/*
* Applied Micro X-Gene SoC DMA engine Driver
*
* Copyright (c) 2015, Applied Micro Circuits Corporation
* Authors: Rameshwar Prasad Sahu <rsahu@apm.com>
* Loc Ho <lho@apm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* NOTE: PM support is currently not available.
*/
#include <linux/acpi.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include "dmaengine.h"
/* X-Gene DMA ring csr registers and bit definations */
#define XGENE_DMA_RING_CONFIG 0x04
#define XGENE_DMA_RING_ENABLE BIT(31)
#define XGENE_DMA_RING_ID 0x08
#define XGENE_DMA_RING_ID_SETUP(v) ((v) | BIT(31))
#define XGENE_DMA_RING_ID_BUF 0x0C
#define XGENE_DMA_RING_ID_BUF_SETUP(v) (((v) << 9) | BIT(21))
#define XGENE_DMA_RING_THRESLD0_SET1 0x30
#define XGENE_DMA_RING_THRESLD0_SET1_VAL 0X64
#define XGENE_DMA_RING_THRESLD1_SET1 0x34
#define XGENE_DMA_RING_THRESLD1_SET1_VAL 0xC8
#define XGENE_DMA_RING_HYSTERESIS 0x68
#define XGENE_DMA_RING_HYSTERESIS_VAL 0xFFFFFFFF
#define XGENE_DMA_RING_STATE 0x6C
#define XGENE_DMA_RING_STATE_WR_BASE 0x70
#define XGENE_DMA_RING_NE_INT_MODE 0x017C
#define XGENE_DMA_RING_NE_INT_MODE_SET(m, v) \
((m) = ((m) & ~BIT(31 - (v))) | BIT(31 - (v)))
#define XGENE_DMA_RING_NE_INT_MODE_RESET(m, v) \
((m) &= (~BIT(31 - (v))))
#define XGENE_DMA_RING_CLKEN 0xC208
#define XGENE_DMA_RING_SRST 0xC200
#define XGENE_DMA_RING_MEM_RAM_SHUTDOWN 0xD070
#define XGENE_DMA_RING_BLK_MEM_RDY 0xD074
#define XGENE_DMA_RING_BLK_MEM_RDY_VAL 0xFFFFFFFF
#define XGENE_DMA_RING_ID_GET(owner, num) (((owner) << 6) | (num))
#define XGENE_DMA_RING_DST_ID(v) ((1 << 10) | (v))
#define XGENE_DMA_RING_CMD_OFFSET 0x2C
#define XGENE_DMA_RING_CMD_BASE_OFFSET(v) ((v) << 6)
#define XGENE_DMA_RING_COHERENT_SET(m) \
(((u32 *)(m))[2] |= BIT(4))
#define XGENE_DMA_RING_ADDRL_SET(m, v) \
(((u32 *)(m))[2] |= (((v) >> 8) << 5))
#define XGENE_DMA_RING_ADDRH_SET(m, v) \
(((u32 *)(m))[3] |= ((v) >> 35))
#define XGENE_DMA_RING_ACCEPTLERR_SET(m) \
(((u32 *)(m))[3] |= BIT(19))
#define XGENE_DMA_RING_SIZE_SET(m, v) \
(((u32 *)(m))[3] |= ((v) << 23))
#define XGENE_DMA_RING_RECOMBBUF_SET(m) \
(((u32 *)(m))[3] |= BIT(27))
#define XGENE_DMA_RING_RECOMTIMEOUTL_SET(m) \
(((u32 *)(m))[3] |= (0x7 << 28))
#define XGENE_DMA_RING_RECOMTIMEOUTH_SET(m) \
(((u32 *)(m))[4] |= 0x3)
#define XGENE_DMA_RING_SELTHRSH_SET(m) \
(((u32 *)(m))[4] |= BIT(3))
#define XGENE_DMA_RING_TYPE_SET(m, v) \
(((u32 *)(m))[4] |= ((v) << 19))
/* X-Gene DMA device csr registers and bit definitions */
#define XGENE_DMA_IPBRR 0x0
#define XGENE_DMA_DEV_ID_RD(v) ((v) & 0x00000FFF)
#define XGENE_DMA_BUS_ID_RD(v) (((v) >> 12) & 3)
#define XGENE_DMA_REV_NO_RD(v) (((v) >> 14) & 3)
#define XGENE_DMA_GCR 0x10
#define XGENE_DMA_CH_SETUP(v) \
((v) = ((v) & ~0x000FFFFF) | 0x000AAFFF)
#define XGENE_DMA_ENABLE(v) ((v) |= BIT(31))
#define XGENE_DMA_DISABLE(v) ((v) &= ~BIT(31))
#define XGENE_DMA_RAID6_CONT 0x14
#define XGENE_DMA_RAID6_MULTI_CTRL(v) ((v) << 24)
#define XGENE_DMA_INT 0x70
#define XGENE_DMA_INT_MASK 0x74
#define XGENE_DMA_INT_ALL_MASK 0xFFFFFFFF
#define XGENE_DMA_INT_ALL_UNMASK 0x0
#define XGENE_DMA_INT_MASK_SHIFT 0x14
#define XGENE_DMA_RING_INT0_MASK 0x90A0
#define XGENE_DMA_RING_INT1_MASK 0x90A8
#define XGENE_DMA_RING_INT2_MASK 0x90B0
#define XGENE_DMA_RING_INT3_MASK 0x90B8
#define XGENE_DMA_RING_INT4_MASK 0x90C0
#define XGENE_DMA_CFG_RING_WQ_ASSOC 0x90E0
#define XGENE_DMA_ASSOC_RING_MNGR1 0xFFFFFFFF
#define XGENE_DMA_MEM_RAM_SHUTDOWN 0xD070
#define XGENE_DMA_BLK_MEM_RDY 0xD074
#define XGENE_DMA_BLK_MEM_RDY_VAL 0xFFFFFFFF
#define XGENE_DMA_RING_CMD_SM_OFFSET 0x8000
/* X-Gene SoC EFUSE csr register and bit defination */
#define XGENE_SOC_JTAG1_SHADOW 0x18
#define XGENE_DMA_PQ_DISABLE_MASK BIT(13)
/* X-Gene DMA Descriptor format */
#define XGENE_DMA_DESC_NV_BIT BIT_ULL(50)
#define XGENE_DMA_DESC_IN_BIT BIT_ULL(55)
#define XGENE_DMA_DESC_C_BIT BIT_ULL(63)
#define XGENE_DMA_DESC_DR_BIT BIT_ULL(61)
#define XGENE_DMA_DESC_ELERR_POS 46
#define XGENE_DMA_DESC_RTYPE_POS 56
#define XGENE_DMA_DESC_LERR_POS 60
#define XGENE_DMA_DESC_BUFLEN_POS 48
#define XGENE_DMA_DESC_HOENQ_NUM_POS 48
#define XGENE_DMA_DESC_ELERR_RD(m) \
(((m) >> XGENE_DMA_DESC_ELERR_POS) & 0x3)
#define XGENE_DMA_DESC_LERR_RD(m) \
(((m) >> XGENE_DMA_DESC_LERR_POS) & 0x7)
#define XGENE_DMA_DESC_STATUS(elerr, lerr) \
(((elerr) << 4) | (lerr))
/* X-Gene DMA descriptor empty s/w signature */
#define XGENE_DMA_DESC_EMPTY_SIGNATURE ~0ULL
/* X-Gene DMA configurable parameters defines */
#define XGENE_DMA_RING_NUM 512
#define XGENE_DMA_BUFNUM 0x0
#define XGENE_DMA_CPU_BUFNUM 0x18
#define XGENE_DMA_RING_OWNER_DMA 0x03
#define XGENE_DMA_RING_OWNER_CPU 0x0F
#define XGENE_DMA_RING_TYPE_REGULAR 0x01
#define XGENE_DMA_RING_WQ_DESC_SIZE 32 /* 32 Bytes */
#define XGENE_DMA_RING_NUM_CONFIG 5
#define XGENE_DMA_MAX_CHANNEL 4
#define XGENE_DMA_XOR_CHANNEL 0
#define XGENE_DMA_PQ_CHANNEL 1
#define XGENE_DMA_MAX_BYTE_CNT 0x4000 /* 16 KB */
#define XGENE_DMA_MAX_64B_DESC_BYTE_CNT 0x14000 /* 80 KB */
#define XGENE_DMA_MAX_XOR_SRC 5
#define XGENE_DMA_16K_BUFFER_LEN_CODE 0x0
#define XGENE_DMA_INVALID_LEN_CODE 0x7800000000000000ULL
/* X-Gene DMA descriptor error codes */
#define ERR_DESC_AXI 0x01
#define ERR_BAD_DESC 0x02
#define ERR_READ_DATA_AXI 0x03
#define ERR_WRITE_DATA_AXI 0x04
#define ERR_FBP_TIMEOUT 0x05
#define ERR_ECC 0x06
#define ERR_DIFF_SIZE 0x08
#define ERR_SCT_GAT_LEN 0x09
#define ERR_CRC_ERR 0x11
#define ERR_CHKSUM 0x12
#define ERR_DIF 0x13
/* X-Gene DMA error interrupt codes */
#define ERR_DIF_SIZE_INT 0x0
#define ERR_GS_ERR_INT 0x1
#define ERR_FPB_TIMEO_INT 0x2
#define ERR_WFIFO_OVF_INT 0x3
#define ERR_RFIFO_OVF_INT 0x4
#define ERR_WR_TIMEO_INT 0x5
