summaryrefslogblamecommitdiff
path: root/drivers/crypto/sa2ul.c
blob: 5bc099052bd20b3ccbc63e01dff8f5ef9873da26 (plain) (tree)
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630


















                                                                             
                           
                       
                                 
                                 

                                     
                       
















































                                                                  
                                     
                                                                 
                                         
                                       

                                       
                                           

                    
                 
                      
                       
                   

                       
                 




                                                    


                                                  


                                    
                                        



                                                                   

                                                                   


                                   


                                    


                       
                   



                               


                                                                   











                                                                             
                                       
                                     








































                                                                     


                                                  















                                              


                       












































                                                                           































                                                                           












































































                                                                               











































































                                                                             

































































                                                                                



                                                                           

                                  





                                                                               











                                                            

 














                                                                     
                                                      
                                             
                                              








                                                                  



                                                                
 






                                                               
 
                              

















                                                                               
                                                                          


                                                                          
                                                           


                 









                                                                            
































                                                                               




















                                                                                
































                                                                              

                                                                   

                              
                               

                               
                            


                                                





                                                           

                                                                     



                                                          





                                                                
         


                                                












                                                               




                                                         




                                                    

                                                                   
                                                                    




































































































































                                                                                

                                                              










                                                                          

                                                              








































































































































































































































































































































































































                                                                                  




















































































































































































































































































































































                                                                                 










































































































































































































































































































                                                                                


























































































                                                                               






















































































                                                                                 






















































                                                                               













                                                                                 


                                                                           


                                                                         

























                                                                             

                                                                       

                                                                     
















































                                                                                
                                                         









































                                                                               








                                                                 

















































                                                                             

                                                                     






















































                                                                     
// SPDX-License-Identifier: GPL-2.0
/*
 * K3 SA2UL crypto accelerator driver
 *
 * Copyright (C) 2018-2020 Texas Instruments Incorporated - http://www.ti.com
 *
 * Authors:	Keerthy
 *		Vitaly Andrianov
 *		Tero Kristo
 */
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>

#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>

#include "sa2ul.h"

/* Byte offset for key in encryption security context */
#define SC_ENC_KEY_OFFSET (1 + 27 + 4)
/* Byte offset for Aux-1 in encryption security context */
#define SC_ENC_AUX1_OFFSET (1 + 27 + 4 + 32)

#define SA_CMDL_UPD_ENC         0x0001
#define SA_CMDL_UPD_AUTH        0x0002
#define SA_CMDL_UPD_ENC_IV      0x0004
#define SA_CMDL_UPD_AUTH_IV     0x0008
#define SA_CMDL_UPD_AUX_KEY     0x0010

#define SA_AUTH_SUBKEY_LEN	16
#define SA_CMDL_PAYLOAD_LENGTH_MASK	0xFFFF
#define SA_CMDL_SOP_BYPASS_LEN_MASK	0xFF000000

#define MODE_CONTROL_BYTES	27
#define SA_HASH_PROCESSING	0
#define SA_CRYPTO_PROCESSING	0
#define SA_UPLOAD_HASH_TO_TLR	BIT(6)

#define SA_SW0_FLAGS_MASK	0xF0000
#define SA_SW0_CMDL_INFO_MASK	0x1F00000
#define SA_SW0_CMDL_PRESENT	BIT(4)
#define SA_SW0_ENG_ID_MASK	0x3E000000
#define SA_SW0_DEST_INFO_PRESENT	BIT(30)
#define SA_SW2_EGRESS_LENGTH		0xFF000000
#define SA_BASIC_HASH		0x10

#define SHA256_DIGEST_WORDS    8
/* Make 32-bit word from 4 bytes */
#define SA_MK_U32(b0, b1, b2, b3) (((b0) << 24) | ((b1) << 16) | \
				   ((b2) << 8) | (b3))

/* size of SCCTL structure in bytes */
#define SA_SCCTL_SZ 16

/* Max Authentication tag size */
#define SA_MAX_AUTH_TAG_SZ 64

#define PRIV_ID	0x1
#define PRIV	0x1

static struct device *sa_k3_dev;

/**
 * struct sa_cmdl_cfg - Command label configuration descriptor
 * @aalg: authentication algorithm ID
 * @enc_eng_id: Encryption Engine ID supported by the SA hardware
 * @auth_eng_id: Authentication Engine ID
 * @iv_size: Initialization Vector size
 * @akey: Authentication key
 * @akey_len: Authentication key length
 * @enc: True, if this is an encode request
 */
struct sa_cmdl_cfg {
	int aalg;
	u8 enc_eng_id;
	u8 auth_eng_id;
	u8 iv_size;
	const u8 *akey;
	u16 akey_len;
	bool enc;
};

/**
 * struct algo_data - Crypto algorithm specific data
 * @enc_eng: Encryption engine info structure
 * @auth_eng: Authentication engine info structure
 * @auth_ctrl: Authentication control word
 * @hash_size: Size of digest
 * @iv_idx: iv index in psdata
 * @iv_out_size: iv out size
 * @ealg_id: Encryption Algorithm ID
 * @aalg_id: Authentication algorithm ID
 * @mci_enc: Mode Control Instruction for Encryption algorithm
 * @mci_dec: Mode Control Instruction for Decryption
 * @inv_key: Whether the encryption algorithm demands key inversion
 * @ctx: Pointer to the algorithm context
 * @keyed_mac: Whether the authentication algorithm has key
 * @prep_iopad: Function pointer to generate intermediate ipad/opad
 */
struct algo_data {
	struct sa_eng_info enc_eng;
	struct sa_eng_info auth_eng;
	u8 auth_ctrl;
	u8 hash_size;
	u8 iv_idx;
	u8 iv_out_size;
	u8 ealg_id;
	u8 aalg_id;
	u8 *mci_enc;
	u8 *mci_dec;
	bool inv_key;
	struct sa_tfm_ctx *ctx;
	bool keyed_mac;
	void (*prep_iopad)(struct algo_data *algo, const u8 *key,
			   u16 key_sz, __be32 *ipad, __be32 *opad);
};

/**
 * struct sa_alg_tmpl: A generic template encompassing crypto/aead algorithms
 * @type: Type of the crypto algorithm.
 * @alg: Union of crypto algorithm definitions.
 * @registered: Flag indicating if the crypto algorithm is already registered
 */
struct sa_alg_tmpl {
	u32 type;		/* CRYPTO_ALG_TYPE from <linux/crypto.h> */
	union {
		struct skcipher_alg skcipher;
		struct ahash_alg ahash;
		struct aead_alg aead;
	} alg;
	bool registered;
};

/**
 * struct sa_rx_data: RX Packet miscellaneous data place holder
 * @req: crypto request data pointer
 * @ddev: pointer to the DMA device
 * @tx_in: dma_async_tx_descriptor pointer for rx channel
 * @split_src_sg: Set if the src sg is split and needs to be freed up
 * @split_dst_sg: Set if the dst sg is split and needs to be freed up
 * @enc: Flag indicating either encryption or decryption
 * @enc_iv_size: Initialisation vector size
 * @iv_idx: Initialisation vector index
 * @rx_sg: Static scatterlist entry for overriding RX data
 * @tx_sg: Static scatterlist entry for overriding TX data
 * @src: Source data pointer
 * @dst: Destination data pointer
 */
struct sa_rx_data {
	void *req;
	struct device *ddev;
	struct dma_async_tx_descriptor *tx_in;
	struct scatterlist *split_src_sg;
	struct scatterlist *split_dst_sg;
	u8 enc;
	u8 enc_iv_size;
	u8 iv_idx;
	struct scatterlist rx_sg;
	struct scatterlist tx_sg;
	struct scatterlist *src;
	struct scatterlist *dst;
};

/**
 * struct sa_req: SA request definition
 * @dev: device for the request
 * @size: total data to the xmitted via DMA
 * @enc_offset: offset of cipher data
 * @enc_size: data to be passed to cipher engine
 * @enc_iv: cipher IV
 * @auth_offset: offset of the authentication data
 * @auth_size: size of the authentication data
 * @auth_iv: authentication IV
 * @type: algorithm type for the request
 * @cmdl: command label pointer
 * @base: pointer to the base request
 * @ctx: pointer to the algorithm context data
 * @enc: true if this is an encode request
 * @src: source data
 * @dst: destination data
 * @callback: DMA callback for the request
 * @mdata_size: metadata size passed to DMA
 */
struct sa_req {
	struct device *dev;
	u16 size;
	u8 enc_offset;
	u16 enc_size;
	u8 *enc_iv;
	u8 auth_offset;
	u16 auth_size;
	u8 *auth_iv;
	u32 type;
	u32 *cmdl;
	struct crypto_async_request *base;
	struct sa_tfm_ctx *ctx;
	bool enc;
	struct scatterlist *src;
	struct scatterlist *dst;
	dma_async_tx_callback callback;
	u16 mdata_size;
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For CBC (Cipher Block Chaining) mode for encryption
 */
static u8 mci_cbc_enc_array[3][MODE_CONTROL_BYTES] = {
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x61, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For CBC (Cipher Block Chaining) mode for decryption
 */
static u8 mci_cbc_dec_array[3][MODE_CONTROL_BYTES] = {
	{	0x71, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x71, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x71, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For CBC (Cipher Block Chaining) mode for encryption
 */
static u8 mci_cbc_enc_no_iv_array[3][MODE_CONTROL_BYTES] = {
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x0a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x4a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x21, 0x00, 0x00, 0x18, 0x88, 0x8a, 0xaa, 0x4b, 0x7e, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For CBC (Cipher Block Chaining) mode for decryption
 */
static u8 mci_cbc_dec_no_iv_array[3][MODE_CONTROL_BYTES] = {
	{	0x31, 0x00, 0x00, 0x80, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x31, 0x00, 0x00, 0x84, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x31, 0x00, 0x00, 0x88, 0x8a, 0xca, 0x98, 0xf4, 0x40, 0xc0,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For ECB (Electronic Code Book) mode for encryption
 */
static u8 mci_ecb_enc_array[3][27] = {
	{	0x21, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x21, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x21, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for various Key lengths 128, 192, 256
 * For ECB (Electronic Code Book) mode for decryption
 */
static u8 mci_ecb_dec_array[3][27] = {
	{	0x31, 0x00, 0x00, 0x80, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x31, 0x00, 0x00, 0x84, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
	{	0x31, 0x00, 0x00, 0x88, 0x8a, 0x04, 0xb7, 0x90, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00	},
};

