// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <crypto/hash.h>
#include <crypto/internal/aead.h>
#include <crypto/sha.h>
#include <crypto/skcipher.h>
#include <crypto/xts.h>
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/idr.h>
#include "sec.h"
#include "sec_crypto.h"
#define SEC_PRIORITY 4001
#define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
#define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
#define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
#define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
/* SEC sqe(bd) bit operational relative MACRO */
#define SEC_DE_OFFSET 1
#define SEC_CIPHER_OFFSET 4
#define SEC_SCENE_OFFSET 3
#define SEC_DST_SGL_OFFSET 2
#define SEC_SRC_SGL_OFFSET 7
#define SEC_CKEY_OFFSET 9
#define SEC_CMODE_OFFSET 12
#define SEC_AKEY_OFFSET 5
#define SEC_AEAD_ALG_OFFSET 11
#define SEC_AUTH_OFFSET 6
#define SEC_FLAG_OFFSET 7
#define SEC_FLAG_MASK 0x0780
#define SEC_TYPE_MASK 0x0F
#define SEC_DONE_MASK 0x0001
#define SEC_TOTAL_IV_SZ (SEC_IV_SIZE * QM_Q_DEPTH)
#define SEC_SGL_SGE_NR 128
#define SEC_CTX_DEV(ctx) (&(ctx)->sec->qm.pdev->dev)
#define SEC_CIPHER_AUTH 0xfe
#define SEC_AUTH_CIPHER 0x1
#define SEC_MAX_MAC_LEN 64
#define SEC_MAX_AAD_LEN 65535
#define SEC_TOTAL_MAC_SZ (SEC_MAX_MAC_LEN * QM_Q_DEPTH)
#define SEC_PBUF_SZ 512
#define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
#define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
#define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
SEC_MAX_MAC_LEN * 2)
#define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
#define SEC_PBUF_PAGE_NUM (QM_Q_DEPTH / SEC_PBUF_NUM)
#define SEC_PBUF_LEFT_SZ (SEC_PBUF_PKG * (QM_Q_DEPTH - \
SEC_PBUF_PAGE_NUM * SEC_PBUF_NUM))
#define SEC_TOTAL_PBUF_SZ (PAGE_SIZE * SEC_PBUF_PAGE_NUM + \
SEC_PBUF_LEFT_SZ)
#define SEC_SQE_LEN_RATE 4
#define SEC_SQE_CFLAG 2
#define SEC_SQE_AEAD_FLAG 3
#define SEC_SQE_DONE 0x1
static atomic_t sec_active_devs;
/* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
ctx->hlf_q_num;
return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
ctx->hlf_q_num;
}
static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
{
if (req->c_req.encrypt)
atomic_dec(&ctx->enc_qcyclic);
else
atomic_dec(&ctx->dec_qcyclic);
}
static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
{
int req_id;
mutex_lock(&qp_ctx->req_lock);
req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL,
0, QM_Q_DEPTH, GFP_ATOMIC);
mutex_unlock(&qp_ctx->req_lock);
if (unlikely(req_id < 0)) {
dev_err(SEC_CTX_DEV(req->ctx), "alloc req id fail!\n");
return req_id;
}
req->qp_ctx = qp_ctx;
qp_ctx->req_list[req_id] = req;
return req_id;
}
static void sec_free_req_id(struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int req_id = req->req_id;
if (unlikely(req_id < 0 || req_id >= QM_Q_DEPTH)) {
dev_err(SEC_CTX_DEV(req->ctx), "free request id invalid!\n");
return;
}
qp_ctx->req_list[req_id] = NULL;
req->qp_ctx = NULL;
mutex_lock(&qp_ctx->req_lock);
idr_remove(&qp_ctx->req_idr, req_id);
mutex_unlock(&qp_ctx->req_lock);
}
static int sec_aead_verify(struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
size_t authsize = crypto_aead_authsize(tfm);
u8 *mac_out = req->aead_req.out_mac;
u8 *mac = mac_out + SEC_MAX_MAC_LEN;
struct scatterlist *sgl = aead_req->src;
size_t sz;
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac, authsize,
aead_req->cryptlen + aead_req->assoclen -
authsize);
if (unlikely(sz != authsize || memcmp(mac_out, mac, sz))) {
dev_err(SEC_CTX_DEV(req->ctx), "aead verify failure!\n");
return -EBADMSG;
}
return 0;
}
static void sec_req_cb(struct hisi_qp *qp, void *resp)
{
struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
struct sec_sqe *bd = resp;
struct sec_ctx *ctx;
struct sec_req *req;
u16 done, flag;
int err = 0;
u8 type;
type = bd->type_cipher_auth & SEC_TYPE_MASK;
if (unlikely(type != SEC_BD_TYPE2)) {
atomic64_inc(&dfx->err_bd_cnt);
pr_err("err bd type [%d]\n", type);
return;
}
req = qp_ctx->req_list[le16_to_cpu(bd->type2.tag)];
if (unlikely(!req)) {
atomic64_inc(&dfx->invalid_req_cnt);
return;
}
req->err_type = bd->type2.error_type;
ctx = req->ctx;
done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
flag = (le16_to_cpu(bd->type2.done_flag) &
SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
