{
struct igen6_imc *imc = &igen6_pvt->imc[0];
u16 errcmd;
int rc;
rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
if (rc)
return rc;
if (enable)
errcmd |= ERRCMD_CE | ERRSTS_UE;
else
errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
if (rc)
return rc;
return 0;
}
static int ecclog_handler(void)
{
struct igen6_imc *imc;
int i, n = 0;
u64 ecclog;
for (i = 0; i < res_cfg->num_imc; i++) {
imc = &igen6_pvt->imc[i];
/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
ecclog = ecclog_read_and_clear(imc);
if (!ecclog)
continue;
if (!ecclog_gen_pool_add(i, ecclog))
irq_work_queue(&ecclog_irq_work);
n++;
}
return n;
}
static void ecclog_work_cb(struct work_struct *work)
{
struct ecclog_node *node, *tmp;
struct mem_ctl_info *mci;
struct llist_node *head;
struct decoded_addr res;
u64 eaddr;
head = llist_del_all(&ecclog_llist);
if (!head)
return;
llist_for_each_entry_safe(node, tmp, head, llnode) {
memset(&res, 0, sizeof(res));
if (res_cfg->err_addr)
eaddr = res_cfg->err_addr(node->ecclog);
else
eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
ECC_ERROR_LOG_ADDR_SHIFT;
res.mc = node->mc;
res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
mci = igen6_pvt->imc[res.mc].mci;
edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
if (!igen6_decode(&res))
igen6_output_error(&res, mci, node->ecclog);
gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
}
}
static void ecclog_irq_work_cb(struct irq_work *irq_work)
{
int i;
for (i = 0; i < res_cfg->num_imc; i++)
errsts_clear(&igen6_pvt->imc[i]);
if (!llist_empty(&ecclog_llist))
schedule_work(&ecclog_work);
}
static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
{
unsigned char reason;
if (!ecclog_handler())
return NMI_DONE;
/*
* Both In-Band ECC correctable error and uncorrectable error are
* reported by SERR# NMI. The NMI generic code (see pci_serr_error())
* doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
* re-enable the SERR# NMI after NMI handling. So clear this bit here
* to re-enable SERR# NMI for receiving future In-Band ECC errors.
*/
reason = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
reason |= NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
reason &= ~NMI_REASON_CLEAR_SERR;
outb(reason, NMI_REASON_PORT);
return NMI_HANDLED;
}
static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
char *type;
if (mce->kflags & MCE_HANDLED_CEC)
return NOTIFY_DONE;
/*
* Ignore unless this is a memory related error.
* We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
* since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
*/
if ((mce->status & 0xefff) >> 7 != 1)
return NOTIFY_DONE;
if (mce->mcgstatus & MCG_STATUS_MCIP)
type = "Exception";
else
type = "Event";
edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
mce->extcpu, type, mce->mcgstatus,
mce->bank, mce->status);
edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
edac_dbg(0, "MISC 0x%llx\n", mce->misc);
edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
mce->cpuvendor, mce->cpuid, mce->time,
mce->socketid, mce->apicid);
/*
* We just use the Machine Check for the memory error notification.
* Each memory controller is associated with an IBECC instance.
* Directly read and clear the error information(error address and
* error type) on all the IBECC instances so that we know on which
* memory controller the memory error(s) occurred.
*/
if (!ecclog_handler())
return NOTIFY_DONE;
mce->kflags |= MCE_HANDLED_EDAC;
return NOTIFY_DONE;
}
static struct notifier_block ecclog_mce_dec = {
.notifier_call = ecclog_mce_handler,
.priority = MCE_PRIO_EDAC,
};
static bool igen6_check_ecc(struct igen6_imc *imc)
{
u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
return !!(activate & IBECC_ACTIVATE_EN);
}
static int igen6_get_dimm_config(struct mem_ctl_info *mci)
{
struct igen6_imc *imc = mci->pvt_info;
u32 mad_inter, mad_intra, mad_dimm;
int i, j, ndimms, mc = imc->mc;
struct dimm_info *dimm;
enum mem_type mtype;
enum dev_type dtype;
u64 dsize;
bool ecc;
edac_dbg(2, "\n");
mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
mtype = get_memory_type(mad_inter);
ecc = igen6_check_ecc(imc);
imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
imc->ch_l_map = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
for (i = 0; i < NUM_CHANNELS; i++) {
mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
mad_dimm = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
imc->dimm_l_map[i] = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
imc->size += imc->dimm_s_size[i];
imc->size += imc->dimm_l_size[i];
ndimms = 0;
for (j = 0; j < NUM_DIMMS; j++) {
dimm = edac_get_dimm(mci, i, j, 0);
if (j ^ imc->dimm_l_map[i]) {
dtype = get_width(0, mad_dimm);