#define ERR_RD_TIMEO_INT 0x6
#define ERR_WR_ERR_INT 0x7
#define ERR_RD_ERR_INT 0x8
#define ERR_BAD_DESC_INT 0x9
#define ERR_DESC_DST_INT 0xA
#define ERR_DESC_SRC_INT 0xB
/* X-Gene DMA flyby operation code */
#define FLYBY_2SRC_XOR 0x80
#define FLYBY_3SRC_XOR 0x90
#define FLYBY_4SRC_XOR 0xA0
#define FLYBY_5SRC_XOR 0xB0
/* X-Gene DMA SW descriptor flags */
#define XGENE_DMA_FLAG_64B_DESC BIT(0)
/* Define to dump X-Gene DMA descriptor */
#define XGENE_DMA_DESC_DUMP(desc, m) \
print_hex_dump(KERN_ERR, (m), \
DUMP_PREFIX_ADDRESS, 16, 8, (desc), 32, 0)
#define to_dma_desc_sw(tx) \
container_of(tx, struct xgene_dma_desc_sw, tx)
#define to_dma_chan(dchan) \
container_of(dchan, struct xgene_dma_chan, dma_chan)
#define chan_dbg(chan, fmt, arg...) \
dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
#define chan_err(chan, fmt, arg...) \
dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
struct xgene_dma_desc_hw {
__le64 m0;
__le64 m1;
__le64 m2;
__le64 m3;
};
enum xgene_dma_ring_cfgsize {
XGENE_DMA_RING_CFG_SIZE_512B,
XGENE_DMA_RING_CFG_SIZE_2KB,
XGENE_DMA_RING_CFG_SIZE_16KB,
XGENE_DMA_RING_CFG_SIZE_64KB,
XGENE_DMA_RING_CFG_SIZE_512KB,
XGENE_DMA_RING_CFG_SIZE_INVALID
};
struct xgene_dma_ring {
struct xgene_dma *pdma;
u8 buf_num;
u16 id;
u16 num;
u16 head;
u16 owner;
u16 slots;
u16 dst_ring_num;
u32 size;
void __iomem *cmd;
void __iomem *cmd_base;
dma_addr_t desc_paddr;
u32 state[XGENE_DMA_RING_NUM_CONFIG];
enum xgene_dma_ring_cfgsize cfgsize;
union {
void *desc_vaddr;
struct xgene_dma_desc_hw *desc_hw;
};
};
struct xgene_dma_desc_sw {
struct xgene_dma_desc_hw desc1;
struct xgene_dma_desc_hw desc2;
u32 flags;
struct list_head node;
struct list_head tx_list;
struct dma_async_tx_descriptor tx;
};
/**
* struct xgene_dma_chan - internal representation of an X-Gene DMA channel
* @dma_chan: dmaengine channel object member
* @pdma: X-Gene DMA device structure reference
* @dev: struct device reference for dma mapping api
* @id: raw id of this channel
* @rx_irq: channel IRQ
* @name: name of X-Gene DMA channel
* @lock: serializes enqueue/dequeue operations to the descriptor pool
* @pending: number of transaction request pushed to DMA controller for
* execution, but still waiting for completion,
* @max_outstanding: max number of outstanding request we can push to channel
* @ld_pending: descriptors which are queued to run, but have not yet been
* submitted to the hardware for execution
* @ld_running: descriptors which are currently being executing by the hardware
* @ld_completed: descriptors which have finished execution by the hardware.
* These descriptors have already had their cleanup actions run. They
* are waiting for the ACK bit to be set by the async tx API.
* @desc_pool: descriptor pool for DMA operations
* @tasklet: bottom half where all completed descriptors cleans
* @tx_ring: transmit ring descriptor that we use to prepare actual
* descriptors for further executions
* @rx_ring: receive ring descriptor that we use to get completed DMA
* descriptors during cleanup time
*/
struct xgene_dma_chan {
struct dma_chan dma_chan;
struct xgene_dma *pdma;
struct device *dev;
int id;
int rx_irq;
char name[10];
spinlock_t lock;
int pending;
int max_outstanding;
struct list_head ld_pending;
struct list_head ld_running;
struct list_head ld_completed;
struct dma_pool *desc_pool;
struct tasklet_struct tasklet;
struct xgene_dma_ring tx_ring;
struct xgene_dma_ring rx_ring;
};
/**
* struct xgene_dma - internal representation of an X-Gene DMA device
* @err_irq: DMA error irq number
* @ring_num: start id number for DMA ring
* @csr_dma: base for DMA register access
* @csr_ring: base for DMA ring register access
* @csr_ring_cmd: base for DMA ring command register access
* @csr_efuse: base for efuse register access
* @dma_dev: embedded struct dma_device
* @chan: reference to X-Gene DMA channels
*/
struct xgene_dma {
struct device *dev;
struct clk *clk;
int err_irq;
int ring_num;
void __iomem *csr_dma;
void __iomem *csr_ring;
void __iomem *csr_ring_cmd;
void __iomem *csr_efuse;
struct dma_device dma_dev[XGENE_DMA_MAX_CHANNEL];
struct xgene_dma_chan chan[XGENE_DMA_MAX_CHANNEL];
};
static const char * const xgene_dma_desc_err[] = {
[ERR_DESC_AXI] = "AXI error when reading src/dst link list",
[ERR_BAD_DESC] = "ERR or El_ERR fields not set to zero in desc",
[ERR_READ_DATA_AXI] = "AXI error when reading data",
[ERR_WRITE_DATA_AXI] = "AXI error when writing data",
[ERR_FBP_TIMEOUT] = "Timeout on bufpool fetch",
[ERR_ECC] = "ECC double bit error",
[ERR_DIFF_SIZE] = "Bufpool too small to hold all the DIF result",
[ERR_SCT_GAT_LEN] = "Gather and scatter data length not same",
[ERR_CRC_ERR] = "CRC error",
[ERR_CHKSUM] = "Checksum error",
[ERR_DIF] = "DIF error",
};
static const char * const xgene_dma_err[] = {
[ERR_DIF_SIZE_INT] = "DIF size error",
[ERR_GS_ERR_INT] = "Gather scatter not same size error",
[ERR_FPB_TIMEO_INT] = "Free pool time out error",
[ERR_WFIFO_OVF_INT] = "Write FIFO over flow error",
[ERR_RFIFO_OVF_INT] = "Read FIFO over flow error",
[ERR_WR_TIMEO_INT] = "Write time out error",
[ERR_RD_TIMEO_INT] = "Read time out error",
[ERR_WR_ERR_INT] = "HBF bus write error",
[ERR_RD_ERR_INT] = "HBF bus read error",
[ERR_BAD_DESC_INT] = "Ring descriptor HE0 not set error",
[ERR_DESC_DST_INT] = "HFB reading dst link address error",
[ERR_DESC_SRC_INT] = "HFB reading src link address error",
};
static bool is_pq_enabled(struct xgene_dma *pdma)
{
u32 val;
val = ioread32(pdma->csr_efuse + XGENE_SOC_JTAG1_SHADOW);
return !(val & XGENE_DMA_PQ_DISABLE_MASK);
}
static u64 xgene_dma_encode_len(size_t len)
{
return (len < XGENE_DMA_MAX_BYTE_CNT) ?
