summaryrefslogblamecommitdiff
path: root/drivers/crypto/hifn_795x.c
blob: de594bc977428244d55310c2af8b175effd3126b (plain) (tree)
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446




















                                                                            
                              





                                  

                              
                          
                            


                          
                       













                                               




                                                                              














































































































































































































































                                                                                       



















                                                                              













































































































































                                                                                 

                                        























































































































































































































































































































































































































































                                                                                  

























































                                                                                


































































                                                                             
                           
















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                       
                                        












































                                                                                









                                                                                       




































































































































































































































































































































































































































                                                                                     
                                                                           


















































                                                                  












                                                                         
















































































                                                                                 

                                                                               


































                                                                                 
                                    






































                                                                            
                                            



































                                                                    
                          

                





















                                                                           


























                                                                         
/*
 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/mod_devicetable.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/highmem.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>

#include <crypto/algapi.h>
#include <crypto/des.h>

#include <asm/kmap_types.h>

#undef dprintk

#define HIFN_TEST
//#define HIFN_DEBUG

#ifdef HIFN_DEBUG
#define dprintk(f, a...) 	printk(f, ##a)
#else
#define dprintk(f, a...)	do {} while (0)
#endif

static char hifn_pll_ref[sizeof("extNNN")] = "ext";
module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
MODULE_PARM_DESC(hifn_pll_ref,
		 "PLL reference clock (pci[freq] or ext[freq], default ext)");

static atomic_t hifn_dev_number;

#define ACRYPTO_OP_DECRYPT	0
#define ACRYPTO_OP_ENCRYPT	1
#define ACRYPTO_OP_HMAC		2
#define ACRYPTO_OP_RNG		3

#define ACRYPTO_MODE_ECB		0
#define ACRYPTO_MODE_CBC		1
#define ACRYPTO_MODE_CFB		2
#define ACRYPTO_MODE_OFB		3

#define ACRYPTO_TYPE_AES_128	0
#define ACRYPTO_TYPE_AES_192	1
#define ACRYPTO_TYPE_AES_256	2
#define ACRYPTO_TYPE_3DES	3
#define ACRYPTO_TYPE_DES	4

#define PCI_VENDOR_ID_HIFN		0x13A3
#define PCI_DEVICE_ID_HIFN_7955		0x0020
#define	PCI_DEVICE_ID_HIFN_7956		0x001d

/* I/O region sizes */

#define HIFN_BAR0_SIZE			0x1000
#define HIFN_BAR1_SIZE			0x2000
#define HIFN_BAR2_SIZE			0x8000

/* DMA registres */

#define HIFN_DMA_CRA 			0x0C	/* DMA Command Ring Address */
#define HIFN_DMA_SDRA 			0x1C	/* DMA Source Data Ring Address */
#define HIFN_DMA_RRA			0x2C	/* DMA Result Ring Address */
#define HIFN_DMA_DDRA			0x3C	/* DMA Destination Data Ring Address */
#define HIFN_DMA_STCTL			0x40	/* DMA Status and Control */
#define HIFN_DMA_INTREN 		0x44	/* DMA Interrupt Enable */
#define HIFN_DMA_CFG1			0x48	/* DMA Configuration #1 */
#define HIFN_DMA_CFG2			0x6C	/* DMA Configuration #2 */
#define HIFN_CHIP_ID			0x98	/* Chip ID */

/*
 * Processing Unit Registers (offset from BASEREG0)
 */
#define	HIFN_0_PUDATA		0x00	/* Processing Unit Data */
#define	HIFN_0_PUCTRL		0x04	/* Processing Unit Control */
#define	HIFN_0_PUISR		0x08	/* Processing Unit Interrupt Status */
#define	HIFN_0_PUCNFG		0x0c	/* Processing Unit Configuration */
#define	HIFN_0_PUIER		0x10	/* Processing Unit Interrupt Enable */
#define	HIFN_0_PUSTAT		0x14	/* Processing Unit Status/Chip ID */
#define	HIFN_0_FIFOSTAT		0x18	/* FIFO Status */
#define	HIFN_0_FIFOCNFG		0x1c	/* FIFO Configuration */
#define	HIFN_0_SPACESIZE	0x20	/* Register space size */

/* Processing Unit Control Register (HIFN_0_PUCTRL) */
#define	HIFN_PUCTRL_CLRSRCFIFO	0x0010	/* clear source fifo */
#define	HIFN_PUCTRL_STOP	0x0008	/* stop pu */
#define	HIFN_PUCTRL_LOCKRAM	0x0004	/* lock ram */
#define	HIFN_PUCTRL_DMAENA	0x0002	/* enable dma */
#define	HIFN_PUCTRL_RESET	0x0001	/* Reset processing unit */

/* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
#define	HIFN_PUISR_CMDINVAL	0x8000	/* Invalid command interrupt */
#define	HIFN_PUISR_DATAERR	0x4000	/* Data error interrupt */
#define	HIFN_PUISR_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
#define	HIFN_PUISR_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
#define	HIFN_PUISR_DSTOVER	0x0200	/* Destination overrun interrupt */
#define	HIFN_PUISR_SRCCMD	0x0080	/* Source command interrupt */
#define	HIFN_PUISR_SRCCTX	0x0040	/* Source context interrupt */
#define	HIFN_PUISR_SRCDATA	0x0020	/* Source data interrupt */
#define	HIFN_PUISR_DSTDATA	0x0010	/* Destination data interrupt */
#define	HIFN_PUISR_DSTRESULT	0x0004	/* Destination result interrupt */

/* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
#define	HIFN_PUCNFG_DRAMMASK	0xe000	/* DRAM size mask */
#define	HIFN_PUCNFG_DSZ_256K	0x0000	/* 256k dram */
#define	HIFN_PUCNFG_DSZ_512K	0x2000	/* 512k dram */
#define	HIFN_PUCNFG_DSZ_1M	0x4000	/* 1m dram */
#define	HIFN_PUCNFG_DSZ_2M	0x6000	/* 2m dram */
#define	HIFN_PUCNFG_DSZ_4M	0x8000	/* 4m dram */
#define	HIFN_PUCNFG_DSZ_8M	0xa000	/* 8m dram */
#define	HIFN_PUNCFG_DSZ_16M	0xc000	/* 16m dram */
#define	HIFN_PUCNFG_DSZ_32M	0xe000	/* 32m dram */
#define	HIFN_PUCNFG_DRAMREFRESH	0x1800	/* DRAM refresh rate mask */
#define	HIFN_PUCNFG_DRFR_512	0x0000	/* 512 divisor of ECLK */
#define	HIFN_PUCNFG_DRFR_256	0x0800	/* 256 divisor of ECLK */
#define	HIFN_PUCNFG_DRFR_128	0x1000	/* 128 divisor of ECLK */
#define	HIFN_PUCNFG_TCALLPHASES	0x0200	/* your guess is as good as mine... */
#define	HIFN_PUCNFG_TCDRVTOTEM	0x0100	/* your guess is as good as mine... */
#define	HIFN_PUCNFG_BIGENDIAN	0x0080	/* DMA big endian mode */
#define	HIFN_PUCNFG_BUS32	0x0040	/* Bus width 32bits */
#define	HIFN_PUCNFG_BUS16	0x0000	/* Bus width 16 bits */
#define	HIFN_PUCNFG_CHIPID	0x0020	/* Allow chipid from PUSTAT */
#define	HIFN_PUCNFG_DRAM	0x0010	/* Context RAM is DRAM */
#define	HIFN_PUCNFG_SRAM	0x0000	/* Context RAM is SRAM */
#define	HIFN_PUCNFG_COMPSING	0x0004	/* Enable single compression context */
#define	HIFN_PUCNFG_ENCCNFG	0x0002	/* Encryption configuration */

/* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
#define	HIFN_PUIER_CMDINVAL	0x8000	/* Invalid command interrupt */
#define	HIFN_PUIER_DATAERR	0x4000	/* Data error interrupt */
#define	HIFN_PUIER_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
#define	HIFN_PUIER_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
#define	HIFN_PUIER_DSTOVER	0x0200	/* Destination overrun interrupt */
#define	HIFN_PUIER_SRCCMD	0x0080	/* Source command interrupt */
#define	HIFN_PUIER_SRCCTX	0x0040	/* Source context interrupt */
#define	HIFN_PUIER_SRCDATA	0x0020	/* Source data interrupt */
#define	HIFN_PUIER_DSTDATA	0x0010	/* Destination data interrupt */
#define	HIFN_PUIER_DSTRESULT	0x0004	/* Destination result interrupt */

/* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
#define	HIFN_PUSTAT_CMDINVAL	0x8000	/* Invalid command interrupt */
#define	HIFN_PUSTAT_DATAERR	0x4000	/* Data error interrupt */
#define	HIFN_PUSTAT_SRCFIFO	0x2000	/* Source FIFO ready interrupt */
#define	HIFN_PUSTAT_DSTFIFO	0x1000	/* Destination FIFO ready interrupt */
#define	HIFN_PUSTAT_DSTOVER	0x0200	/* Destination overrun interrupt */
#define	HIFN_PUSTAT_SRCCMD	0x0080	/* Source command interrupt */
#define	HIFN_PUSTAT_SRCCTX	0x0040	/* Source context interrupt */
#define	HIFN_PUSTAT_SRCDATA	0x0020	/* Source data interrupt */
#define	HIFN_PUSTAT_DSTDATA	0x0010	/* Destination data interrupt */
#define	HIFN_PUSTAT_DSTRESULT	0x0004	/* Destination result interrupt */
#define	HIFN_PUSTAT_CHIPREV	0x00ff	/* Chip revision mask */
#define	HIFN_PUSTAT_CHIPENA	0xff00	/* Chip enabled mask */
#define	HIFN_PUSTAT_ENA_2	0x1100	/* Level 2 enabled */
#define	HIFN_PUSTAT_ENA_1	0x1000	/* Level 1 enabled */
#define	HIFN_PUSTAT_ENA_0	0x3000	/* Level 0 enabled */
#define	HIFN_PUSTAT_REV_2	0x0020	/* 7751 PT6/2 */
#define	HIFN_PUSTAT_REV_3	0x0030	/* 7751 PT6/3 */