if (unlikely(req->err_type || done != SEC_SQE_DONE ||
(ctx->alg_type == SEC_SKCIPHER && flag != SEC_SQE_CFLAG) ||
(ctx->alg_type == SEC_AEAD && flag != SEC_SQE_AEAD_FLAG))) {
dev_err(SEC_CTX_DEV(ctx),
"err_type[%d],done[%d],flag[%d]\n",
req->err_type, done, flag);
err = -EIO;
atomic64_inc(&dfx->done_flag_cnt);
}
if (ctx->alg_type == SEC_AEAD && !req->c_req.encrypt)
err = sec_aead_verify(req);
atomic64_inc(&dfx->recv_cnt);
ctx->req_op->buf_unmap(ctx, req);
ctx->req_op->callback(ctx, req, err);
}
static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
int ret;
mutex_lock(&qp_ctx->req_lock);
ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
mutex_unlock(&qp_ctx->req_lock);
atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
if (unlikely(ret == -EBUSY))
return -ENOBUFS;
if (!ret) {
if (req->fake_busy) {
atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
ret = -EBUSY;
} else {
ret = -EINPROGRESS;
}
}
return ret;
}
/* Get DMA memory resources */
static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
{
int i;
res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ,
&res->c_ivin_dma, GFP_KERNEL);
if (!res->c_ivin)
return -ENOMEM;
for (i = 1; i < QM_Q_DEPTH; i++) {
res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
}
return 0;
}
static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->c_ivin)
dma_free_coherent(dev, SEC_TOTAL_IV_SZ,
res->c_ivin, res->c_ivin_dma);
}
static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
{
int i;
res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
&res->out_mac_dma, GFP_KERNEL);
if (!res->out_mac)
return -ENOMEM;
for (i = 1; i < QM_Q_DEPTH; i++) {
res[i].out_mac_dma = res->out_mac_dma +
i * (SEC_MAX_MAC_LEN << 1);
res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
}
return 0;
}
static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->out_mac)
dma_free_coherent(dev, SEC_TOTAL_MAC_SZ << 1,
res->out_mac, res->out_mac_dma);
}
static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
if (res->pbuf)
dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ,
res->pbuf, res->pbuf_dma);
}
/*
* To improve performance, pbuffer is used for
* small packets (< 512Bytes) as IOMMU translation using.
*/
static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
{
int pbuf_page_offset;
int i, j, k;
res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ,
&res->pbuf_dma, GFP_KERNEL);
if (!res->pbuf)
return -ENOMEM;
/*
* SEC_PBUF_PKG contains data pbuf, iv and
* out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
* Every PAGE contains six SEC_PBUF_PKG
* The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
* So we need SEC_PBUF_PAGE_NUM numbers of PAGE
* for the SEC_TOTAL_PBUF_SZ
*/
for (i = 0; i <= SEC_PBUF_PAGE_NUM; i++) {
pbuf_page_offset = PAGE_SIZE * i;
for (j = 0; j < SEC_PBUF_NUM; j++) {
k = i * SEC_PBUF_NUM + j;
if (k == QM_Q_DEPTH)
break;
res[k].pbuf = res->pbuf +
j * SEC_PBUF_PKG + pbuf_page_offset;
res[k].pbuf_dma = res->pbuf_dma +
j * SEC_PBUF_PKG + pbuf_page_offset;
}
}
return 0;
}
static int sec_alg_resource_alloc(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_alg_res *res = qp_ctx->res;
int ret;
ret = sec_alloc_civ_resource(dev, res);
if (ret)
return ret;
if (ctx->alg_type == SEC_AEAD) {
ret = sec_alloc_mac_resource(dev, res);
if (ret)
goto alloc_fail;
}
if (ctx->pbuf_supported) {
ret = sec_alloc_pbuf_resource(dev, res);
if (ret) {
dev_err(dev, "fail to alloc pbuf dma resource!\n");
goto alloc_fail;
}
}
return 0;
alloc_fail:
sec_free_civ_resource(dev, res);
return ret;
}
static void sec_alg_resource_free(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
sec_free_civ_resource(dev, qp_ctx->res);
if (ctx->pbuf_supported)
sec_free_pbuf_resource(dev, qp_ctx->res);
if (ctx->alg_type == SEC_AEAD)
sec_free_mac_resource(dev, qp_ctx->res);
}
static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
int qp_ctx_id, int alg_type)
{
struct device *dev = SEC_CTX_DEV(ctx);
struct sec_qp_ctx *qp_ctx;
struct hisi_qp *qp;
int ret = -ENOMEM;
qp_ctx = &ctx->qp_ctx[qp_ctx_id];
qp = ctx->qps[qp_ctx_id];
qp->req_type = 0;
qp->qp_ctx = qp_ctx;
qp->req_cb = sec_req_cb;
qp_ctx->qp = qp;
qp_ctx->ctx = ctx;
mutex_init(&qp_ctx->req_lock);
atomic_set(&qp_ctx->pending_reqs, 0);
idr_init(&qp_ctx->req_idr);
qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_in_pool)) {
dev_err(dev, "fail to create sgl pool for input!\n");
goto err_destroy_idr;
}
qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, QM_Q_DEPTH,
SEC_SGL_SGE_NR);
if (IS_ERR(qp_ctx->c_out_pool)) {
dev_err(dev, "fail to create sgl pool for output!\n");
goto err_free_c_in_pool;
}
ret = sec_alg_resource_alloc(ctx, qp_ctx);
if (ret)
goto err_free_c_out_pool;
ret = hisi_qm_start_qp(qp, 0);
if (ret < 0)
goto err_queue_free;
return 0;
err_queue_free:
sec_alg_resource_free(ctx, qp_ctx);
err_free_c_out_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
err_free_c_in_pool:
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
err_destroy_idr:
idr_destroy(&qp_ctx->req_idr);
return ret;
}
static void sec_release_qp_ctx(struct sec_ctx *ctx,
struct sec_qp_ctx *qp_ctx)
{
struct device *dev = SEC_CTX_DEV(ctx);
hisi_qm_stop_qp(qp_ctx->qp);
sec_alg_resource_free(ctx, qp_ctx);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
idr_destroy(&qp_ctx->req_idr);
}
static int sec_ctx_base_init(struct sec_ctx *ctx)
{
struct sec_dev *sec;
int i, ret;
ctx->qps = sec_create_qps();
if (!ctx->qps) {
pr_err("Can not create sec qps!\n");
return -ENODEV;
}
sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
ctx->sec = sec;
ctx->hlf_q_num = sec->ctx_q_num >> 1;
ctx->pbuf_supported = ctx->sec->iommu_used;
/* Half of queue depth is taken as fake requests limit in the queue. */
ctx->fake_req_limit = QM_Q_DEPTH >> 1;
ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
GFP_KERNEL);
if (!ctx->qp_ctx)
return -ENOMEM;
for (i = 0; i < sec->ctx_q_num; i++) {
ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
if (ret)
goto err_sec_release_qp_ctx;
}
return 0;
err_sec_release_qp_ctx:
for (i = i - 1; i >= 0; i--)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
sec_destroy_qps(ctx->qps, sec->ctx_q_num);
kfree(ctx->qp_ctx);
return ret;
}
static void sec_ctx_base_uninit(struct sec_ctx *ctx)
{
int i;
for (i = 0; i < ctx->sec->ctx_q_num; i++)
sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
kfree(ctx->qp_ctx);
}
static int sec_cipher_init(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
c_ctx->c_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
&c_ctx->c_key_dma, GFP_KERNEL);
if (!c_ctx->c_key)
return -ENOMEM;
return 0;
}
static void sec_cipher_uninit(struct sec_ctx *ctx)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
c_ctx->c_key, c_ctx->c_key_dma);
}
static int sec_auth_init(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
a_ctx->a_key = dma_alloc_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
&a_ctx->a_key_dma, GFP_KERNEL);
if (!a_ctx->a_key)
return -ENOMEM;
return 0;
}
static void sec_auth_uninit(struct sec_ctx *ctx)
{
struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
memzero_explicit(a_ctx->a_key, SEC_MAX_KEY_SIZE);
dma_free_coherent(SEC_CTX_DEV(ctx), SEC_MAX_KEY_SIZE,
a_ctx->a_key, a_ctx->a_key_dma);
}
static int sec_skcipher_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
ctx->alg_type = SEC_SKCIPHER;
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
dev_err(SEC_CTX_DEV(ctx), "get error skcipher iv size!\n");
return -EINVAL;
}
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
return 0;
err_cipher_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
sec_cipher_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_skcipher_3des_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
switch (keylen) {
case SEC_DES3_2KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
break;
case SEC_DES3_3KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
break;
default:
return -EINVAL;
}
return 0;
}
static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
const u32 keylen,
const enum sec_cmode c_mode)
{
if (c_mode == SEC_CMODE_XTS) {
switch (keylen) {
case SEC_XTS_MIN_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case SEC_XTS_MAX_KEY_SIZE:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: xts mode key error!\n");
return -EINVAL;
}
} else {
switch (keylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aes key error!\n");
return -EINVAL;
}
}
return 0;
}
static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
const u32 keylen, const enum sec_calg c_alg,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
int ret;