((u64)len << XGENE_DMA_DESC_BUFLEN_POS) :
XGENE_DMA_16K_BUFFER_LEN_CODE;
}
static u8 xgene_dma_encode_xor_flyby(u32 src_cnt)
{
static u8 flyby_type[] = {
FLYBY_2SRC_XOR, /* Dummy */
FLYBY_2SRC_XOR, /* Dummy */
FLYBY_2SRC_XOR,
FLYBY_3SRC_XOR,
FLYBY_4SRC_XOR,
FLYBY_5SRC_XOR
};
return flyby_type[src_cnt];
}
static void xgene_dma_set_src_buffer(__le64 *ext8, size_t *len,
dma_addr_t *paddr)
{
size_t nbytes = (*len < XGENE_DMA_MAX_BYTE_CNT) ?
*len : XGENE_DMA_MAX_BYTE_CNT;
*ext8 |= cpu_to_le64(*paddr);
*ext8 |= cpu_to_le64(xgene_dma_encode_len(nbytes));
*len -= nbytes;
*paddr += nbytes;
}
static __le64 *xgene_dma_lookup_ext8(struct xgene_dma_desc_hw *desc, int idx)
{
switch (idx) {
case 0:
return &desc->m1;
case 1:
return &desc->m0;
case 2:
return &desc->m3;
case 3:
return &desc->m2;
default:
pr_err("Invalid dma descriptor index\n");
}
return NULL;
}
static void xgene_dma_init_desc(struct xgene_dma_desc_hw *desc,
u16 dst_ring_num)
{
desc->m0 |= cpu_to_le64(XGENE_DMA_DESC_IN_BIT);
desc->m0 |= cpu_to_le64((u64)XGENE_DMA_RING_OWNER_DMA <<
XGENE_DMA_DESC_RTYPE_POS);
desc->m1 |= cpu_to_le64(XGENE_DMA_DESC_C_BIT);
desc->m3 |= cpu_to_le64((u64)dst_ring_num <<
XGENE_DMA_DESC_HOENQ_NUM_POS);
}
static void xgene_dma_prep_xor_desc(struct xgene_dma_chan *chan,
struct xgene_dma_desc_sw *desc_sw,
dma_addr_t *dst, dma_addr_t *src,
u32 src_cnt, size_t *nbytes,
const u8 *scf)
{
struct xgene_dma_desc_hw *desc1, *desc2;
size_t len = *nbytes;
int i;
desc1 = &desc_sw->desc1;
desc2 = &desc_sw->desc2;
/* Initialize DMA descriptor */
xgene_dma_init_desc(desc1, chan->tx_ring.dst_ring_num);
/* Set destination address */
desc1->m2 |= cpu_to_le64(XGENE_DMA_DESC_DR_BIT);
desc1->m3 |= cpu_to_le64(*dst);
/* We have multiple source addresses, so need to set NV bit*/
desc1->m0 |= cpu_to_le64(XGENE_DMA_DESC_NV_BIT);
/* Set flyby opcode */
desc1->m2 |= cpu_to_le64(xgene_dma_encode_xor_flyby(src_cnt));
/* Set 1st to 5th source addresses */
for (i = 0; i < src_cnt; i++) {
len = *nbytes;
xgene_dma_set_src_buffer((i == 0) ? &desc1->m1 :
xgene_dma_lookup_ext8(desc2, i - 1),
&len, &src[i]);
desc1->m2 |= cpu_to_le64((scf[i] << ((i + 1) * 8)));
}
/* Update meta data */
*nbytes = len;
*dst += XGENE_DMA_MAX_BYTE_CNT;
/* We need always 64B descriptor to perform xor or pq operations */
desc_sw->flags |= XGENE_DMA_FLAG_64B_DESC;
}
static dma_cookie_t xgene_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct xgene_dma_desc_sw *desc;
struct xgene_dma_chan *chan;
dma_cookie_t cookie;
if (unlikely(!tx))
return -EINVAL;
chan = to_dma_chan(tx->chan);
desc = to_dma_desc_sw(tx);
spin_lock_bh(&chan->lock);
cookie = dma_cookie_assign(tx);
/* Add this transaction list onto the tail of the pending queue */
list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
spin_unlock_bh(&chan->lock);
return cookie;
}
static void xgene_dma_clean_descriptor(struct xgene_dma_chan *chan,
struct xgene_dma_desc_sw *desc)
{
list_del(&desc->node);
chan_dbg(chan, "LD %p free\n", desc);
dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
}
static struct xgene_dma_desc_sw *xgene_dma_alloc_descriptor(
struct xgene_dma_chan *chan)
{
struct xgene_dma_desc_sw *desc;
dma_addr_t phys;
desc = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
if (!desc) {
chan_err(chan, "Failed to allocate LDs\n");
return NULL;
}
INIT_LIST_HEAD(&desc->tx_list);
desc->tx.phys = phys;
desc->tx.tx_submit = xgene_dma_tx_submit;
dma_async_tx_descriptor_init(&desc->tx, &chan->dma_chan);
chan_dbg(chan, "LD %p allocated\n", desc);
return desc;
}
/**
* xgene_dma_clean_completed_descriptor - free all descriptors which
* has been completed and acked
* @chan: X-Gene DMA channel
*
* This function is used on all completed and acked descriptors.
*/
static void xgene_dma_clean_completed_descriptor(struct xgene_dma_chan *chan)
{
struct xgene_dma_desc_sw *desc, *_desc;
/* Run the callback for each descriptor, in order */
list_for_each_entry_safe(desc, _desc, &chan->ld_completed, node) {
if (async_tx_test_ack(&desc->tx))
xgene_dma_clean_descriptor(chan, desc);
}
}
/**
* xgene_dma_run_tx_complete_actions - cleanup a single link descriptor
* @chan: X-Gene DMA channel
* @desc: descriptor to cleanup and free
*
* This function is used on a descriptor which has been executed by the DMA
* controller. It will run any callbacks, submit any dependencies.
*/
static void xgene_dma_run_tx_complete_actions(struct xgene_dma_chan *chan,
struct xgene_dma_desc_sw *desc)
{
struct dma_async_tx_descriptor *tx = &desc->tx;
/*
* If this is not the last transaction in the group,
* then no need to complete cookie and run any callback as
* this is not the tx_descriptor which had been sent to caller
* of this DMA request
*/
if (tx->cookie == 0)
return;
dma_cookie_complete(tx);
dma_descriptor_unmap(tx);
/* Run the link descriptor callback function */
dmaengine_desc_get_callback_invoke(tx, NULL);
/* Run any dependencies */
dma_run_dependencies(tx);
}
/**
* xgene_dma_clean_running_descriptor - move the completed descriptor from
* ld_running to ld_completed
* @chan: X-Gene DMA channel
* @desc: the descriptor which is completed
*
* Free the descriptor directly if acked by async_tx api,
* else move it to queue ld_completed.