/*
 * Mode Control Instructions for DES algorithm
 * For CBC (Cipher Block Chaining) mode and ECB mode
 * encryption and for decryption respectively
 */
static u8 mci_cbc_3des_enc_array[MODE_CONTROL_BYTES] = {
	0x60, 0x00, 0x00, 0x18, 0x88, 0x52, 0xaa, 0x4b, 0x7e, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00,
};

static u8 mci_cbc_3des_dec_array[MODE_CONTROL_BYTES] = {
	0x70, 0x00, 0x00, 0x85, 0x0a, 0xca, 0x98, 0xf4, 0x40, 0xc0, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00,
};

static u8 mci_ecb_3des_enc_array[MODE_CONTROL_BYTES] = {
	0x20, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00,
};

static u8 mci_ecb_3des_dec_array[MODE_CONTROL_BYTES] = {
	0x30, 0x00, 0x00, 0x85, 0x0a, 0x04, 0xb7, 0x90, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00,
};

/*
 * Perform 16 byte or 128 bit swizzling
 * The SA2UL Expects the security context to
 * be in little Endian and the bus width is 128 bits or 16 bytes
 * Hence swap 16 bytes at a time from higher to lower address
 */
static void sa_swiz_128(u8 *in, u16 len)
{
	u8 data[16];
	int i, j;

	for (i = 0; i < len; i += 16) {
		memcpy(data, &in[i], 16);
		for (j = 0; j < 16; j++)
			in[i + j] = data[15 - j];
	}
}

/* Prepare the ipad and opad from key as per SHA algorithm step 1*/
static void prepare_kiopad(u8 *k_ipad, u8 *k_opad, const u8 *key, u16 key_sz)
{
	int i;

	for (i = 0; i < key_sz; i++) {
		k_ipad[i] = key[i] ^ 0x36;
		k_opad[i] = key[i] ^ 0x5c;
	}

	/* Instead of XOR with 0 */
	for (; i < SHA1_BLOCK_SIZE; i++) {
		k_ipad[i] = 0x36;
		k_opad[i] = 0x5c;
	}
}

static void sa_export_shash(struct shash_desc *hash, int block_size,
			    int digest_size, __be32 *out)
{
	union {
		struct sha1_state sha1;
		struct sha256_state sha256;
		struct sha512_state sha512;
	} sha;
	void *state;
	u32 *result;
	int i;

	switch (digest_size) {
	case SHA1_DIGEST_SIZE:
		state = &sha.sha1;
		result = sha.sha1.state;
		break;
	case SHA256_DIGEST_SIZE:
		state = &sha.sha256;
		result = sha.sha256.state;
		break;
	default:
		dev_err(sa_k3_dev, "%s: bad digest_size=%d\n", __func__,
			digest_size);
		return;
	}

	crypto_shash_export(hash, state);

	for (i = 0; i < digest_size >> 2; i++)
		out[i] = cpu_to_be32(result[i]);
}

static void sa_prepare_iopads(struct algo_data *data, const u8 *key,
			      u16 key_sz, __be32 *ipad, __be32 *opad)
{
	SHASH_DESC_ON_STACK(shash, data->ctx->shash);
	int block_size = crypto_shash_blocksize(data->ctx->shash);
	int digest_size = crypto_shash_digestsize(data->ctx->shash);
	u8 k_ipad[SHA1_BLOCK_SIZE];
	u8 k_opad[SHA1_BLOCK_SIZE];

	shash->tfm = data->ctx->shash;

	prepare_kiopad(k_ipad, k_opad, key, key_sz);

	memzero_explicit(ipad, block_size);
	memzero_explicit(opad, block_size);

	crypto_shash_init(shash);
	crypto_shash_update(shash, k_ipad, block_size);
	sa_export_shash(shash, block_size, digest_size, ipad);

	crypto_shash_init(shash);
	crypto_shash_update(shash, k_opad, block_size);

	sa_export_shash(shash, block_size, digest_size, opad);
}

/* Derive the inverse key used in AES-CBC decryption operation */
static inline int sa_aes_inv_key(u8 *inv_key, const u8 *key, u16 key_sz)
{
	struct crypto_aes_ctx ctx;
	int key_pos;

	if (aes_expandkey(&ctx, key, key_sz)) {
		dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
		return -EINVAL;
	}

	/* work around to get the right inverse for AES_KEYSIZE_192 size keys */
	if (key_sz == AES_KEYSIZE_192) {
		ctx.key_enc[52] = ctx.key_enc[51] ^ ctx.key_enc[46];
		ctx.key_enc[53] = ctx.key_enc[52] ^ ctx.key_enc[47];
	}

	/* Based crypto_aes_expand_key logic */
	switch (key_sz) {
	case AES_KEYSIZE_128:
	case AES_KEYSIZE_192:
		key_pos = key_sz + 24;
		break;

	case AES_KEYSIZE_256:
		key_pos = key_sz + 24 - 4;
		break;

	default:
		dev_err(sa_k3_dev, "%s: bad key len(%d)\n", __func__, key_sz);
		return -EINVAL;
	}

	memcpy(inv_key, &ctx.key_enc[key_pos], key_sz);
	return 0;
}

/* Set Security context for the encryption engine */
static int sa_set_sc_enc(struct algo_data *ad, const u8 *key, u16 key_sz,
			 u8 enc, u8 *sc_buf)
{
	const u8 *mci = NULL;

	/* Set Encryption mode selector to crypto processing */
	sc_buf[0] = SA_CRYPTO_PROCESSING;

	if (enc)
		mci = ad->mci_enc;
	else
		mci = ad->mci_dec;
	/* Set the mode control instructions in security context */
	if (mci)
		memcpy(&sc_buf[1], mci, MODE_CONTROL_BYTES);

	/* For AES-CBC decryption get the inverse key */
	if (ad->inv_key && !enc) {
		if (sa_aes_inv_key(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz))
			return -EINVAL;
	/* For all other cases: key is used */
	} else {
		memcpy(&sc_buf[SC_ENC_KEY_OFFSET], key, key_sz);
	}

	return 0;
}

/* Set Security context for the authentication engine */
static void sa_set_sc_auth(struct algo_data *ad, const u8 *key, u16 key_sz,
			   u8 *sc_buf)
{
	__be32 ipad[64], opad[64];

	/* Set Authentication mode selector to hash processing */
	sc_buf[0] = SA_HASH_PROCESSING;
	/* Auth SW ctrl word: bit[6]=1 (upload computed hash to TLR section) */
	sc_buf[1] = SA_UPLOAD_HASH_TO_TLR;
	sc_buf[1] |= ad->auth_ctrl;

	/* Copy the keys or ipad/opad */
	if (ad->keyed_mac) {
		ad->prep_iopad(ad, key, key_sz, ipad, opad);

		/* Copy ipad to AuthKey */
		memcpy(&sc_buf[32], ipad, ad->hash_size);
		/* Copy opad to Aux-1 */
		memcpy(&sc_buf[64], opad, ad->hash_size);
	} else {
		/* basic hash */
		sc_buf[1] |= SA_BASIC_HASH;
	}
}

static inline void sa_copy_iv(__be32 *out, const u8 *iv, bool size16)
{
	int j;

	for (j = 0; j < ((size16) ? 4 : 2); j++) {
		*out = cpu_to_be32(*((u32 *)iv));
		iv += 4;
		out++;
	}
}

/* Format general command label */
static int sa_format_cmdl_gen(struct sa_cmdl_cfg *cfg, u8 *cmdl,
			      struct sa_cmdl_upd_info *upd_info)
{
	u8 enc_offset = 0, auth_offset = 0, total = 0;
	u8 enc_next_eng = SA_ENG_ID_OUTPORT2;
	u8 auth_next_eng = SA_ENG_ID_OUTPORT2;
	u32 *word_ptr = (u32 *)cmdl;
	int i;

	/* Clear the command label */
	memzero_explicit(cmdl, (SA_MAX_CMDL_WORDS * sizeof(u32)));

	/* Iniialize the command update structure */
	memzero_explicit(upd_info, sizeof(*upd_info));

	if (cfg->enc_eng_id && cfg->auth_eng_id) {
		if (cfg->enc) {
			auth_offset = SA_CMDL_HEADER_SIZE_BYTES;
			enc_next_eng = cfg->auth_eng_id;

			if (cfg->iv_size)
				auth_offset += cfg->iv_size;
		} else {
			enc_offset = SA_CMDL_HEADER_SIZE_BYTES;
			auth_next_eng = cfg->enc_eng_id;
		}
	}

	if (cfg->enc_eng_id) {
		upd_info->flags |= SA_CMDL_UPD_ENC;
		upd_info->enc_size.index = enc_offset >> 2;
		upd_info->enc_offset.index = upd_info->enc_size.index + 1;
		/* Encryption command label */
		cmdl[enc_offset + SA_CMDL_OFFSET_NESC] = enc_next_eng;