if (c_mode == SEC_CMODE_XTS) {
ret = xts_verify_key(tfm, key, keylen);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "xts mode key err!\n");
return ret;
}
}
c_ctx->c_alg = c_alg;
c_ctx->c_mode = c_mode;
switch (c_alg) {
case SEC_CALG_3DES:
ret = sec_skcipher_3des_setkey(c_ctx, keylen, c_mode);
break;
case SEC_CALG_AES:
case SEC_CALG_SM4:
ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
break;
default:
return -EINVAL;
}
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec key err!\n");
return ret;
}
memcpy(c_ctx->c_key, key, keylen);
return 0;
}
#define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
u32 keylen) \
{ \
return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
}
GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct device *dev = SEC_CTX_DEV(ctx);
int copy_size, pbuf_length;
int req_id = req->req_id;
if (ctx->alg_type == SEC_AEAD)
copy_size = aead_req->cryptlen + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
qp_ctx->res[req_id].pbuf,
copy_size);
if (unlikely(pbuf_length != copy_size)) {
dev_err(dev, "copy src data to pbuf error!\n");
return -EINVAL;
}
c_req->c_in_dma = qp_ctx->res[req_id].pbuf_dma;
if (!c_req->c_in_dma) {
dev_err(dev, "fail to set pbuffer address!\n");
return -ENOMEM;
}
c_req->c_out_dma = c_req->c_in_dma;
return 0;
}
static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *dst)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct device *dev = SEC_CTX_DEV(ctx);
int copy_size, pbuf_length;
int req_id = req->req_id;
if (ctx->alg_type == SEC_AEAD)
copy_size = c_req->c_len + aead_req->assoclen;
else
copy_size = c_req->c_len;
pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
qp_ctx->res[req_id].pbuf,
copy_size);
if (unlikely(pbuf_length != copy_size))
dev_err(dev, "copy pbuf data to dst error!\n");
}
static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct sec_aead_req *a_req = &req->aead_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
struct sec_alg_res *res = &qp_ctx->res[req->req_id];
struct device *dev = SEC_CTX_DEV(ctx);
int ret;
if (req->use_pbuf) {
ret = sec_cipher_pbuf_map(ctx, req, src);
c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
if (ctx->alg_type == SEC_AEAD) {
a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
a_req->out_mac_dma = res->pbuf_dma +
SEC_PBUF_MAC_OFFSET;
}
return ret;
}
c_req->c_ivin = res->c_ivin;
c_req->c_ivin_dma = res->c_ivin_dma;
if (ctx->alg_type == SEC_AEAD) {
a_req->out_mac = res->out_mac;
a_req->out_mac_dma = res->out_mac_dma;
}
c_req->c_in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
qp_ctx->c_in_pool,
req->req_id,
&c_req->c_in_dma);
if (IS_ERR(c_req->c_in)) {
dev_err(dev, "fail to dma map input sgl buffers!\n");
return PTR_ERR(c_req->c_in);
}
if (dst == src) {
c_req->c_out = c_req->c_in;
c_req->c_out_dma = c_req->c_in_dma;
} else {
c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
qp_ctx->c_out_pool,
req->req_id,
&c_req->c_out_dma);
if (IS_ERR(c_req->c_out)) {
dev_err(dev, "fail to dma map output sgl buffers!\n");
hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
return PTR_ERR(c_req->c_out);
}
}
return 0;
}
static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
struct scatterlist *src, struct scatterlist *dst)
{
struct sec_cipher_req *c_req = &req->c_req;
struct device *dev = SEC_CTX_DEV(ctx);
if (req->use_pbuf) {
sec_cipher_pbuf_unmap(ctx, req, dst);
} else {
if (dst != src)
hisi_acc_sg_buf_unmap(dev, src, c_req->c_in);
hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
}
}
static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
return sec_cipher_map(ctx, req, sq->src, sq->dst);
}
static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sq = req->c_req.sk_req;
sec_cipher_unmap(ctx, req, sq->src, sq->dst);
}
static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
struct crypto_authenc_keys *keys)
{
switch (keys->enckeylen) {
case AES_KEYSIZE_128:
c_ctx->c_key_len = SEC_CKEY_128BIT;
break;
case AES_KEYSIZE_192:
c_ctx->c_key_len = SEC_CKEY_192BIT;
break;
case AES_KEYSIZE_256:
c_ctx->c_key_len = SEC_CKEY_256BIT;
break;
default:
pr_err("hisi_sec2: aead aes key error!\n");
return -EINVAL;
}
memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
return 0;
}
static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