*/
static void xgene_dma_clean_running_descriptor(struct xgene_dma_chan *chan,
struct xgene_dma_desc_sw *desc)
{
/* Remove from the list of running transactions */
list_del(&desc->node);
/*
* the client is allowed to attach dependent operations
* until 'ack' is set
*/
if (!async_tx_test_ack(&desc->tx)) {
/*
* Move this descriptor to the list of descriptors which is
* completed, but still awaiting the 'ack' bit to be set.
*/
list_add_tail(&desc->node, &chan->ld_completed);
return;
}
chan_dbg(chan, "LD %p free\n", desc);
dma_pool_free(chan->desc_pool, desc, desc->tx.phys);
}
static void xgene_chan_xfer_request(struct xgene_dma_chan *chan,
struct xgene_dma_desc_sw *desc_sw)
{
struct xgene_dma_ring *ring = &chan->tx_ring;
struct xgene_dma_desc_hw *desc_hw;
/* Get hw descriptor from DMA tx ring */
desc_hw = &ring->desc_hw[ring->head];
/*
* Increment the head count to point next
* descriptor for next time
*/
if (++ring->head == ring->slots)
ring->head = 0;
/* Copy prepared sw descriptor data to hw descriptor */
memcpy(desc_hw, &desc_sw->desc1, sizeof(*desc_hw));
/*
* Check if we have prepared 64B descriptor,
* in this case we need one more hw descriptor
*/
if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) {
desc_hw = &ring->desc_hw[ring->head];
if (++ring->head == ring->slots)
ring->head = 0;
memcpy(desc_hw, &desc_sw->desc2, sizeof(*desc_hw));
}
/* Increment the pending transaction count */
chan->pending += ((desc_sw->flags &
XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
/* Notify the hw that we have descriptor ready for execution */
iowrite32((desc_sw->flags & XGENE_DMA_FLAG_64B_DESC) ?
2 : 1, ring->cmd);
}
/**
* xgene_chan_xfer_ld_pending - push any pending transactions to hw
* @chan : X-Gene DMA channel
*
* LOCKING: must hold chan->lock
*/
static void xgene_chan_xfer_ld_pending(struct xgene_dma_chan *chan)
{
struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
/*
* If the list of pending descriptors is empty, then we
* don't need to do any work at all
*/
if (list_empty(&chan->ld_pending)) {
chan_dbg(chan, "No pending LDs\n");
return;
}
/*
* Move elements from the queue of pending transactions onto the list
* of running transactions and push it to hw for further executions
*/
list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_pending, node) {
/*
* Check if have pushed max number of transactions to hw
* as capable, so let's stop here and will push remaining
* elements from pening ld queue after completing some
* descriptors that we have already pushed
*/
if (chan->pending >= chan->max_outstanding)
return;
xgene_chan_xfer_request(chan, desc_sw);
/*
* Delete this element from ld pending queue and append it to
* ld running queue
*/
list_move_tail(&desc_sw->node, &chan->ld_running);
}
}
/**
* xgene_dma_cleanup_descriptors - cleanup link descriptors which are completed
* and move them to ld_completed to free until flag 'ack' is set
* @chan: X-Gene DMA channel
*
* This function is used on descriptors which have been executed by the DMA
* controller. It will run any callbacks, submit any dependencies, then
* free these descriptors if flag 'ack' is set.
*/
static void xgene_dma_cleanup_descriptors(struct xgene_dma_chan *chan)
{
struct xgene_dma_ring *ring = &chan->rx_ring;
struct xgene_dma_desc_sw *desc_sw, *_desc_sw;
struct xgene_dma_desc_hw *desc_hw;
struct list_head ld_completed;
u8 status;
INIT_LIST_HEAD(&ld_completed);
spin_lock_bh(&chan->lock);
/* Clean already completed and acked descriptors */
xgene_dma_clean_completed_descriptor(chan);
/* Move all completed descriptors to ld completed queue, in order */
list_for_each_entry_safe(desc_sw, _desc_sw, &chan->ld_running, node) {
/* Get subsequent hw descriptor from DMA rx ring */
desc_hw = &ring->desc_hw[ring->head];
/* Check if this descriptor has been completed */
if (unlikely(le64_to_cpu(desc_hw->m0) ==
XGENE_DMA_DESC_EMPTY_SIGNATURE))
break;
if (++ring->head == ring->slots)
ring->head = 0;
/* Check if we have any error with DMA transactions */
status = XGENE_DMA_DESC_STATUS(
XGENE_DMA_DESC_ELERR_RD(le64_to_cpu(
desc_hw->m0)),
XGENE_DMA_DESC_LERR_RD(le64_to_cpu(
desc_hw->m0)));
if (status) {
/* Print the DMA error type */
chan_err(chan, "%s\n", xgene_dma_desc_err[status]);
/*
* We have DMA transactions error here. Dump DMA Tx
* and Rx descriptors for this request */
XGENE_DMA_DESC_DUMP(&desc_sw->desc1,
"X-Gene DMA TX DESC1: ");
if (desc_sw->flags & XGENE_DMA_FLAG_64B_DESC)
XGENE_DMA_DESC_DUMP(&desc_sw->desc2,
"X-Gene DMA TX DESC2: ");
XGENE_DMA_DESC_DUMP(desc_hw,
"X-Gene DMA RX ERR DESC: ");
}
/* Notify the hw about this completed descriptor */
iowrite32(-1, ring->cmd);
/* Mark this hw descriptor as processed */
desc_hw->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
/*
* Decrement the pending transaction count
* as we have processed one
*/
chan->pending -= ((desc_sw->flags &
XGENE_DMA_FLAG_64B_DESC) ? 2 : 1);
/*
* Delete this node from ld running queue and append it to
* ld completed queue for further processing
*/
list_move_tail(&desc_sw->node, &ld_completed);
}
/*
* Start any pending transactions automatically
* In the ideal case, we keep the DMA controller busy while we go
* ahead and free the descriptors below.