/* FIFO Status Register (HIFN_0_FIFOSTAT) */
#define	HIFN_FIFOSTAT_SRC	0x7f00	/* Source FIFO available */
#define	HIFN_FIFOSTAT_DST	0x007f	/* Destination FIFO available */

/* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
#define	HIFN_FIFOCNFG_THRESHOLD	0x0400	/* must be written as 1 */

/*
 * DMA Interface Registers (offset from BASEREG1)
 */
#define	HIFN_1_DMA_CRAR		0x0c	/* DMA Command Ring Address */
#define	HIFN_1_DMA_SRAR		0x1c	/* DMA Source Ring Address */
#define	HIFN_1_DMA_RRAR		0x2c	/* DMA Result Ring Address */
#define	HIFN_1_DMA_DRAR		0x3c	/* DMA Destination Ring Address */
#define	HIFN_1_DMA_CSR		0x40	/* DMA Status and Control */
#define	HIFN_1_DMA_IER		0x44	/* DMA Interrupt Enable */
#define	HIFN_1_DMA_CNFG		0x48	/* DMA Configuration */
#define	HIFN_1_PLL		0x4c	/* 795x: PLL config */
#define	HIFN_1_7811_RNGENA	0x60	/* 7811: rng enable */
#define	HIFN_1_7811_RNGCFG	0x64	/* 7811: rng config */
#define	HIFN_1_7811_RNGDAT	0x68	/* 7811: rng data */
#define	HIFN_1_7811_RNGSTS	0x6c	/* 7811: rng status */
#define	HIFN_1_7811_MIPSRST	0x94	/* 7811: MIPS reset */
#define	HIFN_1_REVID		0x98	/* Revision ID */
#define	HIFN_1_UNLOCK_SECRET1	0xf4
#define	HIFN_1_UNLOCK_SECRET2	0xfc
#define	HIFN_1_PUB_RESET	0x204	/* Public/RNG Reset */
#define	HIFN_1_PUB_BASE		0x300	/* Public Base Address */
#define	HIFN_1_PUB_OPLEN	0x304	/* Public Operand Length */
#define	HIFN_1_PUB_OP		0x308	/* Public Operand */
#define	HIFN_1_PUB_STATUS	0x30c	/* Public Status */
#define	HIFN_1_PUB_IEN		0x310	/* Public Interrupt enable */
#define	HIFN_1_RNG_CONFIG	0x314	/* RNG config */
#define	HIFN_1_RNG_DATA		0x318	/* RNG data */
#define	HIFN_1_PUB_MEM		0x400	/* start of Public key memory */
#define	HIFN_1_PUB_MEMEND	0xbff	/* end of Public key memory */