struct crypto_authenc_keys *keys)
{
struct crypto_shash *hash_tfm = ctx->hash_tfm;
int blocksize, ret;
if (!keys->authkeylen) {
pr_err("hisi_sec2: aead auth key error!\n");
return -EINVAL;
}
blocksize = crypto_shash_blocksize(hash_tfm);
if (keys->authkeylen > blocksize) {
ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
keys->authkeylen, ctx->a_key);
if (ret) {
pr_err("hisi_sec2: aead auth digest error!\n");
return -EINVAL;
}
ctx->a_key_len = blocksize;
} else {
memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
ctx->a_key_len = keys->authkeylen;
}
return 0;
}
static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
const u32 keylen, const enum sec_hash_alg a_alg,
const enum sec_calg c_alg,
const enum sec_mac_len mac_len,
const enum sec_cmode c_mode)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct crypto_authenc_keys keys;
int ret;
ctx->a_ctx.a_alg = a_alg;
ctx->c_ctx.c_alg = c_alg;
ctx->a_ctx.mac_len = mac_len;
c_ctx->c_mode = c_mode;
if (crypto_authenc_extractkeys(&keys, key, keylen))
goto bad_key;
ret = sec_aead_aes_set_key(c_ctx, &keys);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec cipher key err!\n");
goto bad_key;
}
ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
if (ret) {
dev_err(SEC_CTX_DEV(ctx), "set sec auth key err!\n");
goto bad_key;
}
return 0;
bad_key:
memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
return -EINVAL;
}
#define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, maclen, cmode) \
static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, \
u32 keylen) \
{ \
return sec_aead_setkey(tfm, key, keylen, aalg, calg, maclen, cmode);\
}
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1,
SEC_CALG_AES, SEC_HMAC_SHA1_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256,
SEC_CALG_AES, SEC_HMAC_SHA256_MAC, SEC_CMODE_CBC)
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512,
SEC_CALG_AES, SEC_HMAC_SHA512_MAC, SEC_CMODE_CBC)
static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
return sec_cipher_map(ctx, req, aq->src, aq->dst);
}
static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aq = req->aead_req.aead_req;
sec_cipher_unmap(ctx, req, aq->src, aq->dst);
}
static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
{
int ret;
ret = ctx->req_op->buf_map(ctx, req);
if (unlikely(ret))
return ret;
ctx->req_op->do_transfer(ctx, req);
ret = ctx->req_op->bd_fill(ctx, req);
if (unlikely(ret))
goto unmap_req_buf;
return ret;
unmap_req_buf:
ctx->req_op->buf_unmap(ctx, req);
return ret;
}
static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
{
ctx->req_op->buf_unmap(ctx, req);
}
static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_cipher_req *c_req = &req->c_req;
memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
}
static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
struct sec_cipher_req *c_req = &req->c_req;
struct sec_sqe *sec_sqe = &req->sec_sqe;
u8 scene, sa_type, da_type;
u8 bd_type, cipher;
u8 de = 0;
memset(sec_sqe, 0, sizeof(struct sec_sqe));
sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
sec_sqe->type2.data_src_addr = cpu_to_le64(c_req->c_in_dma);
sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
SEC_CMODE_OFFSET);
sec_sqe->type2.c_alg = c_ctx->c_alg;
sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
SEC_CKEY_OFFSET);
bd_type = SEC_BD_TYPE2;
if (c_req->encrypt)
cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
else
cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
sec_sqe->type_cipher_auth = bd_type | cipher;
if (req->use_pbuf)
sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
else
sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
if (c_req->c_in_dma != c_req->c_out_dma)
de = 0x1 << SEC_DE_OFFSET;
sec_sqe->sds_sa_type = (de | scene | sa_type);
/* Just set DST address type */
if (req->use_pbuf)
da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
else
da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
sec_sqe->sdm_addr_type |= da_type;
sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
return 0;
}
static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct skcipher_request *sk_req = req->c_req.sk_req;
u32 iv_size = req->ctx->c_ctx.ivsize;
struct scatterlist *sgl;
unsigned int cryptlen;
size_t sz;
u8 *iv;
if (req->c_req.encrypt)
sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
else
sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
if (alg_type == SEC_SKCIPHER) {
iv = sk_req->iv;
cryptlen = sk_req->cryptlen;
} else {
iv = aead_req->iv;
cryptlen = aead_req->cryptlen;
}
sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
cryptlen - iv_size);
if (unlikely(sz != iv_size))
dev_err(SEC_CTX_DEV(req->ctx), "copy output iv error!\n");
}
static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
int err)
{
struct skcipher_request *sk_req = req->c_req.sk_req;
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
atomic_dec(&qp_ctx->pending_reqs);
sec_free_req_id(req);
/* IV output at encrypto of CBC mode */
if (!err && ctx->c_ctx.c_mode == SEC_CMODE_CBC && req->c_req.encrypt)
sec_update_iv(req, SEC_SKCIPHER);
if (req->fake_busy)
sk_req->base.complete(&sk_req->base, -EINPROGRESS);
sk_req->base.complete(&sk_req->base, err);
}
static void sec_aead_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
{
struct aead_request *aead_req = req->aead_req.aead_req;
struct sec_cipher_req *c_req = &req->c_req;
memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
}
static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
struct sec_req *req, struct sec_sqe *sec_sqe)
{
struct sec_aead_req *a_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
struct aead_request *aq = a_req->aead_req;
sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
sec_sqe->type2.mac_key_alg =
cpu_to_le32(ctx->mac_len / SEC_SQE_LEN_RATE);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)((ctx->a_key_len) /
SEC_SQE_LEN_RATE) << SEC_AKEY_OFFSET);
sec_sqe->type2.mac_key_alg |=
cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
if (dir)
sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
else
sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
}
static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
struct sec_sqe *sec_sqe = &req->sec_sqe;
int ret;
ret = sec_skcipher_bd_fill(ctx, req);
if (unlikely(ret)) {
dev_err(SEC_CTX_DEV(ctx), "skcipher bd fill is error!\n");
return ret;
}
sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
return 0;
}
static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
{
struct aead_request *a_req = req->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_aead_req *aead_req = &req->aead_req;
struct sec_cipher_req *c_req = &req->c_req;
size_t authsize = crypto_aead_authsize(tfm);
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
size_t sz;
atomic_dec(&qp_ctx->pending_reqs);
if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
sec_update_iv(req, SEC_AEAD);
/* Copy output mac */
if (!err && c_req->encrypt) {
struct scatterlist *sgl = a_req->dst;
sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl),
aead_req->out_mac,
authsize, a_req->cryptlen +
a_req->assoclen);
if (unlikely(sz != authsize)) {
dev_err(SEC_CTX_DEV(req->ctx), "copy out mac err!\n");
err = -EINVAL;
}
}
sec_free_req_id(req);
if (req->fake_busy)
a_req->base.complete(&a_req->base, -EINPROGRESS);
a_req->base.complete(&a_req->base, err);
}
static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx = req->qp_ctx;
atomic_dec(&qp_ctx->pending_reqs);
sec_free_req_id(req);
sec_free_queue_id(ctx, req);
}
static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_qp_ctx *qp_ctx;
int queue_id;
/* To load balance */
queue_id = sec_alloc_queue_id(ctx, req);
qp_ctx = &ctx->qp_ctx[queue_id];
req->req_id = sec_alloc_req_id(req, qp_ctx);
if (unlikely(req->req_id < 0)) {
sec_free_queue_id(ctx, req);
return req->req_id;
}
if (ctx->fake_req_limit <= atomic_inc_return(&qp_ctx->pending_reqs))
req->fake_busy = true;
else
req->fake_busy = false;
return 0;
}
static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
{
struct sec_cipher_req *c_req = &req->c_req;
int ret;
ret = sec_request_init(ctx, req);
if (unlikely(ret))
return ret;
ret = sec_request_transfer(ctx, req);
if (unlikely(ret))
goto err_uninit_req;
/* Output IV as decrypto */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt)
sec_update_iv(req, ctx->alg_type);
ret = ctx->req_op->bd_send(ctx, req);
if (unlikely(ret != -EBUSY && ret != -EINPROGRESS)) {
dev_err_ratelimited(SEC_CTX_DEV(ctx), "send sec request failed!\n");
goto err_send_req;
}
return ret;
err_send_req:
/* As failing, restore the IV from user */