*/
xgene_chan_xfer_ld_pending(chan);
spin_unlock_bh(&chan->lock);
/* Run the callback for each descriptor, in order */
list_for_each_entry_safe(desc_sw, _desc_sw, &ld_completed, node) {
xgene_dma_run_tx_complete_actions(chan, desc_sw);
xgene_dma_clean_running_descriptor(chan, desc_sw);
}
}
static int xgene_dma_alloc_chan_resources(struct dma_chan *dchan)
{
struct xgene_dma_chan *chan = to_dma_chan(dchan);
/* Has this channel already been allocated? */
if (chan->desc_pool)
return 1;
chan->desc_pool = dma_pool_create(chan->name, chan->dev,
sizeof(struct xgene_dma_desc_sw),
0, 0);
if (!chan->desc_pool) {
chan_err(chan, "Failed to allocate descriptor pool\n");
return -ENOMEM;
}
chan_dbg(chan, "Allocate descripto pool\n");
return 1;
}
/**
* xgene_dma_free_desc_list - Free all descriptors in a queue
* @chan: X-Gene DMA channel
* @list: the list to free
*
* LOCKING: must hold chan->lock
*/
static void xgene_dma_free_desc_list(struct xgene_dma_chan *chan,
struct list_head *list)
{
struct xgene_dma_desc_sw *desc, *_desc;
list_for_each_entry_safe(desc, _desc, list, node)
xgene_dma_clean_descriptor(chan, desc);
}
static void xgene_dma_free_chan_resources(struct dma_chan *dchan)
{
struct xgene_dma_chan *chan = to_dma_chan(dchan);
chan_dbg(chan, "Free all resources\n");
if (!chan->desc_pool)
return;
/* Process all running descriptor */
xgene_dma_cleanup_descriptors(chan);
spin_lock_bh(&chan->lock);
/* Clean all link descriptor queues */
xgene_dma_free_desc_list(chan, &chan->ld_pending);
xgene_dma_free_desc_list(chan, &chan->ld_running);
xgene_dma_free_desc_list(chan, &chan->ld_completed);
spin_unlock_bh(&chan->lock);
/* Delete this channel DMA pool */
dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
}
static struct dma_async_tx_descriptor *xgene_dma_prep_xor(
struct dma_chan *dchan, dma_addr_t dst, dma_addr_t *src,
u32 src_cnt, size_t len, unsigned long flags)
{
struct xgene_dma_desc_sw *first = NULL, *new;
struct xgene_dma_chan *chan;
static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {
0x01, 0x01, 0x01, 0x01, 0x01};
if (unlikely(!dchan || !len))
return NULL;
chan = to_dma_chan(dchan);
do {
/* Allocate the link descriptor from DMA pool */
new = xgene_dma_alloc_descriptor(chan);
if (!new)
goto fail;
/* Prepare xor DMA descriptor */
xgene_dma_prep_xor_desc(chan, new, &dst, src,
src_cnt, &len, multi);
if (!first)
first = new;
new->tx.cookie = 0;
async_tx_ack(&new->tx);
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
} while (len);
new->tx.flags = flags; /* client is in control of this ack */
new->tx.cookie = -EBUSY;
list_splice(&first->tx_list, &new->tx_list);
return &new->tx;
fail:
if (!first)
return NULL;
xgene_dma_free_desc_list(chan, &first->tx_list);
return NULL;
}
static struct dma_async_tx_descriptor *xgene_dma_prep_pq(
struct dma_chan *dchan, dma_addr_t *dst, dma_addr_t *src,
u32 src_cnt, const u8 *scf, size_t len, unsigned long flags)
{
struct xgene_dma_desc_sw *first = NULL, *new;
struct xgene_dma_chan *chan;
size_t _len = len;
dma_addr_t _src[XGENE_DMA_MAX_XOR_SRC];
static u8 multi[XGENE_DMA_MAX_XOR_SRC] = {0x01, 0x01, 0x01, 0x01, 0x01};
if (unlikely(!dchan || !len))
return NULL;
chan = to_dma_chan(dchan);
/*
* Save source addresses on local variable, may be we have to
* prepare two descriptor to generate P and Q if both enabled
* in the flags by client
*/
memcpy(_src, src, sizeof(*src) * src_cnt);
if (flags & DMA_PREP_PQ_DISABLE_P)
len = 0;
if (flags & DMA_PREP_PQ_DISABLE_Q)
_len = 0;
do {
/* Allocate the link descriptor from DMA pool */
new = xgene_dma_alloc_descriptor(chan);
if (!new)
goto fail;
if (!first)
first = new;
new->tx.cookie = 0;
async_tx_ack(&new->tx);
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
/*
* Prepare DMA descriptor to generate P,
* if DMA_PREP_PQ_DISABLE_P flag is not set
*/
if (len) {
xgene_dma_prep_xor_desc(chan, new, &dst[0], src,
src_cnt, &len, multi);
continue;
}
/*
* Prepare DMA descriptor to generate Q,
* if DMA_PREP_PQ_DISABLE_Q flag is not set
*/
if (_len) {
xgene_dma_prep_xor_desc(chan, new, &dst[1], _src,
src_cnt, &_len, scf);
}
} while (len || _len);
new->tx.flags = flags; /* client is in control of this ack */
new->tx.cookie = -EBUSY;
list_splice(&first->tx_list, &new->tx_list);
return &new->tx;
fail:
if (!first)
return NULL;
xgene_dma_free_desc_list(chan, &first->tx_list);
return NULL;
}
static void xgene_dma_issue_pending(struct dma_chan *dchan)
{
struct xgene_dma_chan *chan = to_dma_chan(dchan);
spin_lock_bh(&chan->lock);
xgene_chan_xfer_ld_pending(chan);
spin_unlock_bh(&chan->lock);
}
static enum dma_status xgene_dma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
return dma_cookie_status(dchan, cookie, txstate);
}
static void xgene_dma_tasklet_cb(unsigned long data)
{
struct xgene_dma_chan *chan = (struct xgene_dma_chan *)data;
/* Run all cleanup for descriptors which have been completed */
xgene_dma_cleanup_descriptors(chan);
/* Re-enable DMA channel IRQ */
enable_irq(chan->rx_irq);
}
static irqreturn_t xgene_dma_chan_ring_isr(int irq, void *id)
{
struct xgene_dma_chan *chan = (struct xgene_dma_chan *)id;
BUG_ON(!chan);
/*
* Disable DMA channel IRQ until we process completed
* descriptors
*/
disable_irq_nosync(chan->rx_irq);
/*
* Schedule the tasklet to handle all cleanup of the current
* transaction. It will start a new transaction if there is
* one pending.
*/
tasklet_schedule(&chan->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t xgene_dma_err_isr(int irq, void *id)
{
struct xgene_dma *pdma = (struct xgene_dma *)id;
unsigned long int_mask;
u32 val, i;
val = ioread32(pdma->csr_dma + XGENE_DMA_INT);
/* Clear DMA interrupts */
iowrite32(val, pdma->csr_dma + XGENE_DMA_INT);
/* Print DMA error info */
int_mask = val >> XGENE_DMA_INT_MASK_SHIFT;
for_each_set_bit(i, &int_mask, ARRAY_SIZE(xgene_dma_err))
dev_err(pdma->dev,
"Interrupt status 0x%08X %s\n", val, xgene_dma_err[i]);
return IRQ_HANDLED;
}
static void xgene_dma_wr_ring_state(struct xgene_dma_ring *ring)
{
int i;
iowrite32(ring->num, ring->pdma->csr_ring + XGENE_DMA_RING_STATE);