/* DMA Status and Control Register (HIFN_1_DMA_CSR) */
#define	HIFN_DMACSR_D_CTRLMASK	0xc0000000	/* Destinition Ring Control */
#define	HIFN_DMACSR_D_CTRL_NOP	0x00000000	/* Dest. Control: no-op */
#define	HIFN_DMACSR_D_CTRL_DIS	0x40000000	/* Dest. Control: disable */
#define	HIFN_DMACSR_D_CTRL_ENA	0x80000000	/* Dest. Control: enable */
#define	HIFN_DMACSR_D_ABORT	0x20000000	/* Destinition Ring PCIAbort */
#define	HIFN_DMACSR_D_DONE	0x10000000	/* Destinition Ring Done */
#define	HIFN_DMACSR_D_LAST	0x08000000	/* Destinition Ring Last */
#define	HIFN_DMACSR_D_WAIT	0x04000000	/* Destinition Ring Waiting */
#define	HIFN_DMACSR_D_OVER	0x02000000	/* Destinition Ring Overflow */
#define	HIFN_DMACSR_R_CTRL	0x00c00000	/* Result Ring Control */
#define	HIFN_DMACSR_R_CTRL_NOP	0x00000000	/* Result Control: no-op */
#define	HIFN_DMACSR_R_CTRL_DIS	0x00400000	/* Result Control: disable */
#define	HIFN_DMACSR_R_CTRL_ENA	0x00800000	/* Result Control: enable */
#define	HIFN_DMACSR_R_ABORT	0x00200000	/* Result Ring PCI Abort */
#define	HIFN_DMACSR_R_DONE	0x00100000	/* Result Ring Done */
#define	HIFN_DMACSR_R_LAST	0x00080000	/* Result Ring Last */
#define	HIFN_DMACSR_R_WAIT	0x00040000	/* Result Ring Waiting */
#define	HIFN_DMACSR_R_OVER	0x00020000	/* Result Ring Overflow */
#define	HIFN_DMACSR_S_CTRL	0x0000c000	/* Source Ring Control */
#define	HIFN_DMACSR_S_CTRL_NOP	0x00000000	/* Source Control: no-op */
#define	HIFN_DMACSR_S_CTRL_DIS	0x00004000	/* Source Control: disable */
#define	HIFN_DMACSR_S_CTRL_ENA	0x00008000	/* Source Control: enable */
#define	HIFN_DMACSR_S_ABORT	0x00002000	/* Source Ring PCI Abort */
#define	HIFN_DMACSR_S_DONE	0x00001000	/* Source Ring Done */
#define	HIFN_DMACSR_S_LAST	0x00000800	/* Source Ring Last */
#define	HIFN_DMACSR_S_WAIT	0x00000400	/* Source Ring Waiting */
#define	HIFN_DMACSR_ILLW	0x00000200	/* Illegal write (7811 only) */
#define	HIFN_DMACSR_ILLR	0x00000100	/* Illegal read (7811 only) */
#define	HIFN_DMACSR_C_CTRL	0x000000c0	/* Command Ring Control */
#define	HIFN_DMACSR_C_CTRL_NOP	0x00000000	/* Command Control: no-op */
#define	HIFN_DMACSR_C_CTRL_DIS	0x00000040	/* Command Control: disable */
#define	HIFN_DMACSR_C_CTRL_ENA	0x00000080	/* Command Control: enable */
#define	HIFN_DMACSR_C_ABORT	0x00000020	/* Command Ring PCI Abort */
#define	HIFN_DMACSR_C_DONE	0x00000010	/* Command Ring Done */
#define	HIFN_DMACSR_C_LAST	0x00000008	/* Command Ring Last */
#define	HIFN_DMACSR_C_WAIT	0x00000004	/* Command Ring Waiting */
#define	HIFN_DMACSR_PUBDONE	0x00000002	/* Public op done (7951 only) */
#define	HIFN_DMACSR_ENGINE	0x00000001	/* Command Ring Engine IRQ */

/* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
#define	HIFN_DMAIER_D_ABORT	0x20000000	/* Destination Ring PCIAbort */
#define	HIFN_DMAIER_D_DONE	0x10000000	/* Destination Ring Done */
#define	HIFN_DMAIER_D_LAST	0x08000000	/* Destination Ring Last */
#define	HIFN_DMAIER_D_WAIT	0x04000000	/* Destination Ring Waiting */
#define	HIFN_DMAIER_D_OVER	0x02000000	/* Destination Ring Overflow */
#define	HIFN_DMAIER_R_ABORT	0x00200000	/* Result Ring PCI Abort */
#define	HIFN_DMAIER_R_DONE	0x00100000	/* Result Ring Done */
#define	HIFN_DMAIER_R_LAST	0x00080000	/* Result Ring Last */
#define	HIFN_DMAIER_R_WAIT	0x00040000	/* Result Ring Waiting */
#define	HIFN_DMAIER_R_OVER	0x00020000	/* Result Ring Overflow */
#define	HIFN_DMAIER_S_ABORT	0x00002000	/* Source Ring PCI Abort */
#define	HIFN_DMAIER_S_DONE	0x00001000	/* Source Ring Done */
#define	HIFN_DMAIER_S_LAST	0x00000800	/* Source Ring Last */
#define	HIFN_DMAIER_S_WAIT	0x00000400	/* Source Ring Waiting */
#define	HIFN_DMAIER_ILLW	0x00000200	/* Illegal write (7811 only) */
#define	HIFN_DMAIER_ILLR	0x00000100	/* Illegal read (7811 only) */
#define	HIFN_DMAIER_C_ABORT	0x00000020	/* Command Ring PCI Abort */
#define	HIFN_DMAIER_C_DONE	0x00000010	/* Command Ring Done */
#define	HIFN_DMAIER_C_LAST	0x00000008	/* Command Ring Last */
#define	HIFN_DMAIER_C_WAIT	0x00000004	/* Command Ring Waiting */
#define	HIFN_DMAIER_PUBDONE	0x00000002	/* public op done (7951 only) */
#define	HIFN_DMAIER_ENGINE	0x00000001	/* Engine IRQ */