		/* Encryption modes requiring IV */
		if (cfg->iv_size) {
			upd_info->flags |= SA_CMDL_UPD_ENC_IV;
			upd_info->enc_iv.index =
				(enc_offset + SA_CMDL_HEADER_SIZE_BYTES) >> 2;
			upd_info->enc_iv.size = cfg->iv_size;

			cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
				SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;

			cmdl[enc_offset + SA_CMDL_OFFSET_OPTION_CTRL1] =
				(SA_CTX_ENC_AUX2_OFFSET | (cfg->iv_size >> 3));
			total += SA_CMDL_HEADER_SIZE_BYTES + cfg->iv_size;
		} else {
			cmdl[enc_offset + SA_CMDL_OFFSET_LABEL_LEN] =
						SA_CMDL_HEADER_SIZE_BYTES;
			total += SA_CMDL_HEADER_SIZE_BYTES;
		}
	}

	if (cfg->auth_eng_id) {
		upd_info->flags |= SA_CMDL_UPD_AUTH;
		upd_info->auth_size.index = auth_offset >> 2;
		upd_info->auth_offset.index = upd_info->auth_size.index + 1;
		cmdl[auth_offset + SA_CMDL_OFFSET_NESC] = auth_next_eng;
		cmdl[auth_offset + SA_CMDL_OFFSET_LABEL_LEN] =
			SA_CMDL_HEADER_SIZE_BYTES;
		total += SA_CMDL_HEADER_SIZE_BYTES;
	}

	total = roundup(total, 8);

	for (i = 0; i < total / 4; i++)
		word_ptr[i] = swab32(word_ptr[i]);

	return total;
}

/* Update Command label */
static inline void sa_update_cmdl(struct sa_req *req, u32 *cmdl,
				  struct sa_cmdl_upd_info *upd_info)
{
	int i = 0, j;

	if (likely(upd_info->flags & SA_CMDL_UPD_ENC)) {
		cmdl[upd_info->enc_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
		cmdl[upd_info->enc_size.index] |= req->enc_size;
		cmdl[upd_info->enc_offset.index] &=
						~SA_CMDL_SOP_BYPASS_LEN_MASK;
		cmdl[upd_info->enc_offset.index] |=
			((u32)req->enc_offset <<
			 __ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));

		if (likely(upd_info->flags & SA_CMDL_UPD_ENC_IV)) {
			__be32 *data = (__be32 *)&cmdl[upd_info->enc_iv.index];
			u32 *enc_iv = (u32 *)req->enc_iv;

			for (j = 0; i < upd_info->enc_iv.size; i += 4, j++) {
				data[j] = cpu_to_be32(*enc_iv);
				enc_iv++;
			}
		}
	}

	if (likely(upd_info->flags & SA_CMDL_UPD_AUTH)) {
		cmdl[upd_info->auth_size.index] &= ~SA_CMDL_PAYLOAD_LENGTH_MASK;
		cmdl[upd_info->auth_size.index] |= req->auth_size;
		cmdl[upd_info->auth_offset.index] &=
			~SA_CMDL_SOP_BYPASS_LEN_MASK;
		cmdl[upd_info->auth_offset.index] |=
			((u32)req->auth_offset <<
			 __ffs(SA_CMDL_SOP_BYPASS_LEN_MASK));
		if (upd_info->flags & SA_CMDL_UPD_AUTH_IV) {
			sa_copy_iv((void *)&cmdl[upd_info->auth_iv.index],
				   req->auth_iv,
				   (upd_info->auth_iv.size > 8));
		}
		if (upd_info->flags & SA_CMDL_UPD_AUX_KEY) {
			int offset = (req->auth_size & 0xF) ? 4 : 0;

			memcpy(&cmdl[upd_info->aux_key_info.index],
			       &upd_info->aux_key[offset], 16);
		}
	}
}

/* Format SWINFO words to be sent to SA */
static
void sa_set_swinfo(u8 eng_id, u16 sc_id, dma_addr_t sc_phys,
		   u8 cmdl_present, u8 cmdl_offset, u8 flags,
		   u8 hash_size, u32 *swinfo)
{
	swinfo[0] = sc_id;
	swinfo[0] |= (flags << __ffs(SA_SW0_FLAGS_MASK));
	if (likely(cmdl_present))
		swinfo[0] |= ((cmdl_offset | SA_SW0_CMDL_PRESENT) <<
						__ffs(SA_SW0_CMDL_INFO_MASK));
	swinfo[0] |= (eng_id << __ffs(SA_SW0_ENG_ID_MASK));

	swinfo[0] |= SA_SW0_DEST_INFO_PRESENT;
	swinfo[1] = (u32)(sc_phys & 0xFFFFFFFFULL);
	swinfo[2] = (u32)((sc_phys & 0xFFFFFFFF00000000ULL) >> 32);
	swinfo[2] |= (hash_size << __ffs(SA_SW2_EGRESS_LENGTH));
}

/* Dump the security context */
static void sa_dump_sc(u8 *buf, dma_addr_t dma_addr)
{
#ifdef DEBUG
	dev_info(sa_k3_dev, "Security context dump:: 0x%pad\n", &dma_addr);
	print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
		       16, 1, buf, SA_CTX_MAX_SZ, false);
#endif
}

static
int sa_init_sc(struct sa_ctx_info *ctx, const u8 *enc_key,
	       u16 enc_key_sz, const u8 *auth_key, u16 auth_key_sz,
	       struct algo_data *ad, u8 enc, u32 *swinfo)
{
	int enc_sc_offset = 0;
	int auth_sc_offset = 0;
	u8 *sc_buf = ctx->sc;
	u16 sc_id = ctx->sc_id;
	u8 first_engine = 0;

	memzero_explicit(sc_buf, SA_CTX_MAX_SZ);

	if (ad->auth_eng.eng_id) {
		if (enc)
			first_engine = ad->enc_eng.eng_id;
		else
			first_engine = ad->auth_eng.eng_id;

		enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
		auth_sc_offset = enc_sc_offset + ad->enc_eng.sc_size;
		sc_buf[1] = SA_SCCTL_FE_AUTH_ENC;
		if (!ad->hash_size)
			return -EINVAL;
		ad->hash_size = roundup(ad->hash_size, 8);

	} else if (ad->enc_eng.eng_id && !ad->auth_eng.eng_id) {
		enc_sc_offset = SA_CTX_PHP_PE_CTX_SZ;
		first_engine = ad->enc_eng.eng_id;
		sc_buf[1] = SA_SCCTL_FE_ENC;
		ad->hash_size = ad->iv_out_size;
	}

	/* SCCTL Owner info: 0=host, 1=CP_ACE */
	sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0;
	memcpy(&sc_buf[2], &sc_id, 2);
	sc_buf[4] = 0x0;
	sc_buf[5] = PRIV_ID;
	sc_buf[6] = PRIV;
	sc_buf[7] = 0x0;

	/* Prepare context for encryption engine */
	if (ad->enc_eng.sc_size) {
		if (sa_set_sc_enc(ad, enc_key, enc_key_sz, enc,
				  &sc_buf[enc_sc_offset]))
			return -EINVAL;
	}

	/* Prepare context for authentication engine */
	if (ad->auth_eng.sc_size)
		sa_set_sc_auth(ad, auth_key, auth_key_sz,
			       &sc_buf[auth_sc_offset]);

	/* Set the ownership of context to CP_ACE */
	sc_buf[SA_CTX_SCCTL_OWNER_OFFSET] = 0x80;

	/* swizzle the security context */
	sa_swiz_128(sc_buf, SA_CTX_MAX_SZ);

	sa_set_swinfo(first_engine, ctx->sc_id, ctx->sc_phys, 1, 0,
		      SA_SW_INFO_FLAG_EVICT, ad->hash_size, swinfo);

	sa_dump_sc(sc_buf, ctx->sc_phys);

	return 0;
}

/* Free the per direction context memory */
static void sa_free_ctx_info(struct sa_ctx_info *ctx,
			     struct sa_crypto_data *data)
{
	unsigned long bn;

	bn = ctx->sc_id - data->sc_id_start;
	spin_lock(&data->scid_lock);
	__clear_bit(bn, data->ctx_bm);
	data->sc_id--;
	spin_unlock(&data->scid_lock);

	if (ctx->sc) {
		dma_pool_free(data->sc_pool, ctx->sc, ctx->sc_phys);
		ctx->sc = NULL;
	}
}

static int sa_init_ctx_info(struct sa_ctx_info *ctx,
			    struct sa_crypto_data *data)
{
	unsigned long bn;
	int err;

	spin_lock(&data->scid_lock);
	bn = find_first_zero_bit(data->ctx_bm, SA_MAX_NUM_CTX);
	__set_bit(bn, data->ctx_bm);
	data->sc_id++;
	spin_unlock(&data->scid_lock);

	ctx->sc_id = (u16)(data->sc_id_start + bn);

	ctx->sc = dma_pool_alloc(data->sc_pool, GFP_KERNEL, &ctx->sc_phys);
	if (!ctx->sc) {
		dev_err(&data->pdev->dev, "Failed to allocate SC memory\n");
		err = -ENOMEM;
		goto scid_rollback;
	}

	return 0;

scid_rollback:
	spin_lock(&data->scid_lock);
	__clear_bit(bn, data->ctx_bm);
	data->sc_id--;
	spin_unlock(&data->scid_lock);

	return err;
}

static void sa_cipher_cra_exit(struct crypto_skcipher *tfm)
{
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);

	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
		ctx->dec.sc_id, &ctx->dec.sc_phys);

	sa_free_ctx_info(&ctx->enc, data);
	sa_free_ctx_info(&ctx->dec, data);

	crypto_free_sync_skcipher(ctx->fallback.skcipher);
}

static int sa_cipher_cra_init(struct crypto_skcipher *tfm)
{
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
	const char *name = crypto_tfm_alg_name(&tfm->base);
	int ret;

	memzero_explicit(ctx, sizeof(*ctx));
	ctx->dev_data = data;

	ret = sa_init_ctx_info(&ctx->enc, data);
	if (ret)
		return ret;
	ret = sa_init_ctx_info(&ctx->dec, data);
	if (ret) {
		sa_free_ctx_info(&ctx->enc, data);
		return ret;
	}

	ctx->fallback.skcipher =
		crypto_alloc_sync_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);

	if (IS_ERR(ctx->fallback.skcipher)) {
		dev_err(sa_k3_dev, "Error allocating fallback algo %s\n", name);
		return PTR_ERR(ctx->fallback.skcipher);
	}

	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
		ctx->dec.sc_id, &ctx->dec.sc_phys);
	return 0;
}

static int sa_cipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
			    unsigned int keylen, struct algo_data *ad)
{
	struct sa_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
	int cmdl_len;
	struct sa_cmdl_cfg cfg;
	int ret;