for (i = 0; i < XGENE_DMA_RING_NUM_CONFIG; i++)
iowrite32(ring->state[i], ring->pdma->csr_ring +
XGENE_DMA_RING_STATE_WR_BASE + (i * 4));
}
static void xgene_dma_clr_ring_state(struct xgene_dma_ring *ring)
{
memset(ring->state, 0, sizeof(u32) * XGENE_DMA_RING_NUM_CONFIG);
xgene_dma_wr_ring_state(ring);
}
static void xgene_dma_setup_ring(struct xgene_dma_ring *ring)
{
void *ring_cfg = ring->state;
u64 addr = ring->desc_paddr;
u32 i, val;
ring->slots = ring->size / XGENE_DMA_RING_WQ_DESC_SIZE;
/* Clear DMA ring state */
xgene_dma_clr_ring_state(ring);
/* Set DMA ring type */
XGENE_DMA_RING_TYPE_SET(ring_cfg, XGENE_DMA_RING_TYPE_REGULAR);
if (ring->owner == XGENE_DMA_RING_OWNER_DMA) {
/* Set recombination buffer and timeout */
XGENE_DMA_RING_RECOMBBUF_SET(ring_cfg);
XGENE_DMA_RING_RECOMTIMEOUTL_SET(ring_cfg);
XGENE_DMA_RING_RECOMTIMEOUTH_SET(ring_cfg);
}
/* Initialize DMA ring state */
XGENE_DMA_RING_SELTHRSH_SET(ring_cfg);
XGENE_DMA_RING_ACCEPTLERR_SET(ring_cfg);
XGENE_DMA_RING_COHERENT_SET(ring_cfg);
XGENE_DMA_RING_ADDRL_SET(ring_cfg, addr);
XGENE_DMA_RING_ADDRH_SET(ring_cfg, addr);
XGENE_DMA_RING_SIZE_SET(ring_cfg, ring->cfgsize);
/* Write DMA ring configurations */
xgene_dma_wr_ring_state(ring);
/* Set DMA ring id */
iowrite32(XGENE_DMA_RING_ID_SETUP(ring->id),
ring->pdma->csr_ring + XGENE_DMA_RING_ID);
/* Set DMA ring buffer */
iowrite32(XGENE_DMA_RING_ID_BUF_SETUP(ring->num),
ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
if (ring->owner != XGENE_DMA_RING_OWNER_CPU)
return;
/* Set empty signature to DMA Rx ring descriptors */
for (i = 0; i < ring->slots; i++) {
struct xgene_dma_desc_hw *desc;
desc = &ring->desc_hw[i];
desc->m0 = cpu_to_le64(XGENE_DMA_DESC_EMPTY_SIGNATURE);
}
/* Enable DMA Rx ring interrupt */
val = ioread32(ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
XGENE_DMA_RING_NE_INT_MODE_SET(val, ring->buf_num);
iowrite32(val, ring->pdma->csr_ring + XGENE_DMA_RING_NE_INT_MODE);
}
static void xgene_dma_clear_ring(struct xgene_dma_ring *ring)
{
u32 ring_id, val;
if (ring->owner == XGENE_DMA_RING_OWNER_CPU) {
/* Disable DMA Rx ring interrupt */
val = ioread32(ring->pdma->csr_ring +
XGENE_DMA_RING_NE_INT_MODE);
XGENE_DMA_RING_NE_INT_MODE_RESET(val, ring->buf_num);
iowrite32(val, ring->pdma->csr_ring +
XGENE_DMA_RING_NE_INT_MODE);
}
/* Clear DMA ring state */
ring_id = XGENE_DMA_RING_ID_SETUP(ring->id);
iowrite32(ring_id, ring->pdma->csr_ring + XGENE_DMA_RING_ID);
iowrite32(0, ring->pdma->csr_ring + XGENE_DMA_RING_ID_BUF);
xgene_dma_clr_ring_state(ring);
}
static void xgene_dma_set_ring_cmd(struct xgene_dma_ring *ring)
{
ring->cmd_base = ring->pdma->csr_ring_cmd +
XGENE_DMA_RING_CMD_BASE_OFFSET((ring->num -
XGENE_DMA_RING_NUM));
ring->cmd = ring->cmd_base + XGENE_DMA_RING_CMD_OFFSET;
}
static int xgene_dma_get_ring_size(struct xgene_dma_chan *chan,
enum xgene_dma_ring_cfgsize cfgsize)
{
int size;
switch (cfgsize) {
case XGENE_DMA_RING_CFG_SIZE_512B:
size = 0x200;
break;
case XGENE_DMA_RING_CFG_SIZE_2KB:
size = 0x800;
break;
case XGENE_DMA_RING_CFG_SIZE_16KB:
size = 0x4000;
break;
case XGENE_DMA_RING_CFG_SIZE_64KB:
size = 0x10000;
break;
case XGENE_DMA_RING_CFG_SIZE_512KB:
size = 0x80000;
break;
default:
chan_err(chan, "Unsupported cfg ring size %d\n", cfgsize);
return -EINVAL;
}
return size;
}
static void xgene_dma_delete_ring_one(struct xgene_dma_ring *ring)
{
/* Clear DMA ring configurations */
xgene_dma_clear_ring(ring);
/* De-allocate DMA ring descriptor */
if (ring->desc_vaddr) {
dma_free_coherent(ring->pdma->dev, ring->size,
ring->desc_vaddr, ring->desc_paddr);
ring->desc_vaddr = NULL;
}
}
static void xgene_dma_delete_chan_rings(struct xgene_dma_chan *chan)
{
xgene_dma_delete_ring_one(&chan->rx_ring);
xgene_dma_delete_ring_one(&chan->tx_ring);
}
static int xgene_dma_create_ring_one(struct xgene_dma_chan *chan,
struct xgene_dma_ring *ring,
enum xgene_dma_ring_cfgsize cfgsize)
{
int ret;
/* Setup DMA ring descriptor variables */
ring->pdma = chan->pdma;
ring->cfgsize = cfgsize;
ring->num = chan->pdma->ring_num++;
ring->id = XGENE_DMA_RING_ID_GET(ring->owner, ring->buf_num);
ret = xgene_dma_get_ring_size(chan, cfgsize);
if (ret <= 0)
return ret;
ring->size = ret;
/* Allocate memory for DMA ring descriptor */
ring->desc_vaddr = dma_alloc_coherent(chan->dev, ring->size,
&ring->desc_paddr, GFP_KERNEL);
if (!ring->desc_vaddr) {
chan_err(chan, "Failed to allocate ring desc\n");
return -ENOMEM;
}
/* Configure and enable DMA ring */
xgene_dma_set_ring_cmd(ring);
xgene_dma_setup_ring(ring);
return 0;
}
static int xgene_dma_create_chan_rings(struct xgene_dma_chan *chan)
{
struct xgene_dma_ring *rx_ring = &chan->rx_ring;
struct xgene_dma_ring *tx_ring = &chan->tx_ring;
int ret;
/* Create DMA Rx ring descriptor */
rx_ring->owner = XGENE_DMA_RING_OWNER_CPU;
rx_ring->buf_num = XGENE_DMA_CPU_BUFNUM + chan->id;
ret = xgene_dma_create_ring_one(chan, rx_ring,
XGENE_DMA_RING_CFG_SIZE_64KB);
if (ret)
return ret;
chan_dbg(chan, "Rx ring id 0x%X num %d desc 0x%p\n",
rx_ring->id, rx_ring->num, rx_ring->desc_vaddr);
/* Create DMA Tx ring descriptor */
tx_ring->owner = XGENE_DMA_RING_OWNER_DMA;
tx_ring->buf_num = XGENE_DMA_BUFNUM + chan->id;
ret = xgene_dma_create_ring_one(chan, tx_ring,
XGENE_DMA_RING_CFG_SIZE_64KB);
if (ret) {
xgene_dma_delete_ring_one(rx_ring);
return ret;
}
tx_ring->dst_ring_num = XGENE_DMA_RING_DST_ID(rx_ring->num);
chan_dbg(chan,
"Tx ring id 0x%X num %d desc 0x%p\n",
tx_ring->id, tx_ring->num, tx_ring->desc_vaddr);
/* Set the max outstanding request possible to this channel */
chan->max_outstanding = tx_ring->slots;
return ret;
}
static int xgene_dma_init_rings(struct xgene_dma *pdma)
{
int ret, i, j;
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
ret = xgene_dma_create_chan_rings(&pdma->chan[i]);
if (ret) {
for (j = 0; j < i; j++)
xgene_dma_delete_chan_rings(&pdma->chan[j]);
return ret;
}
}
return ret;
}
static void xgene_dma_enable(struct xgene_dma *pdma)
{
u32 val;
/* Configure and enable DMA engine */
val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