/* DMA Configuration Register (HIFN_1_DMA_CNFG) */
#define	HIFN_DMACNFG_BIGENDIAN	0x10000000	/* big endian mode */
#define	HIFN_DMACNFG_POLLFREQ	0x00ff0000	/* Poll frequency mask */
#define	HIFN_DMACNFG_UNLOCK	0x00000800
#define	HIFN_DMACNFG_POLLINVAL	0x00000700	/* Invalid Poll Scalar */
#define	HIFN_DMACNFG_LAST	0x00000010	/* Host control LAST bit */
#define	HIFN_DMACNFG_MODE	0x00000004	/* DMA mode */
#define	HIFN_DMACNFG_DMARESET	0x00000002	/* DMA Reset # */
#define	HIFN_DMACNFG_MSTRESET	0x00000001	/* Master Reset # */

/* PLL configuration register */
#define HIFN_PLL_REF_CLK_HBI	0x00000000	/* HBI reference clock */
#define HIFN_PLL_REF_CLK_PLL	0x00000001	/* PLL reference clock */
#define HIFN_PLL_BP		0x00000002	/* Reference clock bypass */
#define HIFN_PLL_PK_CLK_HBI	0x00000000	/* PK engine HBI clock */
#define HIFN_PLL_PK_CLK_PLL	0x00000008	/* PK engine PLL clock */
#define HIFN_PLL_PE_CLK_HBI	0x00000000	/* PE engine HBI clock */
#define HIFN_PLL_PE_CLK_PLL	0x00000010	/* PE engine PLL clock */
#define HIFN_PLL_RESERVED_1	0x00000400	/* Reserved bit, must be 1 */
#define HIFN_PLL_ND_SHIFT	11		/* Clock multiplier shift */
#define HIFN_PLL_ND_MULT_2	0x00000000	/* PLL clock multiplier 2 */
#define HIFN_PLL_ND_MULT_4	0x00000800	/* PLL clock multiplier 4 */
#define HIFN_PLL_ND_MULT_6	0x00001000	/* PLL clock multiplier 6 */
#define HIFN_PLL_ND_MULT_8	0x00001800	/* PLL clock multiplier 8 */
#define HIFN_PLL_ND_MULT_10	0x00002000	/* PLL clock multiplier 10 */
#define HIFN_PLL_ND_MULT_12	0x00002800	/* PLL clock multiplier 12 */
#define HIFN_PLL_IS_1_8		0x00000000	/* charge pump (mult. 1-8) */
#define HIFN_PLL_IS_9_12	0x00010000	/* charge pump (mult. 9-12) */

#define HIFN_PLL_FCK_MAX	266		/* Maximum PLL frequency */

/* Public key reset register (HIFN_1_PUB_RESET) */
#define	HIFN_PUBRST_RESET	0x00000001	/* reset public/rng unit */

/* Public base address register (HIFN_1_PUB_BASE) */
#define	HIFN_PUBBASE_ADDR	0x00003fff	/* base address */

/* Public operand length register (HIFN_1_PUB_OPLEN) */
#define	HIFN_PUBOPLEN_MOD_M	0x0000007f	/* modulus length mask */
#define	HIFN_PUBOPLEN_MOD_S	0		/* modulus length shift */
#define	HIFN_PUBOPLEN_EXP_M	0x0003ff80	/* exponent length mask */
#define	HIFN_PUBOPLEN_EXP_S	7		/* exponent lenght shift */
#define	HIFN_PUBOPLEN_RED_M	0x003c0000	/* reducend length mask */
#define	HIFN_PUBOPLEN_RED_S	18		/* reducend length shift */

/* Public operation register (HIFN_1_PUB_OP) */
#define	HIFN_PUBOP_AOFFSET_M	0x0000007f	/* A offset mask */
#define	HIFN_PUBOP_AOFFSET_S	0		/* A offset shift */
#define	HIFN_PUBOP_BOFFSET_M	0x00000f80	/* B offset mask */
#define	HIFN_PUBOP_BOFFSET_S	7		/* B offset shift */
#define	HIFN_PUBOP_MOFFSET_M	0x0003f000	/* M offset mask */
#define	HIFN_PUBOP_MOFFSET_S	12		/* M offset shift */
#define	HIFN_PUBOP_OP_MASK	0x003c0000	/* Opcode: */
#define	HIFN_PUBOP_OP_NOP	0x00000000	/*  NOP */
#define	HIFN_PUBOP_OP_ADD	0x00040000	/*  ADD */
#define	HIFN_PUBOP_OP_ADDC	0x00080000	/*  ADD w/carry */
#define	HIFN_PUBOP_OP_SUB	0x000c0000	/*  SUB */
#define	HIFN_PUBOP_OP_SUBC	0x00100000	/*  SUB w/carry */
#define	HIFN_PUBOP_OP_MODADD	0x00140000	/*  Modular ADD */
#define	HIFN_PUBOP_OP_MODSUB	0x00180000	/*  Modular SUB */
#define	HIFN_PUBOP_OP_INCA	0x001c0000	/*  INC A */
#define	HIFN_PUBOP_OP_DECA	0x00200000	/*  DEC A */
#define	HIFN_PUBOP_OP_MULT	0x00240000	/*  MULT */
#define	HIFN_PUBOP_OP_MODMULT	0x00280000	/*  Modular MULT */
#define	HIFN_PUBOP_OP_MODRED	0x002c0000	/*  Modular RED */
#define	HIFN_PUBOP_OP_MODEXP	0x00300000	/*  Modular EXP */