dsize = imc->dimm_s_size[i];
} else {
dtype = get_width(1, mad_dimm);
dsize = imc->dimm_l_size[i];
}
if (!dsize)
continue;
dimm->grain = 64;
dimm->mtype = mtype;
dimm->dtype = dtype;
dimm->nr_pages = MiB_TO_PAGES(dsize >> 20);
dimm->edac_mode = EDAC_SECDED;
snprintf(dimm->label, sizeof(dimm->label),
"MC#%d_Chan#%d_DIMM#%d", mc, i, j);
edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
mc, i, j, dsize >> 20, dimm->nr_pages);
ndimms++;
}
if (ndimms && !ecc) {
igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
return -ENODEV;
}
}
edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
return 0;
}
#ifdef CONFIG_EDAC_DEBUG
/* Top of upper usable DRAM */
static u64 igen6_touud;
#define TOUUD_OFFSET 0xa8
static void igen6_reg_dump(struct igen6_imc *imc)
{
int i;
edac_dbg(2, "CHANNEL_HASH : 0x%x\n",
readl(imc->window + CHANNEL_HASH_OFFSET));
edac_dbg(2, "CHANNEL_EHASH : 0x%x\n",
readl(imc->window + CHANNEL_EHASH_OFFSET));
edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
edac_dbg(2, "ECC_ERROR_LOG : 0x%llx\n",
readq(imc->window + ECC_ERROR_LOG_OFFSET));
for (i = 0; i < NUM_CHANNELS; i++) {
edac_dbg(2, "MAD_INTRA_CH%d : 0x%x\n", i,
readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
edac_dbg(2, "MAD_DIMM_CH%d : 0x%x\n", i,
readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
}
edac_dbg(2, "TOLUD : 0x%x", igen6_tolud);
edac_dbg(2, "TOUUD : 0x%llx", igen6_touud);
edac_dbg(2, "TOM : 0x%llx", igen6_tom);
}
static struct dentry *igen6_test;
static int debugfs_u64_set(void *data, u64 val)
{
u64 ecclog;
if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
edac_dbg(0, "Address 0x%llx out of range\n", val);
return 0;
}
pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
val >>= ECC_ERROR_LOG_ADDR_SHIFT;
ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
if (!ecclog_gen_pool_add(0, ecclog))
irq_work_queue(&ecclog_irq_work);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
static void igen6_debug_setup(void)
{
igen6_test = edac_debugfs_create_dir("igen6_test");
if (!igen6_test)
return;
if (!edac_debugfs_create_file("addr", 0200, igen6_test,
NULL, &fops_u64_wo)) {
debugfs_remove(igen6_test);
igen6_test = NULL;
}
}
static void igen6_debug_teardown(void)
{
debugfs_remove_recursive(igen6_test);
}
#else
static void igen6_reg_dump(struct igen6_imc *imc) {}
static void igen6_debug_setup(void) {}
static void igen6_debug_teardown(void) {}
#endif
static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
{
union {
u64 v;
struct {
u32 v_lo;
u32 v_hi;
};
} u;
edac_dbg(2, "\n");
if (!res_cfg->ibecc_available(pdev)) {
edac_dbg(2, "No In-Band ECC IP\n");
goto fail;
}
if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
goto fail;
}
igen6_tolud &= GENMASK(31, 20);
if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
goto fail;
}
if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
goto fail;
}
igen6_tom = u.v & GENMASK_ULL(38, 20);
if (get_mchbar(pdev, mchbar))
goto fail;
#ifdef CONFIG_EDAC_DEBUG
if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
edac_dbg(2, "Failed to read lower TOUUD\n");
else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
edac_dbg(2, "Failed to read upper TOUUD\n");
else
igen6_touud = u.v & GENMASK_ULL(38, 20);
#endif
return 0;
fail:
return -ENODEV;
}
static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
{
struct edac_mc_layer layers[2];
struct mem_ctl_info *mci;
struct igen6_imc *imc;
void __iomem *window;
int rc;
edac_dbg(2, "\n");
mchbar += mc * MCHBAR_SIZE;
window = ioremap(mchbar, MCHBAR_SIZE);
if (!window) {
igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
return -ENODEV;
}
layers[0].type = EDAC_MC_LAYER_CHANNEL;
layers[0].size = NUM_CHANNELS;
layers[0].is_virt_csrow = false;
layers[1].type = EDAC_MC_LAYER_SLOT;
layers[1].size = NUM_DIMMS;
layers[1].is_virt_csrow = true;
mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
if (!mci) {
rc = -ENOMEM;
goto fail;
}
mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
if (!mci->ctl_name) {
rc = -ENOMEM;
goto fail2;
}
mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
mci->edac_ctl_cap = EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->dev_name = pci_name(pdev);
mci->pvt_info = &igen6_pvt->imc[mc];
imc = mci->pvt_info;
device_initialize(&imc->dev);
/*
* EDAC core uses mci->pdev(pointer of structure device) as
* memory controller ID. The client SoCs attach one or more
* memory controllers to single pci_dev (single pci_dev->dev
* can be for multiple memory controllers).
*
* To make mci->pdev unique, assign pci_dev->dev to mci->pdev
* for the first memory controller and assign a unique imc->dev
* to mci->pdev for each non-first memory controller.