XGENE_DMA_CH_SETUP(val);
XGENE_DMA_ENABLE(val);
iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
}
static void xgene_dma_disable(struct xgene_dma *pdma)
{
u32 val;
val = ioread32(pdma->csr_dma + XGENE_DMA_GCR);
XGENE_DMA_DISABLE(val);
iowrite32(val, pdma->csr_dma + XGENE_DMA_GCR);
}
static void xgene_dma_mask_interrupts(struct xgene_dma *pdma)
{
/*
* Mask DMA ring overflow, underflow and
* AXI write/read error interrupts
*/
iowrite32(XGENE_DMA_INT_ALL_MASK,
pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
iowrite32(XGENE_DMA_INT_ALL_MASK,
pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
iowrite32(XGENE_DMA_INT_ALL_MASK,
pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
iowrite32(XGENE_DMA_INT_ALL_MASK,
pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
iowrite32(XGENE_DMA_INT_ALL_MASK,
pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
/* Mask DMA error interrupts */
iowrite32(XGENE_DMA_INT_ALL_MASK, pdma->csr_dma + XGENE_DMA_INT_MASK);
}
static void xgene_dma_unmask_interrupts(struct xgene_dma *pdma)
{
/*
* Unmask DMA ring overflow, underflow and
* AXI write/read error interrupts
*/
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_RING_INT0_MASK);
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_RING_INT1_MASK);
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_RING_INT2_MASK);
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_RING_INT3_MASK);
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_RING_INT4_MASK);
/* Unmask DMA error interrupts */
iowrite32(XGENE_DMA_INT_ALL_UNMASK,
pdma->csr_dma + XGENE_DMA_INT_MASK);
}
static void xgene_dma_init_hw(struct xgene_dma *pdma)
{
u32 val;
/* Associate DMA ring to corresponding ring HW */
iowrite32(XGENE_DMA_ASSOC_RING_MNGR1,
pdma->csr_dma + XGENE_DMA_CFG_RING_WQ_ASSOC);
/* Configure RAID6 polynomial control setting */
if (is_pq_enabled(pdma))
iowrite32(XGENE_DMA_RAID6_MULTI_CTRL(0x1D),
pdma->csr_dma + XGENE_DMA_RAID6_CONT);
else
dev_info(pdma->dev, "PQ is disabled in HW\n");
xgene_dma_enable(pdma);
xgene_dma_unmask_interrupts(pdma);
/* Get DMA id and version info */
val = ioread32(pdma->csr_dma + XGENE_DMA_IPBRR);
/* DMA device info */
dev_info(pdma->dev,
"X-Gene DMA v%d.%02d.%02d driver registered %d channels",
XGENE_DMA_REV_NO_RD(val), XGENE_DMA_BUS_ID_RD(val),
XGENE_DMA_DEV_ID_RD(val), XGENE_DMA_MAX_CHANNEL);
}
static int xgene_dma_init_ring_mngr(struct xgene_dma *pdma)
{
if (ioread32(pdma->csr_ring + XGENE_DMA_RING_CLKEN) &&
(!ioread32(pdma->csr_ring + XGENE_DMA_RING_SRST)))
return 0;
iowrite32(0x3, pdma->csr_ring + XGENE_DMA_RING_CLKEN);
iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_SRST);
/* Bring up memory */
iowrite32(0x0, pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
/* Force a barrier */
ioread32(pdma->csr_ring + XGENE_DMA_RING_MEM_RAM_SHUTDOWN);
/* reset may take up to 1ms */
usleep_range(1000, 1100);
if (ioread32(pdma->csr_ring + XGENE_DMA_RING_BLK_MEM_RDY)
!= XGENE_DMA_RING_BLK_MEM_RDY_VAL) {
dev_err(pdma->dev,
"Failed to release ring mngr memory from shutdown\n");
return -ENODEV;
}
/* program threshold set 1 and all hysteresis */
iowrite32(XGENE_DMA_RING_THRESLD0_SET1_VAL,
pdma->csr_ring + XGENE_DMA_RING_THRESLD0_SET1);
iowrite32(XGENE_DMA_RING_THRESLD1_SET1_VAL,
pdma->csr_ring + XGENE_DMA_RING_THRESLD1_SET1);
iowrite32(XGENE_DMA_RING_HYSTERESIS_VAL,
pdma->csr_ring + XGENE_DMA_RING_HYSTERESIS);
/* Enable QPcore and assign error queue */
iowrite32(XGENE_DMA_RING_ENABLE,
pdma->csr_ring + XGENE_DMA_RING_CONFIG);
return 0;
}
static int xgene_dma_init_mem(struct xgene_dma *pdma)
{
int ret;
ret = xgene_dma_init_ring_mngr(pdma);
if (ret)
return ret;
/* Bring up memory */
iowrite32(0x0, pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
/* Force a barrier */
ioread32(pdma->csr_dma + XGENE_DMA_MEM_RAM_SHUTDOWN);
/* reset may take up to 1ms */
usleep_range(1000, 1100);
if (ioread32(pdma->csr_dma + XGENE_DMA_BLK_MEM_RDY)
!= XGENE_DMA_BLK_MEM_RDY_VAL) {
dev_err(pdma->dev,
"Failed to release DMA memory from shutdown\n");
return -ENODEV;
}
return 0;
}
static int xgene_dma_request_irqs(struct xgene_dma *pdma)
{
struct xgene_dma_chan *chan;
int ret, i, j;
/* Register DMA error irq */
ret = devm_request_irq(pdma->dev, pdma->err_irq, xgene_dma_err_isr,
0, "dma_error", pdma);
if (ret) {
dev_err(pdma->dev,
"Failed to register error IRQ %d\n", pdma->err_irq);
return ret;
}
/* Register DMA channel rx irq */
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
chan = &pdma->chan[i];
irq_set_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
ret = devm_request_irq(chan->dev, chan->rx_irq,
xgene_dma_chan_ring_isr,
0, chan->name, chan);
if (ret) {
chan_err(chan, "Failed to register Rx IRQ %d\n",
chan->rx_irq);
devm_free_irq(pdma->dev, pdma->err_irq, pdma);
for (j = 0; j < i; j++) {
chan = &pdma->chan[i];
irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
devm_free_irq(chan->dev, chan->rx_irq, chan);
}
return ret;
}
}
return 0;
}
static void xgene_dma_free_irqs(struct xgene_dma *pdma)
{
struct xgene_dma_chan *chan;
int i;
/* Free DMA device error irq */
devm_free_irq(pdma->dev, pdma->err_irq, pdma);
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
chan = &pdma->chan[i];
irq_clear_status_flags(chan->rx_irq, IRQ_DISABLE_UNLAZY);
devm_free_irq(chan->dev, chan->rx_irq, chan);
}
}
static void xgene_dma_set_caps(struct xgene_dma_chan *chan,
struct dma_device *dma_dev)
{
/* Initialize DMA device capability mask */
dma_cap_zero(dma_dev->cap_mask);
/* Set DMA device capability */
/* Basically here, the X-Gene SoC DMA engine channel 0 supports XOR
* and channel 1 supports XOR, PQ both. First thing here is we have
* mechanism in hw to enable/disable PQ/XOR supports on channel 1,
* we can make sure this by reading SoC Efuse register.
* Second thing, we have hw errata that if we run channel 0 and
* channel 1 simultaneously with executing XOR and PQ request,
* suddenly DMA engine hangs, So here we enable XOR on channel 0 only
* if XOR and PQ supports on channel 1 is disabled.