/* Public status register (HIFN_1_PUB_STATUS) */
#define	HIFN_PUBSTS_DONE	0x00000001	/* operation done */
#define	HIFN_PUBSTS_CARRY	0x00000002	/* carry */

/* Public interrupt enable register (HIFN_1_PUB_IEN) */
#define	HIFN_PUBIEN_DONE	0x00000001	/* operation done interrupt */

/* Random number generator config register (HIFN_1_RNG_CONFIG) */
#define	HIFN_RNGCFG_ENA		0x00000001	/* enable rng */

#define HIFN_NAMESIZE			32
#define HIFN_MAX_RESULT_ORDER		5

#define	HIFN_D_CMD_RSIZE		24*4
#define	HIFN_D_SRC_RSIZE		80*4
#define	HIFN_D_DST_RSIZE		80*4
#define	HIFN_D_RES_RSIZE		24*4

#define HIFN_QUEUE_LENGTH		HIFN_D_CMD_RSIZE-5

#define AES_MIN_KEY_SIZE		16
#define AES_MAX_KEY_SIZE		32

#define HIFN_DES_KEY_LENGTH		8
#define HIFN_3DES_KEY_LENGTH		24
#define HIFN_MAX_CRYPT_KEY_LENGTH	AES_MAX_KEY_SIZE
#define HIFN_IV_LENGTH			8
#define HIFN_AES_IV_LENGTH		16
#define	HIFN_MAX_IV_LENGTH		HIFN_AES_IV_LENGTH

#define HIFN_MAC_KEY_LENGTH		64
#define HIFN_MD5_LENGTH			16
#define HIFN_SHA1_LENGTH		20
#define HIFN_MAC_TRUNC_LENGTH		12

#define	HIFN_MAX_COMMAND		(8 + 8 + 8 + 64 + 260)
#define	HIFN_MAX_RESULT			(8 + 4 + 4 + 20 + 4)
#define HIFN_USED_RESULT		12

struct hifn_desc
{
	volatile u32		l;
	volatile u32		p;
};

struct hifn_dma {
	struct hifn_desc	cmdr[HIFN_D_CMD_RSIZE+1];
	struct hifn_desc	srcr[HIFN_D_SRC_RSIZE+1];
	struct hifn_desc	dstr[HIFN_D_DST_RSIZE+1];
	struct hifn_desc	resr[HIFN_D_RES_RSIZE+1];

	u8			command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
	u8			result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];

	u64			test_src, test_dst;

	/*
	 *  Our current positions for insertion and removal from the descriptor
	 *  rings.
	 */
	volatile int		cmdi, srci, dsti, resi;
	volatile int		cmdu, srcu, dstu, resu;
	int			cmdk, srck, dstk, resk;
};

#define HIFN_FLAG_CMD_BUSY	(1<<0)
#define HIFN_FLAG_SRC_BUSY	(1<<1)
#define HIFN_FLAG_DST_BUSY	(1<<2)
#define HIFN_FLAG_RES_BUSY	(1<<3)
#define HIFN_FLAG_OLD_KEY	(1<<4)

#define HIFN_DEFAULT_ACTIVE_NUM	5

struct hifn_device
{
	char			name[HIFN_NAMESIZE];

	int			irq;

	struct pci_dev		*pdev;
	void __iomem		*bar[3];

	unsigned long		result_mem;
	dma_addr_t		dst;

	void			*desc_virt;
	dma_addr_t		desc_dma;

	u32			dmareg;

	void 			*sa[HIFN_D_RES_RSIZE];

	spinlock_t		lock;

	void 			*priv;

	u32			flags;
	int			active, started;
	struct delayed_work	work;
	unsigned long		reset;
	unsigned long		success;
	unsigned long		prev_success;

	u8			snum;

	struct tasklet_struct	tasklet;

	struct crypto_queue 	queue;
	struct list_head	alg_list;
};

#define	HIFN_D_LENGTH			0x0000ffff
#define	HIFN_D_NOINVALID		0x01000000
#define	HIFN_D_MASKDONEIRQ		0x02000000
#define	HIFN_D_DESTOVER			0x04000000
#define	HIFN_D_OVER			0x08000000
#define	HIFN_D_LAST			0x20000000
#define	HIFN_D_JUMP			0x40000000
#define	HIFN_D_VALID			0x80000000

struct hifn_base_command
{
	volatile u16		masks;
	volatile u16		session_num;
	volatile u16		total_source_count;
	volatile u16		total_dest_count;
};