	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
	    keylen != AES_KEYSIZE_256)
		return -EINVAL;

	ad->enc_eng.eng_id = SA_ENG_ID_EM1;
	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;

	memzero_explicit(&cfg, sizeof(cfg));
	cfg.enc_eng_id = ad->enc_eng.eng_id;
	cfg.iv_size = crypto_skcipher_ivsize(tfm);

	crypto_sync_skcipher_clear_flags(ctx->fallback.skcipher,
					 CRYPTO_TFM_REQ_MASK);
	crypto_sync_skcipher_set_flags(ctx->fallback.skcipher,
				       tfm->base.crt_flags &
				       CRYPTO_TFM_REQ_MASK);
	ret = crypto_sync_skcipher_setkey(ctx->fallback.skcipher, key, keylen);
	if (ret)
		return ret;

	/* Setup Encryption Security Context & Command label template */
	if (sa_init_sc(&ctx->enc, key, keylen, NULL, 0, ad, 1,
		       &ctx->enc.epib[1]))
		goto badkey;

	cmdl_len = sa_format_cmdl_gen(&cfg,
				      (u8 *)ctx->enc.cmdl,
				      &ctx->enc.cmdl_upd_info);
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
		goto badkey;

	ctx->enc.cmdl_size = cmdl_len;

	/* Setup Decryption Security Context & Command label template */
	if (sa_init_sc(&ctx->dec, key, keylen, NULL, 0, ad, 0,
		       &ctx->dec.epib[1]))
		goto badkey;

	cfg.enc_eng_id = ad->enc_eng.eng_id;
	cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
				      &ctx->dec.cmdl_upd_info);

	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
		goto badkey;

	ctx->dec.cmdl_size = cmdl_len;
	ctx->iv_idx = ad->iv_idx;

	return 0;

badkey:
	dev_err(sa_k3_dev, "%s: badkey\n", __func__);
	return -EINVAL;
}

static int sa_aes_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
			     unsigned int keylen)
{
	struct algo_data ad = { 0 };
	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
	int key_idx = (keylen >> 3) - 2;

	if (key_idx >= 3)
		return -EINVAL;

	ad.mci_enc = mci_cbc_enc_array[key_idx];
	ad.mci_dec = mci_cbc_dec_array[key_idx];
	ad.inv_key = true;
	ad.ealg_id = SA_EALG_ID_AES_CBC;
	ad.iv_idx = 4;
	ad.iv_out_size = 16;

	return sa_cipher_setkey(tfm, key, keylen, &ad);
}

static int sa_aes_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
			     unsigned int keylen)
{
	struct algo_data ad = { 0 };
	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
	int key_idx = (keylen >> 3) - 2;

	if (key_idx >= 3)
		return -EINVAL;

	ad.mci_enc = mci_ecb_enc_array[key_idx];
	ad.mci_dec = mci_ecb_dec_array[key_idx];
	ad.inv_key = true;
	ad.ealg_id = SA_EALG_ID_AES_ECB;

	return sa_cipher_setkey(tfm, key, keylen, &ad);
}

static int sa_3des_cbc_setkey(struct crypto_skcipher *tfm, const u8 *key,
			      unsigned int keylen)
{
	struct algo_data ad = { 0 };

	ad.mci_enc = mci_cbc_3des_enc_array;
	ad.mci_dec = mci_cbc_3des_dec_array;
	ad.ealg_id = SA_EALG_ID_3DES_CBC;
	ad.iv_idx = 6;
	ad.iv_out_size = 8;

	return sa_cipher_setkey(tfm, key, keylen, &ad);
}

static int sa_3des_ecb_setkey(struct crypto_skcipher *tfm, const u8 *key,
			      unsigned int keylen)
{
	struct algo_data ad = { 0 };

	ad.mci_enc = mci_ecb_3des_enc_array;
	ad.mci_dec = mci_ecb_3des_dec_array;

	return sa_cipher_setkey(tfm, key, keylen, &ad);
}

static void sa_aes_dma_in_callback(void *data)
{
	struct sa_rx_data *rxd = (struct sa_rx_data *)data;
	struct skcipher_request *req;
	int sglen;
	u32 *result;
	__be32 *mdptr;
	size_t ml, pl;
	int i;
	enum dma_data_direction dir_src;
	bool diff_dst;

	req = container_of(rxd->req, struct skcipher_request, base);
	sglen = sg_nents_for_len(req->src, req->cryptlen);

	diff_dst = (req->src != req->dst) ? true : false;
	dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;

	if (req->iv) {
		mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl,
							       &ml);
		result = (u32 *)req->iv;

		for (i = 0; i < (rxd->enc_iv_size / 4); i++)
			result[i] = be32_to_cpu(mdptr[i + rxd->iv_idx]);
	}

	dma_unmap_sg(rxd->ddev, req->src, sglen, dir_src);
	kfree(rxd->split_src_sg);

	if (diff_dst) {
		sglen = sg_nents_for_len(req->dst, req->cryptlen);

		dma_unmap_sg(rxd->ddev, req->dst, sglen,
			     DMA_FROM_DEVICE);
		kfree(rxd->split_dst_sg);
	}

	kfree(rxd);

	skcipher_request_complete(req, 0);
}

static void
sa_prepare_tx_desc(u32 *mdptr, u32 pslen, u32 *psdata, u32 epiblen, u32 *epib)
{
	u32 *out, *in;
	int i;

	for (out = mdptr, in = epib, i = 0; i < epiblen / sizeof(u32); i++)
		*out++ = *in++;

	mdptr[4] = (0xFFFF << 16);
	for (out = &mdptr[5], in = psdata, i = 0;
	     i < pslen / sizeof(u32); i++)
		*out++ = *in++;
}

static int sa_run(struct sa_req *req)
{
	struct sa_rx_data *rxd;
	gfp_t gfp_flags;
	u32 cmdl[SA_MAX_CMDL_WORDS];
	struct sa_crypto_data *pdata = dev_get_drvdata(sa_k3_dev);
	struct device *ddev;
	struct dma_chan *dma_rx;
	int sg_nents, src_nents, dst_nents;
	int mapped_src_nents, mapped_dst_nents;
	struct scatterlist *src, *dst;
	size_t pl, ml, split_size;
	struct sa_ctx_info *sa_ctx = req->enc ? &req->ctx->enc : &req->ctx->dec;
	int ret;
	struct dma_async_tx_descriptor *tx_out;
	u32 *mdptr;
	bool diff_dst;
	enum dma_data_direction dir_src;

	gfp_flags = req->base->flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
		GFP_KERNEL : GFP_ATOMIC;

	rxd = kzalloc(sizeof(*rxd), gfp_flags);
	if (!rxd)
		return -ENOMEM;

	if (req->src != req->dst) {
		diff_dst = true;
		dir_src = DMA_TO_DEVICE;
	} else {
		diff_dst = false;
		dir_src = DMA_BIDIRECTIONAL;
	}

	/*
	 * SA2UL has an interesting feature where the receive DMA channel
	 * is selected based on the data passed to the engine. Within the
	 * transition range, there is also a space where it is impossible
	 * to determine where the data will end up, and this should be
	 * avoided. This will be handled by the SW fallback mechanism by
	 * the individual algorithm implementations.
	 */
	if (req->size >= 256)
		dma_rx = pdata->dma_rx2;
	else
		dma_rx = pdata->dma_rx1;

	ddev = dma_rx->device->dev;

	memcpy(cmdl, sa_ctx->cmdl, sa_ctx->cmdl_size);

	sa_update_cmdl(req, cmdl, &sa_ctx->cmdl_upd_info);

	if (req->type != CRYPTO_ALG_TYPE_AHASH) {
		if (req->enc)
			req->type |=
				(SA_REQ_SUBTYPE_ENC << SA_REQ_SUBTYPE_SHIFT);
		else
			req->type |=
				(SA_REQ_SUBTYPE_DEC << SA_REQ_SUBTYPE_SHIFT);
	}

	cmdl[sa_ctx->cmdl_size / sizeof(u32)] = req->type;

	/*
	 * Map the packets, first we check if the data fits into a single
	 * sg entry and use that if possible. If it does not fit, we check
	 * if we need to do sg_split to align the scatterlist data on the
	 * actual data size being processed by the crypto engine.
	 */
	src = req->src;
	sg_nents = sg_nents_for_len(src, req->size);

	split_size = req->size;

	if (sg_nents == 1 && split_size <= req->src->length) {
		src = &rxd->rx_sg;
		sg_init_table(src, 1);
		sg_set_page(src, sg_page(req->src), split_size,
			    req->src->offset);
		src_nents = 1;
		dma_map_sg(ddev, src, sg_nents, dir_src);
	} else {
		mapped_src_nents = dma_map_sg(ddev, req->src, sg_nents,
					      dir_src);
		ret = sg_split(req->src, mapped_src_nents, 0, 1, &split_size,
			       &src, &src_nents, gfp_flags);
		if (ret) {
			src_nents = sg_nents;
			src = req->src;
		} else {
			rxd->split_src_sg = src;
		}
	}

	if (!diff_dst) {
		dst_nents = src_nents;
		dst = src;
	} else {
		dst_nents = sg_nents_for_len(req->dst, req->size);

		if (dst_nents == 1 && split_size <= req->dst->length) {
			dst = &rxd->tx_sg;
			sg_init_table(dst, 1);
			sg_set_page(dst, sg_page(req->dst), split_size,
				    req->dst->offset);
			dst_nents = 1;
			dma_map_sg(ddev, dst, dst_nents, DMA_FROM_DEVICE);
		} else {
			mapped_dst_nents = dma_map_sg(ddev, req->dst, dst_nents,
						      DMA_FROM_DEVICE);
			ret = sg_split(req->dst, mapped_dst_nents, 0, 1,
				       &split_size, &dst, &dst_nents,
				       gfp_flags);
			if (ret) {
				dst_nents = dst_nents;
				dst = req->dst;
			} else {
				rxd->split_dst_sg = dst;
			}
		}
	}

	if (unlikely(src_nents != sg_nents)) {
		dev_warn_ratelimited(sa_k3_dev, "failed to map tx pkt\n");
		ret = -EIO;
		goto err_cleanup;
	}

	rxd->tx_in = dmaengine_prep_slave_sg(dma_rx, dst, dst_nents,
					     DMA_DEV_TO_MEM,
					     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxd->tx_in) {
		dev_err(pdata->dev, "IN prep_slave_sg() failed\n");
		ret = -EINVAL;
		goto err_cleanup;
	}

	rxd->req = (void *)req->base;
	rxd->enc = req->enc;
	rxd->ddev = ddev;
	rxd->src = src;
	rxd->dst = dst;
	rxd->iv_idx = req->ctx->iv_idx;
	rxd->enc_iv_size = sa_ctx->cmdl_upd_info.enc_iv.size;
	rxd->tx_in->callback = req->callback;
	rxd->tx_in->callback_param = rxd;

	tx_out = dmaengine_prep_slave_sg(pdata->dma_tx, src,
					 src_nents, DMA_MEM_TO_DEV,
					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);

	if (!tx_out) {
		dev_err(pdata->dev, "OUT prep_slave_sg() failed\n");
		ret = -EINVAL;
		goto err_cleanup;
	}