*/
if ((chan->id == XGENE_DMA_PQ_CHANNEL) &&
is_pq_enabled(chan->pdma)) {
dma_cap_set(DMA_PQ, dma_dev->cap_mask);
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
} else if ((chan->id == XGENE_DMA_XOR_CHANNEL) &&
!is_pq_enabled(chan->pdma)) {
dma_cap_set(DMA_XOR, dma_dev->cap_mask);
}
/* Set base and prep routines */
dma_dev->dev = chan->dev;
dma_dev->device_alloc_chan_resources = xgene_dma_alloc_chan_resources;
dma_dev->device_free_chan_resources = xgene_dma_free_chan_resources;
dma_dev->device_issue_pending = xgene_dma_issue_pending;
dma_dev->device_tx_status = xgene_dma_tx_status;
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
dma_dev->device_prep_dma_xor = xgene_dma_prep_xor;
dma_dev->max_xor = XGENE_DMA_MAX_XOR_SRC;
dma_dev->xor_align = DMAENGINE_ALIGN_64_BYTES;
}
if (dma_has_cap(DMA_PQ, dma_dev->cap_mask)) {
dma_dev->device_prep_dma_pq = xgene_dma_prep_pq;
dma_dev->max_pq = XGENE_DMA_MAX_XOR_SRC;
dma_dev->pq_align = DMAENGINE_ALIGN_64_BYTES;
}
}
static int xgene_dma_async_register(struct xgene_dma *pdma, int id)
{
struct xgene_dma_chan *chan = &pdma->chan[id];
struct dma_device *dma_dev = &pdma->dma_dev[id];
int ret;
chan->dma_chan.device = dma_dev;
spin_lock_init(&chan->lock);
INIT_LIST_HEAD(&chan->ld_pending);
INIT_LIST_HEAD(&chan->ld_running);
INIT_LIST_HEAD(&chan->ld_completed);
tasklet_init(&chan->tasklet, xgene_dma_tasklet_cb,
(unsigned long)chan);
chan->pending = 0;
chan->desc_pool = NULL;
dma_cookie_init(&chan->dma_chan);
/* Setup dma device capabilities and prep routines */
xgene_dma_set_caps(chan, dma_dev);
/* Initialize DMA device list head */
INIT_LIST_HEAD(&dma_dev->channels);
list_add_tail(&chan->dma_chan.device_node, &dma_dev->channels);
/* Register with Linux async DMA framework*/
ret = dma_async_device_register(dma_dev);
if (ret) {
chan_err(chan, "Failed to register async device %d", ret);
tasklet_kill(&chan->tasklet);
return ret;
}
/* DMA capability info */
dev_info(pdma->dev,
"%s: CAPABILITY ( %s%s)\n", dma_chan_name(&chan->dma_chan),
dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "XOR " : "",
dma_has_cap(DMA_PQ, dma_dev->cap_mask) ? "PQ " : "");
return 0;
}
static int xgene_dma_init_async(struct xgene_dma *pdma)
{
int ret, i, j;
for (i = 0; i < XGENE_DMA_MAX_CHANNEL ; i++) {
ret = xgene_dma_async_register(pdma, i);
if (ret) {
for (j = 0; j < i; j++) {
dma_async_device_unregister(&pdma->dma_dev[j]);
tasklet_kill(&pdma->chan[j].tasklet);
}
return ret;
}
}
return ret;
}
static void xgene_dma_async_unregister(struct xgene_dma *pdma)
{
int i;
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
dma_async_device_unregister(&pdma->dma_dev[i]);
}
static void xgene_dma_init_channels(struct xgene_dma *pdma)
{
struct xgene_dma_chan *chan;
int i;
pdma->ring_num = XGENE_DMA_RING_NUM;
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
chan = &pdma->chan[i];
chan->dev = pdma->dev;
chan->pdma = pdma;
chan->id = i;
snprintf(chan->name, sizeof(chan->name), "dmachan%d", chan->id);
}
}
static int xgene_dma_get_resources(struct platform_device *pdev,
struct xgene_dma *pdma)
{
struct resource *res;
int irq, i;
/* Get DMA csr region */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Failed to get csr region\n");
return -ENXIO;
}
pdma->csr_dma = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!pdma->csr_dma) {
dev_err(&pdev->dev, "Failed to ioremap csr region");
return -ENOMEM;
}
/* Get DMA ring csr region */
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res) {
dev_err(&pdev->dev, "Failed to get ring csr region\n");
return -ENXIO;
}
pdma->csr_ring = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!pdma->csr_ring) {
dev_err(&pdev->dev, "Failed to ioremap ring csr region");
return -ENOMEM;
}
/* Get DMA ring cmd csr region */
res = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!res) {
dev_err(&pdev->dev, "Failed to get ring cmd csr region\n");
return -ENXIO;
}
pdma->csr_ring_cmd = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!pdma->csr_ring_cmd) {
dev_err(&pdev->dev, "Failed to ioremap ring cmd csr region");
return -ENOMEM;
}
pdma->csr_ring_cmd += XGENE_DMA_RING_CMD_SM_OFFSET;
/* Get efuse csr region */
res = platform_get_resource(pdev, IORESOURCE_MEM, 3);
if (!res) {
dev_err(&pdev->dev, "Failed to get efuse csr region\n");
return -ENXIO;
}
pdma->csr_efuse = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (!pdma->csr_efuse) {
dev_err(&pdev->dev, "Failed to ioremap efuse csr region");
return -ENOMEM;
}
/* Get DMA error interrupt */
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(&pdev->dev, "Failed to get Error IRQ\n");
return -ENXIO;
}
pdma->err_irq = irq;
/* Get DMA Rx ring descriptor interrupts for all DMA channels */
for (i = 1; i <= XGENE_DMA_MAX_CHANNEL; i++) {
irq = platform_get_irq(pdev, i);
if (irq <= 0) {
dev_err(&pdev->dev, "Failed to get Rx IRQ\n");
return -ENXIO;
}
pdma->chan[i - 1].rx_irq = irq;
}
return 0;
}
static int xgene_dma_probe(struct platform_device *pdev)
{
struct xgene_dma *pdma;
int ret, i;
pdma = devm_kzalloc(&pdev->dev, sizeof(*pdma), GFP_KERNEL);
if (!pdma)
return -ENOMEM;
pdma->dev = &pdev->dev;
platform_set_drvdata(pdev, pdma);
ret = xgene_dma_get_resources(pdev, pdma);
if (ret)
return ret;
pdma->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(pdma->clk) && !ACPI_COMPANION(&pdev->dev)) {
dev_err(&pdev->dev, "Failed to get clk\n");
return PTR_ERR(pdma->clk);
}
/* Enable clk before accessing registers */
if (!IS_ERR(pdma->clk)) {
ret = clk_prepare_enable(pdma->clk);
if (ret) {
dev_err(&pdev->dev, "Failed to enable clk %d\n", ret);
return ret;
}
}
/* Remove DMA RAM out of shutdown */
ret = xgene_dma_init_mem(pdma);
if (ret)
goto err_clk_enable;
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(42));
if (ret) {
dev_err(&pdev->dev, "No usable DMA configuration\n");
goto err_dma_mask;
}
/* Initialize DMA channels software state */
xgene_dma_init_channels(pdma);
/* Configue DMA rings */
ret = xgene_dma_init_rings(pdma);
if (ret)
goto err_clk_enable;
ret = xgene_dma_request_irqs(pdma);
if (ret)
goto err_request_irq;
/* Configure and enable DMA engine */
xgene_dma_init_hw(pdma);
/* Register DMA device with linux async framework */
ret = xgene_dma_init_async(pdma);
if (ret)
goto err_async_init;
return 0;
err_async_init:
xgene_dma_free_irqs(pdma);
err_request_irq:
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++)
xgene_dma_delete_chan_rings(&pdma->chan[i]);
err_dma_mask:
err_clk_enable:
if (!IS_ERR(pdma->clk))
clk_disable_unprepare(pdma->clk);
return ret;
}
static int xgene_dma_remove(struct platform_device *pdev)
{
struct xgene_dma *pdma = platform_get_drvdata(pdev);
struct xgene_dma_chan *chan;
int i;
xgene_dma_async_unregister(pdma);
/* Mask interrupts and disable DMA engine */
xgene_dma_mask_interrupts(pdma);
xgene_dma_disable(pdma);
xgene_dma_free_irqs(pdma);
for (i = 0; i < XGENE_DMA_MAX_CHANNEL; i++) {
chan = &pdma->chan[i];
tasklet_kill(&chan->tasklet);
xgene_dma_delete_chan_rings(chan);
}
if (!IS_ERR(pdma->clk))
clk_disable_unprepare(pdma->clk);
return 0;
}
#ifdef CONFIG_ACPI
static const struct acpi_device_id xgene_dma_acpi_match_ptr[] = {
{"APMC0D43", 0},
{},
};
MODULE_DEVICE_TABLE(acpi, xgene_dma_acpi_match_ptr);
#endif
static const struct of_device_id xgene_dma_of_match_ptr[] = {
{.compatible = "apm,xgene-storm-dma",},
{},
};
MODULE_DEVICE_TABLE(of, xgene_dma_of_match_ptr);
static struct platform_driver xgene_dma_driver = {
.probe = xgene_dma_probe,
.remove = xgene_dma_remove,
.driver = {
.name = "X-Gene-DMA",
.of_match_table = xgene_dma_of_match_ptr,
.acpi_match_table = ACPI_PTR(xgene_dma_acpi_match_ptr),
},
};
module_platform_driver(xgene_dma_driver);
MODULE_DESCRIPTION("APM X-Gene SoC DMA driver");
MODULE_AUTHOR("Rameshwar Prasad Sahu <rsahu@apm.com>");
MODULE_AUTHOR("Loc Ho <lho@apm.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.0");