#define	HIFN_BASE_CMD_COMP		0x0100	/* enable compression engine */
#define	HIFN_BASE_CMD_PAD		0x0200	/* enable padding engine */
#define	HIFN_BASE_CMD_MAC		0x0400	/* enable MAC engine */
#define	HIFN_BASE_CMD_CRYPT		0x0800	/* enable crypt engine */
#define	HIFN_BASE_CMD_DECODE		0x2000
#define	HIFN_BASE_CMD_SRCLEN_M		0xc000
#define	HIFN_BASE_CMD_SRCLEN_S		14
#define	HIFN_BASE_CMD_DSTLEN_M		0x3000
#define	HIFN_BASE_CMD_DSTLEN_S		12
#define	HIFN_BASE_CMD_LENMASK_HI	0x30000
#define	HIFN_BASE_CMD_LENMASK_LO	0x0ffff

/*
 * Structure to help build up the command data structure.
 */
struct hifn_crypt_command
{
	volatile u16 		masks;
	volatile u16 		header_skip;
	volatile u16 		source_count;
	volatile u16 		reserved;
};

#define	HIFN_CRYPT_CMD_ALG_MASK		0x0003		/* algorithm: */
#define	HIFN_CRYPT_CMD_ALG_DES		0x0000		/*   DES */
#define	HIFN_CRYPT_CMD_ALG_3DES		0x0001		/*   3DES */
#define	HIFN_CRYPT_CMD_ALG_RC4		0x0002		/*   RC4 */
#define	HIFN_CRYPT_CMD_ALG_AES		0x0003		/*   AES */
#define	HIFN_CRYPT_CMD_MODE_MASK	0x0018		/* Encrypt mode: */
#define	HIFN_CRYPT_CMD_MODE_ECB		0x0000		/*   ECB */
#define	HIFN_CRYPT_CMD_MODE_CBC		0x0008		/*   CBC */
#define	HIFN_CRYPT_CMD_MODE_CFB		0x0010		/*   CFB */
#define	HIFN_CRYPT_CMD_MODE_OFB		0x0018		/*   OFB */
#define	HIFN_CRYPT_CMD_CLR_CTX		0x0040		/* clear context */
#define	HIFN_CRYPT_CMD_KSZ_MASK		0x0600		/* AES key size: */
#define	HIFN_CRYPT_CMD_KSZ_128		0x0000		/*  128 bit */
#define	HIFN_CRYPT_CMD_KSZ_192		0x0200		/*  192 bit */
#define	HIFN_CRYPT_CMD_KSZ_256		0x0400		/*  256 bit */
#define	HIFN_CRYPT_CMD_NEW_KEY		0x0800		/* expect new key */
#define	HIFN_CRYPT_CMD_NEW_IV		0x1000		/* expect new iv */
#define	HIFN_CRYPT_CMD_SRCLEN_M		0xc000
#define	HIFN_CRYPT_CMD_SRCLEN_S		14

/*
 * Structure to help build up the command data structure.
 */
struct hifn_mac_command
{
	volatile u16 		masks;
	volatile u16 		header_skip;
	volatile u16 		source_count;
	volatile u16 		reserved;
};

#define	HIFN_MAC_CMD_ALG_MASK		0x0001
#define	HIFN_MAC_CMD_ALG_SHA1		0x0000
#define	HIFN_MAC_CMD_ALG_MD5		0x0001
#define	HIFN_MAC_CMD_MODE_MASK		0x000c
#define	HIFN_MAC_CMD_MODE_HMAC		0x0000
#define	HIFN_MAC_CMD_MODE_SSL_MAC	0x0004
#define	HIFN_MAC_CMD_MODE_HASH		0x0008
#define	HIFN_MAC_CMD_MODE_FULL		0x0004
#define	HIFN_MAC_CMD_TRUNC		0x0010
#define	HIFN_MAC_CMD_RESULT		0x0020
#define	HIFN_MAC_CMD_APPEND		0x0040
#define	HIFN_MAC_CMD_SRCLEN_M		0xc000
#define	HIFN_MAC_CMD_SRCLEN_S		14

/*
 * MAC POS IPsec initiates authentication after encryption on encodes
 * and before decryption on decodes.
 */
#define	HIFN_MAC_CMD_POS_IPSEC		0x0200
#define	HIFN_MAC_CMD_NEW_KEY		0x0800

struct hifn_comp_command
{
	volatile u16 		masks;
	volatile u16 		header_skip;
	volatile u16 		source_count;
	volatile u16 		reserved;
};