	/*
	 * Prepare metadata for DMA engine. This essentially describes the
	 * crypto algorithm to be used, data sizes, different keys etc.
	 */
	mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(tx_out, &pl, &ml);

	sa_prepare_tx_desc(mdptr, (sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS *
				   sizeof(u32))), cmdl, sizeof(sa_ctx->epib),
			   sa_ctx->epib);

	ml = sa_ctx->cmdl_size + (SA_PSDATA_CTX_WORDS * sizeof(u32));
	dmaengine_desc_set_metadata_len(tx_out, req->mdata_size);

	dmaengine_submit(tx_out);
	dmaengine_submit(rxd->tx_in);

	dma_async_issue_pending(dma_rx);
	dma_async_issue_pending(pdata->dma_tx);

	return -EINPROGRESS;

err_cleanup:
	dma_unmap_sg(ddev, req->src, sg_nents, DMA_TO_DEVICE);
	kfree(rxd->split_src_sg);

	if (req->src != req->dst) {
		dst_nents = sg_nents_for_len(req->dst, req->size);
		dma_unmap_sg(ddev, req->dst, dst_nents, DMA_FROM_DEVICE);
		kfree(rxd->split_dst_sg);
	}

	kfree(rxd);

	return ret;
}

static int sa_cipher_run(struct skcipher_request *req, u8 *iv, int enc)
{
	struct sa_tfm_ctx *ctx =
	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
	struct crypto_alg *alg = req->base.tfm->__crt_alg;
	struct sa_req sa_req = { 0 };
	int ret;

	if (!req->cryptlen)
		return 0;

	if (req->cryptlen % alg->cra_blocksize)
		return -EINVAL;

	/* Use SW fallback if the data size is not supported */
	if (req->cryptlen > SA_MAX_DATA_SZ ||
	    (req->cryptlen >= SA_UNSAFE_DATA_SZ_MIN &&
	     req->cryptlen <= SA_UNSAFE_DATA_SZ_MAX)) {
		SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback.skcipher);

		skcipher_request_set_sync_tfm(subreq, ctx->fallback.skcipher);
		skcipher_request_set_callback(subreq, req->base.flags,
					      NULL, NULL);
		skcipher_request_set_crypt(subreq, req->src, req->dst,
					   req->cryptlen, req->iv);
		if (enc)
			ret = crypto_skcipher_encrypt(subreq);
		else
			ret = crypto_skcipher_decrypt(subreq);

		skcipher_request_zero(subreq);
		return ret;
	}

	sa_req.size = req->cryptlen;
	sa_req.enc_size = req->cryptlen;
	sa_req.src = req->src;
	sa_req.dst = req->dst;
	sa_req.enc_iv = iv;
	sa_req.type = CRYPTO_ALG_TYPE_SKCIPHER;
	sa_req.enc = enc;
	sa_req.callback = sa_aes_dma_in_callback;
	sa_req.mdata_size = 44;
	sa_req.base = &req->base;
	sa_req.ctx = ctx;

	return sa_run(&sa_req);
}

static int sa_encrypt(struct skcipher_request *req)
{
	return sa_cipher_run(req, req->iv, 1);
}

static int sa_decrypt(struct skcipher_request *req)
{
	return sa_cipher_run(req, req->iv, 0);
}

static void sa_sha_dma_in_callback(void *data)
{
	struct sa_rx_data *rxd = (struct sa_rx_data *)data;
	struct ahash_request *req;
	struct crypto_ahash *tfm;
	unsigned int authsize;
	int i, sg_nents;
	size_t ml, pl;
	u32 *result;
	__be32 *mdptr;

	req = container_of(rxd->req, struct ahash_request, base);
	tfm = crypto_ahash_reqtfm(req);
	authsize = crypto_ahash_digestsize(tfm);

	mdptr = (__be32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
	result = (u32 *)req->result;

	for (i = 0; i < (authsize / 4); i++)
		result[i] = be32_to_cpu(mdptr[i + 4]);

	sg_nents = sg_nents_for_len(req->src, req->nbytes);
	dma_unmap_sg(rxd->ddev, req->src, sg_nents, DMA_FROM_DEVICE);

	kfree(rxd->split_src_sg);

	kfree(rxd);

	ahash_request_complete(req, 0);
}

static int zero_message_process(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	int sa_digest_size = crypto_ahash_digestsize(tfm);

	switch (sa_digest_size) {
	case SHA1_DIGEST_SIZE:
		memcpy(req->result, sha1_zero_message_hash, sa_digest_size);
		break;
	case SHA256_DIGEST_SIZE:
		memcpy(req->result, sha256_zero_message_hash, sa_digest_size);
		break;
	case SHA512_DIGEST_SIZE:
		memcpy(req->result, sha512_zero_message_hash, sa_digest_size);
		break;
	default:
		return -EINVAL;
	}

	return 0;
}

static int sa_sha_run(struct ahash_request *req)
{
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct sa_req sa_req = { 0 };
	size_t auth_len;

	auth_len = req->nbytes;

	if (!auth_len)
		return zero_message_process(req);

	if (auth_len > SA_MAX_DATA_SZ ||
	    (auth_len >= SA_UNSAFE_DATA_SZ_MIN &&
	     auth_len <= SA_UNSAFE_DATA_SZ_MAX)) {
		struct ahash_request *subreq = &rctx->fallback_req;
		int ret = 0;

		ahash_request_set_tfm(subreq, ctx->fallback.ahash);
		subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;

		crypto_ahash_init(subreq);

		subreq->nbytes = auth_len;
		subreq->src = req->src;
		subreq->result = req->result;

		ret |= crypto_ahash_update(subreq);

		subreq->nbytes = 0;

		ret |= crypto_ahash_final(subreq);

		return ret;
	}

	sa_req.size = auth_len;
	sa_req.auth_size = auth_len;
	sa_req.src = req->src;
	sa_req.dst = req->src;
	sa_req.enc = true;
	sa_req.type = CRYPTO_ALG_TYPE_AHASH;
	sa_req.callback = sa_sha_dma_in_callback;
	sa_req.mdata_size = 28;
	sa_req.ctx = ctx;
	sa_req.base = &req->base;

	return sa_run(&sa_req);
}

static int sa_sha_setup(struct sa_tfm_ctx *ctx, struct  algo_data *ad)
{
	int bs = crypto_shash_blocksize(ctx->shash);
	int cmdl_len;
	struct sa_cmdl_cfg cfg;

	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
	ad->auth_eng.eng_id = SA_ENG_ID_AM1;
	ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;

	memset(ctx->authkey, 0, bs);
	memset(&cfg, 0, sizeof(cfg));
	cfg.aalg = ad->aalg_id;
	cfg.enc_eng_id = ad->enc_eng.eng_id;
	cfg.auth_eng_id = ad->auth_eng.eng_id;
	cfg.iv_size = 0;
	cfg.akey = NULL;
	cfg.akey_len = 0;

	/* Setup Encryption Security Context & Command label template */
	if (sa_init_sc(&ctx->enc, NULL, 0, NULL, 0, ad, 0,
		       &ctx->enc.epib[1]))
		goto badkey;

	cmdl_len = sa_format_cmdl_gen(&cfg,
				      (u8 *)ctx->enc.cmdl,
				      &ctx->enc.cmdl_upd_info);
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
		goto badkey;

	ctx->enc.cmdl_size = cmdl_len;

	return 0;

badkey:
	dev_err(sa_k3_dev, "%s: badkey\n", __func__);
	return -EINVAL;
}

static int sa_sha_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
{
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
	int ret;

	memset(ctx, 0, sizeof(*ctx));
	ctx->dev_data = data;
	ret = sa_init_ctx_info(&ctx->enc, data);
	if (ret)
		return ret;

	if (alg_base) {
		ctx->shash = crypto_alloc_shash(alg_base, 0,
						CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(ctx->shash)) {
			dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n",
				alg_base);
			return PTR_ERR(ctx->shash);
		}
		/* for fallback */
		ctx->fallback.ahash =
			crypto_alloc_ahash(alg_base, 0,
					   CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(ctx->fallback.ahash)) {
			dev_err(ctx->dev_data->dev,
				"Could not load fallback driver\n");
			return PTR_ERR(ctx->fallback.ahash);
		}
	}

	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
		ctx->dec.sc_id, &ctx->dec.sc_phys);

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct sa_sha_req_ctx) +
				 crypto_ahash_reqsize(ctx->fallback.ahash));

	return 0;
}

static int sa_sha_digest(struct ahash_request *req)
{
	return sa_sha_run(req);
}

static int sa_sha_init(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);

	dev_dbg(sa_k3_dev, "init: digest size: %d, rctx=%llx\n",
		crypto_ahash_digestsize(tfm), (u64)rctx);

	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
	rctx->fallback_req.base.flags =
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;

	return crypto_ahash_init(&rctx->fallback_req);
}

static int sa_sha_update(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);