if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
if (ctx->alg_type == SEC_SKCIPHER)
memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
else
memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
ctx->c_ctx.ivsize);
}
sec_request_untransfer(ctx, req);
err_uninit_req:
sec_request_uninit(ctx, req);
return ret;
}
static const struct sec_req_op sec_skcipher_req_ops = {
.buf_map = sec_skcipher_sgl_map,
.buf_unmap = sec_skcipher_sgl_unmap,
.do_transfer = sec_skcipher_copy_iv,
.bd_fill = sec_skcipher_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_skcipher_callback,
.process = sec_process,
};
static const struct sec_req_op sec_aead_req_ops = {
.buf_map = sec_aead_sgl_map,
.buf_unmap = sec_aead_sgl_unmap,
.do_transfer = sec_aead_copy_iv,
.bd_fill = sec_aead_bd_fill,
.bd_send = sec_bd_send,
.callback = sec_aead_callback,
.process = sec_process,
};
static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
{
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->req_op = &sec_skcipher_req_ops;
return sec_skcipher_init(tfm);
}
static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
{
sec_skcipher_uninit(tfm);
}
static int sec_aead_init(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
ctx->alg_type = SEC_AEAD;
ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
dev_err(SEC_CTX_DEV(ctx), "get error aead iv size!\n");
return -EINVAL;
}
ctx->req_op = &sec_aead_req_ops;
ret = sec_ctx_base_init(ctx);
if (ret)
return ret;
ret = sec_auth_init(ctx);
if (ret)
goto err_auth_init;
ret = sec_cipher_init(ctx);
if (ret)
goto err_cipher_init;
return ret;
err_cipher_init:
sec_auth_uninit(ctx);
err_auth_init:
sec_ctx_base_uninit(ctx);
return ret;
}
static void sec_aead_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
sec_cipher_uninit(ctx);
sec_auth_uninit(ctx);
sec_ctx_base_uninit(ctx);
}
static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
int ret;
ret = sec_aead_init(tfm);
if (ret) {
pr_err("hisi_sec2: aead init error!\n");
return ret;
}
auth_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
if (IS_ERR(auth_ctx->hash_tfm)) {
dev_err(SEC_CTX_DEV(ctx), "aead alloc shash error!\n");
sec_aead_exit(tfm);
return PTR_ERR(auth_ctx->hash_tfm);
}
return 0;
}
static void sec_aead_ctx_exit(struct crypto_aead *tfm)
{
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
crypto_free_shash(ctx->a_ctx.hash_tfm);
sec_aead_exit(tfm);
}
static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha1");
}
static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha256");
}
static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
{
return sec_aead_ctx_init(tfm, "sha512");
}
static int sec_skcipher_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
struct skcipher_request *sk_req = sreq->c_req.sk_req;
struct device *dev = SEC_CTX_DEV(ctx);
u8 c_alg = ctx->c_ctx.c_alg;
if (unlikely(!sk_req->src || !sk_req->dst)) {
dev_err(dev, "skcipher input param error!\n");
return -EINVAL;
}
sreq->c_req.c_len = sk_req->cryptlen;
if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
if (c_alg == SEC_CALG_3DES) {
if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher 3des input length error!\n");
return -EINVAL;
}
return 0;
} else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
if (unlikely(sk_req->cryptlen & (AES_BLOCK_SIZE - 1))) {
dev_err(dev, "skcipher aes input length error!\n");
return -EINVAL;
}
return 0;
}
dev_err(dev, "skcipher algorithm error!\n");
return -EINVAL;
}
static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
struct sec_req *req = skcipher_request_ctx(sk_req);
struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
int ret;
if (!sk_req->cryptlen)
return 0;
req->c_req.sk_req = sk_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_skcipher_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
return ctx->req_op->process(ctx, req);
}
static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, true);
}
static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
{
return sec_skcipher_crypto(sk_req, false);
}
#define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_skcipher_decrypt,\
.encrypt = sec_skcipher_encrypt,\
.min_keysize = sec_min_key_size,\
.max_keysize = sec_max_key_size,\
.ivsize = iv_size,\
},
#define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