*/
mci->pdev = mc ? &imc->dev : &pdev->dev;
imc->mc = mc;
imc->pdev = pdev;
imc->window = window;
igen6_reg_dump(imc);
rc = igen6_get_dimm_config(mci);
if (rc)
goto fail3;
rc = edac_mc_add_mc(mci);
if (rc) {
igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
goto fail3;
}
imc->mci = mci;
return 0;
fail3:
kfree(mci->ctl_name);
fail2:
edac_mc_free(mci);
fail:
iounmap(window);
return rc;
}
static void igen6_unregister_mcis(void)
{
struct mem_ctl_info *mci;
struct igen6_imc *imc;
int i;
edac_dbg(2, "\n");
for (i = 0; i < res_cfg->num_imc; i++) {
imc = &igen6_pvt->imc[i];
mci = imc->mci;
if (!mci)
continue;
edac_mc_del_mc(mci->pdev);
kfree(mci->ctl_name);
edac_mc_free(mci);
iounmap(imc->window);
}
}
static int igen6_mem_slice_setup(u64 mchbar)
{
struct igen6_imc *imc = &igen6_pvt->imc[0];
u64 base = mchbar + res_cfg->cmf_base;
u32 offset = res_cfg->ms_hash_offset;
u32 size = res_cfg->cmf_size;
u64 ms_s_size, ms_hash;
void __iomem *cmf;
int ms_l_map;
edac_dbg(2, "\n");
if (imc[0].size < imc[1].size) {
ms_s_size = imc[0].size;
ms_l_map = 1;
} else {
ms_s_size = imc[1].size;
ms_l_map = 0;
}
igen6_pvt->ms_s_size = ms_s_size;
igen6_pvt->ms_l_map = ms_l_map;
edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
ms_s_size >> 20, ms_l_map);
if (!size)
return 0;
cmf = ioremap(base, size);
if (!cmf) {
igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
return -ENODEV;
}
ms_hash = readq(cmf + offset);
igen6_pvt->ms_hash = ms_hash;
edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
iounmap(cmf);
return 0;
}
static int register_err_handler(void)
{
int rc;
if (res_cfg->machine_check) {
mce_register_decode_chain(&ecclog_mce_dec);
return 0;
}
rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
0, IGEN6_NMI_NAME);
if (rc) {
igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
return rc;
}
return 0;
}
static void unregister_err_handler(void)
{
if (res_cfg->machine_check) {
mce_unregister_decode_chain(&ecclog_mce_dec);
return;
}
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
}
static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
u64 mchbar;
int i, rc;
edac_dbg(2, "\n");
igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
if (!igen6_pvt)
return -ENOMEM;
res_cfg = (struct res_config *)ent->driver_data;
rc = igen6_pci_setup(pdev, &mchbar);
if (rc)
goto fail;
for (i = 0; i < res_cfg->num_imc; i++) {
rc = igen6_register_mci(i, mchbar, pdev);
if (rc)
goto fail2;
}
if (res_cfg->num_imc > 1) {
rc = igen6_mem_slice_setup(mchbar);
if (rc)
goto fail2;
}
ecclog_pool = ecclog_gen_pool_create();
if (!ecclog_pool) {
rc = -ENOMEM;
goto fail2;
}
INIT_WORK(&ecclog_work, ecclog_work_cb);
init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
rc = register_err_handler();
if (rc)
goto fail3;
/* Enable error reporting */
rc = errcmd_enable_error_reporting(true);
if (rc) {
igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
goto fail4;
}
/* Check if any pending errors before/during the registration of the error handler */
ecclog_handler();
igen6_debug_setup();
return 0;
fail4:
unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
fail3:
gen_pool_destroy(ecclog_pool);
fail2:
igen6_unregister_mcis();
fail:
kfree(igen6_pvt);
return rc;
}
static void igen6_remove(struct pci_dev *pdev)
{
edac_dbg(2, "\n");
igen6_debug_teardown();
errcmd_enable_error_reporting(false);
unregister_err_handler();
irq_work_sync(&ecclog_irq_work);
flush_work(&ecclog_work);
gen_pool_destroy(ecclog_pool);
igen6_unregister_mcis();
kfree(igen6_pvt);
}
static struct pci_driver igen6_driver = {
.name = EDAC_MOD_STR,
.probe = igen6_probe,
.remove = igen6_remove,
.id_table = igen6_pci_tbl,
};
static int __init igen6_init(void)
{
const char *owner;
int rc;
edac_dbg(2, "\n");
if (ghes_get_devices())
return -EBUSY;
owner = edac_get_owner();
if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
return -EBUSY;
edac_op_state = EDAC_OPSTATE_NMI;
rc = pci_register_driver(&igen6_driver);
if (rc)
return rc;
igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
return 0;
}
static void __exit igen6_exit(void)
{
edac_dbg(2, "\n");
pci_unregister_driver(&igen6_driver);
}
module_init(igen6_init);
module_exit(igen6_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Qiuxu Zhuo");
MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");