	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
	rctx->fallback_req.base.flags =
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	rctx->fallback_req.nbytes = req->nbytes;
	rctx->fallback_req.src = req->src;

	return crypto_ahash_update(&rctx->fallback_req);
}

static int sa_sha_final(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);

	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
	rctx->fallback_req.base.flags =
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
	rctx->fallback_req.result = req->result;

	return crypto_ahash_final(&rctx->fallback_req);
}

static int sa_sha_finup(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);

	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
	rctx->fallback_req.base.flags =
		req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;

	rctx->fallback_req.nbytes = req->nbytes;
	rctx->fallback_req.src = req->src;
	rctx->fallback_req.result = req->result;

	return crypto_ahash_finup(&rctx->fallback_req);
}

static int sa_sha_import(struct ahash_request *req, const void *in)
{
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);

	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback.ahash);
	rctx->fallback_req.base.flags = req->base.flags &
		CRYPTO_TFM_REQ_MAY_SLEEP;

	return crypto_ahash_import(&rctx->fallback_req, in);
}

static int sa_sha_export(struct ahash_request *req, void *out)
{
	struct sa_sha_req_ctx *rctx = ahash_request_ctx(req);
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	struct sa_tfm_ctx *ctx = crypto_ahash_ctx(tfm);
	struct ahash_request *subreq = &rctx->fallback_req;

	ahash_request_set_tfm(subreq, ctx->fallback.ahash);
	subreq->base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;

	return crypto_ahash_export(subreq, out);
}

static int sa_sha1_cra_init(struct crypto_tfm *tfm)
{
	struct algo_data ad = { 0 };
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);

	sa_sha_cra_init_alg(tfm, "sha1");

	ad.aalg_id = SA_AALG_ID_SHA1;
	ad.hash_size = SHA1_DIGEST_SIZE;
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;

	sa_sha_setup(ctx, &ad);

	return 0;
}

static int sa_sha256_cra_init(struct crypto_tfm *tfm)
{
	struct algo_data ad = { 0 };
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);

	sa_sha_cra_init_alg(tfm, "sha256");

	ad.aalg_id = SA_AALG_ID_SHA2_256;
	ad.hash_size = SHA256_DIGEST_SIZE;
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;

	sa_sha_setup(ctx, &ad);

	return 0;
}

static int sa_sha512_cra_init(struct crypto_tfm *tfm)
{
	struct algo_data ad = { 0 };
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);

	sa_sha_cra_init_alg(tfm, "sha512");

	ad.aalg_id = SA_AALG_ID_SHA2_512;
	ad.hash_size = SHA512_DIGEST_SIZE;
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA512;

	sa_sha_setup(ctx, &ad);

	return 0;
}

static void sa_sha_cra_exit(struct crypto_tfm *tfm)
{
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);

	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
		ctx->dec.sc_id, &ctx->dec.sc_phys);

	if (crypto_tfm_alg_type(tfm) == CRYPTO_ALG_TYPE_AHASH)
		sa_free_ctx_info(&ctx->enc, data);

	crypto_free_shash(ctx->shash);
	crypto_free_ahash(ctx->fallback.ahash);
}

static void sa_aead_dma_in_callback(void *data)
{
	struct sa_rx_data *rxd = (struct sa_rx_data *)data;
	struct aead_request *req;
	struct crypto_aead *tfm;
	unsigned int start;
	unsigned int authsize;
	u8 auth_tag[SA_MAX_AUTH_TAG_SZ];
	size_t pl, ml;
	int i, sglen;
	int err = 0;
	u16 auth_len;
	u32 *mdptr;
	bool diff_dst;
	enum dma_data_direction dir_src;

	req = container_of(rxd->req, struct aead_request, base);
	tfm = crypto_aead_reqtfm(req);
	start = req->assoclen + req->cryptlen;
	authsize = crypto_aead_authsize(tfm);

	diff_dst = (req->src != req->dst) ? true : false;
	dir_src = diff_dst ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL;

	mdptr = (u32 *)dmaengine_desc_get_metadata_ptr(rxd->tx_in, &pl, &ml);
	for (i = 0; i < (authsize / 4); i++)
		mdptr[i + 4] = swab32(mdptr[i + 4]);

	auth_len = req->assoclen + req->cryptlen;
	if (!rxd->enc)
		auth_len -= authsize;

	sglen =  sg_nents_for_len(rxd->src, auth_len);
	dma_unmap_sg(rxd->ddev, rxd->src, sglen, dir_src);
	kfree(rxd->split_src_sg);

	if (diff_dst) {
		sglen = sg_nents_for_len(rxd->dst, auth_len);
		dma_unmap_sg(rxd->ddev, rxd->dst, sglen, DMA_FROM_DEVICE);
		kfree(rxd->split_dst_sg);
	}

	if (rxd->enc) {
		scatterwalk_map_and_copy(&mdptr[4], req->dst, start, authsize,
					 1);
	} else {
		start -= authsize;
		scatterwalk_map_and_copy(auth_tag, req->src, start, authsize,
					 0);

		err = memcmp(&mdptr[4], auth_tag, authsize) ? -EBADMSG : 0;
	}

	kfree(rxd);

	aead_request_complete(req, err);
}

static int sa_cra_init_aead(struct crypto_aead *tfm, const char *hash,
			    const char *fallback)
{
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);
	int ret;

	memzero_explicit(ctx, sizeof(*ctx));

	ctx->shash = crypto_alloc_shash(hash, 0, CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(ctx->shash)) {
		dev_err(sa_k3_dev, "base driver %s couldn't be loaded\n", hash);
		return PTR_ERR(ctx->shash);
	}

	ctx->fallback.aead = crypto_alloc_aead(fallback, 0,
					       CRYPTO_ALG_NEED_FALLBACK);

	if (IS_ERR(ctx->fallback.aead)) {
		dev_err(sa_k3_dev, "fallback driver %s couldn't be loaded\n",
			fallback);
		return PTR_ERR(ctx->fallback.aead);
	}

	crypto_aead_set_reqsize(tfm, sizeof(struct aead_request) +
				crypto_aead_reqsize(ctx->fallback.aead));

	ret = sa_init_ctx_info(&ctx->enc, data);
	if (ret)
		return ret;

	ret = sa_init_ctx_info(&ctx->dec, data);
	if (ret) {
		sa_free_ctx_info(&ctx->enc, data);
		return ret;
	}

	dev_dbg(sa_k3_dev, "%s(0x%p) sc-ids(0x%x(0x%pad), 0x%x(0x%pad))\n",
		__func__, tfm, ctx->enc.sc_id, &ctx->enc.sc_phys,
		ctx->dec.sc_id, &ctx->dec.sc_phys);

	return ret;
}

static int sa_cra_init_aead_sha1(struct crypto_aead *tfm)
{
	return sa_cra_init_aead(tfm, "sha1",
				"authenc(hmac(sha1-ce),cbc(aes-ce))");
}

static int sa_cra_init_aead_sha256(struct crypto_aead *tfm)
{
	return sa_cra_init_aead(tfm, "sha256",
				"authenc(hmac(sha256-ce),cbc(aes-ce))");
}

static void sa_exit_tfm_aead(struct crypto_aead *tfm)
{
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
	struct sa_crypto_data *data = dev_get_drvdata(sa_k3_dev);

	crypto_free_shash(ctx->shash);
	crypto_free_aead(ctx->fallback.aead);

	sa_free_ctx_info(&ctx->enc, data);
	sa_free_ctx_info(&ctx->dec, data);
}

/* AEAD algorithm configuration interface function */
static int sa_aead_setkey(struct crypto_aead *authenc,
			  const u8 *key, unsigned int keylen,
			  struct algo_data *ad)
{
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(authenc);
	struct crypto_authenc_keys keys;
	int cmdl_len;
	struct sa_cmdl_cfg cfg;
	int key_idx;

	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
		return -EINVAL;

	/* Convert the key size (16/24/32) to the key size index (0/1/2) */
	key_idx = (keys.enckeylen >> 3) - 2;
	if (key_idx >= 3)
		return -EINVAL;

	ad->ctx = ctx;
	ad->enc_eng.eng_id = SA_ENG_ID_EM1;
	ad->enc_eng.sc_size = SA_CTX_ENC_TYPE1_SZ;
	ad->auth_eng.eng_id = SA_ENG_ID_AM1;
	ad->auth_eng.sc_size = SA_CTX_AUTH_TYPE2_SZ;
	ad->mci_enc = mci_cbc_enc_no_iv_array[key_idx];
	ad->mci_dec = mci_cbc_dec_no_iv_array[key_idx];
	ad->inv_key = true;
	ad->keyed_mac = true;
	ad->ealg_id = SA_EALG_ID_AES_CBC;
	ad->prep_iopad = sa_prepare_iopads;

	memset(&cfg, 0, sizeof(cfg));
	cfg.enc = true;
	cfg.aalg = ad->aalg_id;
	cfg.enc_eng_id = ad->enc_eng.eng_id;
	cfg.auth_eng_id = ad->auth_eng.eng_id;
	cfg.iv_size = crypto_aead_ivsize(authenc);
	cfg.akey = keys.authkey;
	cfg.akey_len = keys.authkeylen;

	/* Setup Encryption Security Context & Command label template */
	if (sa_init_sc(&ctx->enc, keys.enckey, keys.enckeylen,
		       keys.authkey, keys.authkeylen,
		       ad, 1, &ctx->enc.epib[1]))
		return -EINVAL;

	cmdl_len = sa_format_cmdl_gen(&cfg,
				      (u8 *)ctx->enc.cmdl,
				      &ctx->enc.cmdl_upd_info);
	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
		return -EINVAL;

	ctx->enc.cmdl_size = cmdl_len;