max_key_size, blk_size, iv_size) \
SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
static struct skcipher_alg sec_skciphers[] = {
SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb,
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
AES_BLOCK_SIZE, 0)
SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc,
AES_MIN_KEY_SIZE, AES_MAX_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts,
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MAX_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb,
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
DES3_EDE_BLOCK_SIZE, 0)
SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc,
SEC_DES3_2KEY_SIZE, SEC_DES3_3KEY_SIZE,
DES3_EDE_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE)
SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts,
SEC_XTS_MIN_KEY_SIZE, SEC_XTS_MIN_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc,
AES_MIN_KEY_SIZE, AES_MIN_KEY_SIZE,
AES_BLOCK_SIZE, AES_BLOCK_SIZE)
};
static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq)
{
u8 c_alg = ctx->c_ctx.c_alg;
struct aead_request *req = sreq->aead_req.aead_req;
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
size_t authsize = crypto_aead_authsize(tfm);
if (unlikely(!req->src || !req->dst || !req->cryptlen ||
req->assoclen > SEC_MAX_AAD_LEN)) {
dev_err(SEC_CTX_DEV(ctx), "aead input param error!\n");
return -EINVAL;
}
if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
SEC_PBUF_SZ)
sreq->use_pbuf = true;
else
sreq->use_pbuf = false;
/* Support AES only */
if (unlikely(c_alg != SEC_CALG_AES)) {
dev_err(SEC_CTX_DEV(ctx), "aead crypto alg error!\n");
return -EINVAL;
}
if (sreq->c_req.encrypt)
sreq->c_req.c_len = req->cryptlen;
else
sreq->c_req.c_len = req->cryptlen - authsize;
if (unlikely(sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
dev_err(SEC_CTX_DEV(ctx), "aead crypto length error!\n");
return -EINVAL;
}
return 0;
}
static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
struct sec_req *req = aead_request_ctx(a_req);
struct sec_ctx *ctx = crypto_aead_ctx(tfm);
int ret;
req->aead_req.aead_req = a_req;
req->c_req.encrypt = encrypt;
req->ctx = ctx;
ret = sec_aead_param_check(ctx, req);
if (unlikely(ret))
return -EINVAL;
return ctx->req_op->process(ctx, req);
}
static int sec_aead_encrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, true);
}
static int sec_aead_decrypt(struct aead_request *a_req)
{
return sec_aead_crypto(a_req, false);
}
#define SEC_AEAD_GEN_ALG(sec_cra_name, sec_set_key, ctx_init,\
ctx_exit, blk_size, iv_size, max_authsize)\
{\
.base = {\
.cra_name = sec_cra_name,\
.cra_driver_name = "hisi_sec_"sec_cra_name,\
.cra_priority = SEC_PRIORITY,\
.cra_flags = CRYPTO_ALG_ASYNC,\
.cra_blocksize = blk_size,\
.cra_ctxsize = sizeof(struct sec_ctx),\
.cra_module = THIS_MODULE,\
},\
.init = ctx_init,\
.exit = ctx_exit,\
.setkey = sec_set_key,\
.decrypt = sec_aead_decrypt,\
.encrypt = sec_aead_encrypt,\
.ivsize = iv_size,\
.maxauthsize = max_authsize,\
}
#define SEC_AEAD_ALG(algname, keyfunc, aead_init, blksize, ivsize, authsize)\
SEC_AEAD_GEN_ALG(algname, keyfunc, aead_init,\
sec_aead_ctx_exit, blksize, ivsize, authsize)
static struct aead_alg sec_aeads[] = {
SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))",
sec_setkey_aes_cbc_sha1, sec_aead_sha1_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))",
sec_setkey_aes_cbc_sha256, sec_aead_sha256_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))",
sec_setkey_aes_cbc_sha512, sec_aead_sha512_ctx_init,
AES_BLOCK_SIZE, AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
};
int sec_register_to_crypto(void)
{
int ret = 0;
/* To avoid repeat register */
if (atomic_add_return(1, &sec_active_devs) == 1) {
ret = crypto_register_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
if (ret)
return ret;
ret = crypto_register_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
if (ret)
goto reg_aead_fail;
}
return ret;
reg_aead_fail:
crypto_unregister_skciphers(sec_skciphers, ARRAY_SIZE(sec_skciphers));
return ret;
}
void sec_unregister_from_crypto(void)
{
if (atomic_sub_return(1, &sec_active_devs) == 0) {
crypto_unregister_skciphers(sec_skciphers,
ARRAY_SIZE(sec_skciphers));
crypto_unregister_aeads(sec_aeads, ARRAY_SIZE(sec_aeads));
}
}