	/* Setup Decryption Security Context & Command label template */
	if (sa_init_sc(&ctx->dec, keys.enckey, keys.enckeylen,
		       keys.authkey, keys.authkeylen,
		       ad, 0, &ctx->dec.epib[1]))
		return -EINVAL;

	cfg.enc = false;
	cmdl_len = sa_format_cmdl_gen(&cfg, (u8 *)ctx->dec.cmdl,
				      &ctx->dec.cmdl_upd_info);

	if (cmdl_len <= 0 || (cmdl_len > SA_MAX_CMDL_WORDS * sizeof(u32)))
		return -EINVAL;

	ctx->dec.cmdl_size = cmdl_len;

	crypto_aead_clear_flags(ctx->fallback.aead, CRYPTO_TFM_REQ_MASK);
	crypto_aead_set_flags(ctx->fallback.aead,
			      crypto_aead_get_flags(authenc) &
			      CRYPTO_TFM_REQ_MASK);
	crypto_aead_setkey(ctx->fallback.aead, key, keylen);

	return 0;
}

static int sa_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
	struct sa_tfm_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));

	return crypto_aead_setauthsize(ctx->fallback.aead, authsize);
}

static int sa_aead_cbc_sha1_setkey(struct crypto_aead *authenc,
				   const u8 *key, unsigned int keylen)
{
	struct algo_data ad = { 0 };

	ad.ealg_id = SA_EALG_ID_AES_CBC;
	ad.aalg_id = SA_AALG_ID_HMAC_SHA1;
	ad.hash_size = SHA1_DIGEST_SIZE;
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA1;

	return sa_aead_setkey(authenc, key, keylen, &ad);
}

static int sa_aead_cbc_sha256_setkey(struct crypto_aead *authenc,
				     const u8 *key, unsigned int keylen)
{
	struct algo_data ad = { 0 };

	ad.ealg_id = SA_EALG_ID_AES_CBC;
	ad.aalg_id = SA_AALG_ID_HMAC_SHA2_256;
	ad.hash_size = SHA256_DIGEST_SIZE;
	ad.auth_ctrl = SA_AUTH_SW_CTRL_SHA256;

	return sa_aead_setkey(authenc, key, keylen, &ad);
}

static int sa_aead_run(struct aead_request *req, u8 *iv, int enc)
{
	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
	struct sa_tfm_ctx *ctx = crypto_aead_ctx(tfm);
	struct sa_req sa_req = { 0 };
	size_t auth_size, enc_size;

	enc_size = req->cryptlen;
	auth_size = req->assoclen + req->cryptlen;

	if (!enc) {
		enc_size -= crypto_aead_authsize(tfm);
		auth_size -= crypto_aead_authsize(tfm);
	}

	if (auth_size > SA_MAX_DATA_SZ ||
	    (auth_size >= SA_UNSAFE_DATA_SZ_MIN &&
	     auth_size <= SA_UNSAFE_DATA_SZ_MAX)) {
		struct aead_request *subreq = aead_request_ctx(req);
		int ret;

		aead_request_set_tfm(subreq, ctx->fallback.aead);
		aead_request_set_callback(subreq, req->base.flags,
					  req->base.complete, req->base.data);
		aead_request_set_crypt(subreq, req->src, req->dst,
				       req->cryptlen, req->iv);
		aead_request_set_ad(subreq, req->assoclen);

		ret = enc ? crypto_aead_encrypt(subreq) :
			crypto_aead_decrypt(subreq);
		return ret;
	}

	sa_req.enc_offset = req->assoclen;
	sa_req.enc_size = enc_size;
	sa_req.auth_size = auth_size;
	sa_req.size = auth_size;
	sa_req.enc_iv = iv;
	sa_req.type = CRYPTO_ALG_TYPE_AEAD;
	sa_req.enc = enc;
	sa_req.callback = sa_aead_dma_in_callback;
	sa_req.mdata_size = 52;
	sa_req.base = &req->base;
	sa_req.ctx = ctx;
	sa_req.src = req->src;
	sa_req.dst = req->dst;

	return sa_run(&sa_req);
}

/* AEAD algorithm encrypt interface function */
static int sa_aead_encrypt(struct aead_request *req)
{
	return sa_aead_run(req, req->iv, 1);
}

/* AEAD algorithm decrypt interface function */
static int sa_aead_decrypt(struct aead_request *req)
{
	return sa_aead_run(req, req->iv, 0);
}

static struct sa_alg_tmpl sa_algs[] = {
	{
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
		.alg.skcipher = {
			.base.cra_name		= "cbc(aes)",
			.base.cra_driver_name	= "cbc-aes-sa2ul",
			.base.cra_priority	= 30000,
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_NEED_FALLBACK,
			.base.cra_blocksize	= AES_BLOCK_SIZE,
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
			.base.cra_module	= THIS_MODULE,
			.init			= sa_cipher_cra_init,
			.exit			= sa_cipher_cra_exit,
			.min_keysize		= AES_MIN_KEY_SIZE,
			.max_keysize		= AES_MAX_KEY_SIZE,
			.ivsize			= AES_BLOCK_SIZE,
			.setkey			= sa_aes_cbc_setkey,
			.encrypt		= sa_encrypt,
			.decrypt		= sa_decrypt,
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
		.alg.skcipher = {
			.base.cra_name		= "ecb(aes)",
			.base.cra_driver_name	= "ecb-aes-sa2ul",
			.base.cra_priority	= 30000,
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_NEED_FALLBACK,
			.base.cra_blocksize	= AES_BLOCK_SIZE,
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
			.base.cra_module	= THIS_MODULE,
			.init			= sa_cipher_cra_init,
			.exit			= sa_cipher_cra_exit,
			.min_keysize		= AES_MIN_KEY_SIZE,
			.max_keysize		= AES_MAX_KEY_SIZE,
			.setkey			= sa_aes_ecb_setkey,
			.encrypt		= sa_encrypt,
			.decrypt		= sa_decrypt,
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
		.alg.skcipher = {
			.base.cra_name		= "cbc(des3_ede)",
			.base.cra_driver_name	= "cbc-des3-sa2ul",
			.base.cra_priority	= 30000,
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_NEED_FALLBACK,
			.base.cra_blocksize	= DES_BLOCK_SIZE,
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
			.base.cra_module	= THIS_MODULE,
			.init			= sa_cipher_cra_init,
			.exit			= sa_cipher_cra_exit,
			.min_keysize		= 3 * DES_KEY_SIZE,
			.max_keysize		= 3 * DES_KEY_SIZE,
			.ivsize			= DES_BLOCK_SIZE,
			.setkey			= sa_3des_cbc_setkey,
			.encrypt		= sa_encrypt,
			.decrypt		= sa_decrypt,
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_SKCIPHER,
		.alg.skcipher = {
			.base.cra_name		= "ecb(des3_ede)",
			.base.cra_driver_name	= "ecb-des3-sa2ul",
			.base.cra_priority	= 30000,
			.base.cra_flags		= CRYPTO_ALG_TYPE_SKCIPHER |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_NEED_FALLBACK,
			.base.cra_blocksize	= DES_BLOCK_SIZE,
			.base.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
			.base.cra_module	= THIS_MODULE,
			.init			= sa_cipher_cra_init,
			.exit			= sa_cipher_cra_exit,
			.min_keysize		= 3 * DES_KEY_SIZE,
			.max_keysize		= 3 * DES_KEY_SIZE,
			.setkey			= sa_3des_ecb_setkey,
			.encrypt		= sa_encrypt,
			.decrypt		= sa_decrypt,
		}
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.alg.ahash = {
			.halg.base = {
				.cra_name	= "sha1",
				.cra_driver_name	= "sha1-sa2ul",
				.cra_priority	= 400,
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_NEED_FALLBACK,
				.cra_blocksize	= SHA1_BLOCK_SIZE,
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
				.cra_module	= THIS_MODULE,
				.cra_init	= sa_sha1_cra_init,
				.cra_exit	= sa_sha_cra_exit,
			},
			.halg.digestsize	= SHA1_DIGEST_SIZE,
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
						  sizeof(struct sha1_state),
			.init			= sa_sha_init,
			.update			= sa_sha_update,
			.final			= sa_sha_final,
			.finup			= sa_sha_finup,
			.digest			= sa_sha_digest,
			.export			= sa_sha_export,
			.import			= sa_sha_import,
		},
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.alg.ahash = {
			.halg.base = {
				.cra_name	= "sha256",
				.cra_driver_name	= "sha256-sa2ul",
				.cra_priority	= 400,
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_NEED_FALLBACK,
				.cra_blocksize	= SHA256_BLOCK_SIZE,
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
				.cra_module	= THIS_MODULE,
				.cra_init	= sa_sha256_cra_init,
				.cra_exit	= sa_sha_cra_exit,
			},
			.halg.digestsize	= SHA256_DIGEST_SIZE,
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
						  sizeof(struct sha256_state),
			.init			= sa_sha_init,
			.update			= sa_sha_update,
			.final			= sa_sha_final,
			.finup			= sa_sha_finup,
			.digest			= sa_sha_digest,
			.export			= sa_sha_export,
			.import			= sa_sha_import,
		},
	},
	{
		.type = CRYPTO_ALG_TYPE_AHASH,
		.alg.ahash = {
			.halg.base = {
				.cra_name	= "sha512",
				.cra_driver_name	= "sha512-sa2ul",
				.cra_priority	= 400,
				.cra_flags	= CRYPTO_ALG_TYPE_AHASH |
						  CRYPTO_ALG_ASYNC |
						  CRYPTO_ALG_KERN_DRIVER_ONLY |
						  CRYPTO_ALG_NEED_FALLBACK,
				.cra_blocksize	= SHA512_BLOCK_SIZE,
				.cra_ctxsize	= sizeof(struct sa_tfm_ctx),
				.cra_module	= THIS_MODULE,
				.cra_init	= sa_sha512_cra_init,
				.cra_exit	= sa_sha_cra_exit,
			},
			.halg.digestsize	= SHA512_DIGEST_SIZE,
			.halg.statesize		= sizeof(struct sa_sha_req_ctx) +
						  sizeof(struct sha512_state),
			.init			= sa_sha_init,
			.update			= sa_sha_update,
			.final			= sa_sha_final,
			.finup			= sa_sha_finup,
			.digest			= sa_sha_digest,
			.export			= sa_sha_export,
			.import			= sa_sha_import,
		},
	},
	{
		.type	= CRYPTO_ALG_TYPE_AEAD,
		.alg.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha1),cbc(aes))",
				.cra_driver_name =
					"authenc(hmac(sha1),cbc(aes))-sa2ul",
				.cra_blocksize = AES_BLOCK_SIZE,
				.cra_flags = CRYPTO_ALG_TYPE_AEAD |
					CRYPTO_ALG_KERN_DRIVER_ONLY |
					CRYPTO_ALG_ASYNC |
					CRYPTO_ALG_NEED_FALLBACK,
				.cra_ctxsize = sizeof(struct sa_tfm_ctx),
				.cra_module = THIS_MODULE,
				.cra_priority = 3000,
			},
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA1_DIGEST_SIZE,

			.init = sa_cra_init_aead_sha1,
			.exit = sa_exit_tfm_aead,
			.setkey = sa_aead_cbc_sha1_setkey,
			.setauthsize = sa_aead_setauthsize,
			.encrypt = sa_aead_encrypt,
			.decrypt = sa_aead_decrypt,
		},
	},
	{
		.type	= CRYPTO_ALG_TYPE_AEAD,
		.alg.aead = {
			.base = {
				.cra_name = "authenc(hmac(sha256),cbc(aes))",
				.cra_driver_name =
					"authenc(hmac(sha256),cbc(aes))-sa2ul",
				.cra_blocksize = AES_BLOCK_SIZE,
				.cra_flags = CRYPTO_ALG_TYPE_AEAD |
					CRYPTO_ALG_KERN_DRIVER_ONLY |
					CRYPTO_ALG_ASYNC |
					CRYPTO_ALG_NEED_FALLBACK,
				.cra_ctxsize = sizeof(struct sa_tfm_ctx),
				.cra_module = THIS_MODULE,
				.cra_alignmask = 0,
				.cra_priority = 3000,
			},
			.ivsize = AES_BLOCK_SIZE,
			.maxauthsize = SHA256_DIGEST_SIZE,

			.init = sa_cra_init_aead_sha256,
			.exit = sa_exit_tfm_aead,
			.setkey = sa_aead_cbc_sha256_setkey,
			.setauthsize = sa_aead_setauthsize,
			.encrypt = sa_aead_encrypt,
			.decrypt = sa_aead_decrypt,
		},
	},
};

/* Register the algorithms in crypto framework */
static void sa_register_algos(const struct device *dev)
{
	char *alg_name;
	u32 type;
	int i, err;

	for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
		type = sa_algs[i].type;
		if (type == CRYPTO_ALG_TYPE_SKCIPHER) {
			alg_name = sa_algs[i].alg.skcipher.base.cra_name;
			err = crypto_register_skcipher(&sa_algs[i].alg.skcipher);
		} else if (type == CRYPTO_ALG_TYPE_AHASH) {
			alg_name = sa_algs[i].alg.ahash.halg.base.cra_name;
			err = crypto_register_ahash(&sa_algs[i].alg.ahash);
		} else if (type == CRYPTO_ALG_TYPE_AEAD) {
			alg_name = sa_algs[i].alg.aead.base.cra_name;
			err = crypto_register_aead(&sa_algs[i].alg.aead);
		} else {
			dev_err(dev,
				"un-supported crypto algorithm (%d)",
				sa_algs[i].type);
			continue;
		}

		if (err)
			dev_err(dev, "Failed to register '%s'\n", alg_name);
		else
			sa_algs[i].registered = true;
	}
}

/* Unregister the algorithms in crypto framework */
static void sa_unregister_algos(const struct device *dev)
{
	u32 type;
	int i;

	for (i = 0; i < ARRAY_SIZE(sa_algs); i++) {
		type = sa_algs[i].type;
		if (!sa_algs[i].registered)
			continue;
		if (type == CRYPTO_ALG_TYPE_SKCIPHER)
			crypto_unregister_skcipher(&sa_algs[i].alg.skcipher);
		else if (type == CRYPTO_ALG_TYPE_AHASH)
			crypto_unregister_ahash(&sa_algs[i].alg.ahash);
		else if (type == CRYPTO_ALG_TYPE_AEAD)
			crypto_unregister_aead(&sa_algs[i].alg.aead);

		sa_algs[i].registered = false;
	}
}

static int sa_init_mem(struct sa_crypto_data *dev_data)
{
	struct device *dev = &dev_data->pdev->dev;
	/* Setup dma pool for security context buffers */
	dev_data->sc_pool = dma_pool_create("keystone-sc", dev,
					    SA_CTX_MAX_SZ, 64, 0);
	if (!dev_data->sc_pool) {
		dev_err(dev, "Failed to create dma pool");
		return -ENOMEM;
	}

	return 0;
}

static int sa_dma_init(struct sa_crypto_data *dd)
{
	int ret;
	struct dma_slave_config cfg;

	dd->dma_rx1 = NULL;
	dd->dma_tx = NULL;
	dd->dma_rx2 = NULL;

	ret = dma_coerce_mask_and_coherent(dd->dev, DMA_BIT_MASK(48));
	if (ret)
		return ret;

	dd->dma_rx1 = dma_request_chan(dd->dev, "rx1");
	if (IS_ERR(dd->dma_rx1)) {
		if (PTR_ERR(dd->dma_rx1) != -EPROBE_DEFER)
			dev_err(dd->dev, "Unable to request rx1 DMA channel\n");
		return PTR_ERR(dd->dma_rx1);
	}

	dd->dma_rx2 = dma_request_chan(dd->dev, "rx2");
	if (IS_ERR(dd->dma_rx2)) {
		dma_release_channel(dd->dma_rx1);
		if (PTR_ERR(dd->dma_rx2) != -EPROBE_DEFER)
			dev_err(dd->dev, "Unable to request rx2 DMA channel\n");
		return PTR_ERR(dd->dma_rx2);
	}

	dd->dma_tx = dma_request_chan(dd->dev, "tx");
	if (IS_ERR(dd->dma_tx)) {
		if (PTR_ERR(dd->dma_tx) != -EPROBE_DEFER)
			dev_err(dd->dev, "Unable to request tx DMA channel\n");
		ret = PTR_ERR(dd->dma_tx);
		goto err_dma_tx;
	}

	memzero_explicit(&cfg, sizeof(cfg));

	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.src_maxburst = 4;
	cfg.dst_maxburst = 4;

	ret = dmaengine_slave_config(dd->dma_rx1, &cfg);
	if (ret) {
		dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
			ret);
		return ret;
	}

	ret = dmaengine_slave_config(dd->dma_rx2, &cfg);
	if (ret) {
		dev_err(dd->dev, "can't configure IN dmaengine slave: %d\n",
			ret);
		return ret;
	}

	ret = dmaengine_slave_config(dd->dma_tx, &cfg);
	if (ret) {
		dev_err(dd->dev, "can't configure OUT dmaengine slave: %d\n",
			ret);
		return ret;
	}

	return 0;

err_dma_tx:
	dma_release_channel(dd->dma_rx1);
	dma_release_channel(dd->dma_rx2);

	return ret;
}

static int sa_link_child(struct device *dev, void *data)
{
	struct device *parent = data;

	device_link_add(dev, parent, DL_FLAG_AUTOPROBE_CONSUMER);

	return 0;
}

static int sa_ul_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct device_node *node = dev->of_node;
	struct resource *res;
	static void __iomem *saul_base;
	struct sa_crypto_data *dev_data;
	u32 val;
	int ret;

	dev_data = devm_kzalloc(dev, sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return -ENOMEM;

	sa_k3_dev = dev;
	dev_data->dev = dev;
	dev_data->pdev = pdev;
	platform_set_drvdata(pdev, dev_data);
	dev_set_drvdata(sa_k3_dev, dev_data);

	pm_runtime_enable(dev);
	ret = pm_runtime_get_sync(dev);
	if (ret) {
		dev_err(&pdev->dev, "%s: failed to get sync: %d\n", __func__,
			ret);
		return ret;
	}

	sa_init_mem(dev_data);
	ret = sa_dma_init(dev_data);
	if (ret)
		goto disable_pm_runtime;

	spin_lock_init(&dev_data->scid_lock);
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	saul_base = devm_ioremap_resource(dev, res);

	dev_data->base = saul_base;
	val = SA_EEC_ENCSS_EN | SA_EEC_AUTHSS_EN | SA_EEC_CTXCACH_EN |
	    SA_EEC_CPPI_PORT_IN_EN | SA_EEC_CPPI_PORT_OUT_EN |
	    SA_EEC_TRNG_EN;

	writel_relaxed(val, saul_base + SA_ENGINE_ENABLE_CONTROL);

	sa_register_algos(dev);

	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	if (ret)
		goto release_dma;

	device_for_each_child(&pdev->dev, &pdev->dev, sa_link_child);

	return 0;

release_dma:
	sa_unregister_algos(&pdev->dev);

	dma_release_channel(dev_data->dma_rx2);
	dma_release_channel(dev_data->dma_rx1);
	dma_release_channel(dev_data->dma_tx);

	dma_pool_destroy(dev_data->sc_pool);

disable_pm_runtime:
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	return ret;
}

static int sa_ul_remove(struct platform_device *pdev)
{
	struct sa_crypto_data *dev_data = platform_get_drvdata(pdev);

	sa_unregister_algos(&pdev->dev);

	dma_release_channel(dev_data->dma_rx2);
	dma_release_channel(dev_data->dma_rx1);
	dma_release_channel(dev_data->dma_tx);

	dma_pool_destroy(dev_data->sc_pool);

	platform_set_drvdata(pdev, NULL);

	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

static const struct of_device_id of_match[] = {
	{.compatible = "ti,j721e-sa2ul",},
	{.compatible = "ti,am654-sa2ul",},
	{},
};
MODULE_DEVICE_TABLE(of, of_match);

static struct platform_driver sa_ul_driver = {
	.probe = sa_ul_probe,
	.remove = sa_ul_remove,
	.driver = {
		   .name = "saul-crypto",
		   .of_match_table = of_match,
		   },
};
module_platform_driver(sa_ul_driver);
MODULE_LICENSE("GPL v2");