#define	HIFN_COMP_CMD_SRCLEN_M		0xc000
#define	HIFN_COMP_CMD_SRCLEN_S		14
#define	HIFN_COMP_CMD_ONE		0x0100	/* must be one */
#define	HIFN_COMP_CMD_CLEARHIST		0x0010	/* clear history */
#define	HIFN_COMP_CMD_UPDATEHIST	0x0008	/* update history */
#define	HIFN_COMP_CMD_LZS_STRIP0	0x0004	/* LZS: strip zero */
#define	HIFN_COMP_CMD_MPPC_RESTART	0x0004	/* MPPC: restart */
#define	HIFN_COMP_CMD_ALG_MASK		0x0001	/* compression mode: */
#define	HIFN_COMP_CMD_ALG_MPPC		0x0001	/*   MPPC */
#define	HIFN_COMP_CMD_ALG_LZS		0x0000	/*   LZS */

struct hifn_base_result
{
	volatile u16 		flags;
	volatile u16 		session;
	volatile u16 		src_cnt;		/* 15:0 of source count */
	volatile u16 		dst_cnt;		/* 15:0 of dest count */
};

#define	HIFN_BASE_RES_DSTOVERRUN	0x0200	/* destination overrun */
#define	HIFN_BASE_RES_SRCLEN_M		0xc000	/* 17:16 of source count */
#define	HIFN_BASE_RES_SRCLEN_S		14
#define	HIFN_BASE_RES_DSTLEN_M		0x3000	/* 17:16 of dest count */
#define	HIFN_BASE_RES_DSTLEN_S		12

struct hifn_comp_result
{
	volatile u16 		flags;
	volatile u16 		crc;
};

#define	HIFN_COMP_RES_LCB_M		0xff00	/* longitudinal check byte */
#define	HIFN_COMP_RES_LCB_S		8
#define	HIFN_COMP_RES_RESTART		0x0004	/* MPPC: restart */
#define	HIFN_COMP_RES_ENDMARKER		0x0002	/* LZS: end marker seen */
#define	HIFN_COMP_RES_SRC_NOTZERO	0x0001	/* source expired */

struct hifn_mac_result
{
	volatile u16 		flags;
	volatile u16 		reserved;
	/* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
};

#define	HIFN_MAC_RES_MISCOMPARE		0x0002	/* compare failed */
#define	HIFN_MAC_RES_SRC_NOTZERO	0x0001	/* source expired */

struct hifn_crypt_result
{
	volatile u16 		flags;
	volatile u16 		reserved;
};

#define	HIFN_CRYPT_RES_SRC_NOTZERO	0x0001	/* source expired */

#ifndef HIFN_POLL_FREQUENCY
#define	HIFN_POLL_FREQUENCY	0x1
#endif

#ifndef HIFN_POLL_SCALAR
#define	HIFN_POLL_SCALAR	0x0
#endif

#define	HIFN_MAX_SEGLEN 	0xffff		/* maximum dma segment len */
#define	HIFN_MAX_DMALEN		0x3ffff		/* maximum dma length */

struct hifn_crypto_alg
{
	struct list_head	entry;
	struct crypto_alg	alg;
	struct hifn_device	*dev;
};

#define ASYNC_SCATTERLIST_CACHE	16

#define ASYNC_FLAGS_MISALIGNED	(1<<0)

struct ablkcipher_walk
{
	struct scatterlist	cache[ASYNC_SCATTERLIST_CACHE];
	u32			flags;
	int			num;
};

struct hifn_context
{
	u8			key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
	struct hifn_device	*dev;
	unsigned int		keysize, ivsize;
	u8			op, type, mode, unused;
	struct ablkcipher_walk	walk;
	atomic_t		sg_num;
};

#define crypto_alg_to_hifn(alg)	container_of(alg, struct hifn_crypto_alg, alg)

static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
{
	u32 ret;

	ret = readl((char *)(dev->bar[0]) + reg);

	return ret;
}

static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
{
	u32 ret;

	ret = readl((char *)(dev->bar[1]) + reg);

	return ret;
}

static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
{
	writel(val, (char *)(dev->bar[0]) + reg);
}

static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
{
	writel(val, (char *)(dev->bar[1]) + reg);
}

static void hifn_wait_puc(struct hifn_device *dev)
{
	int i;
	u32 ret;

	for (i=10000; i > 0; --i) {
		ret = hifn_read_0(dev, HIFN_0_PUCTRL);
		if (!(ret & HIFN_PUCTRL_RESET))
			break;

		udelay(1);
	}

	if (!i)
		dprintk("%s: Failed to reset PUC unit.\n", dev->name);
}

static void hifn_reset_puc(struct hifn_device *dev)
{
	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
	hifn_wait_puc(dev);
}

static void hifn_stop_device(struct hifn_device *dev)
{
	hifn_write_1(dev, HIFN_1_DMA_CSR,
		HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
		HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
	hifn_write_0(dev, HIFN_0_PUIER, 0);
	hifn_write_1(dev, HIFN_1_DMA_IER, 0);
}

static void hifn_reset_dma(struct hifn_device *dev, int full)
{
	hifn_stop_device(dev);

	/*
	 * Setting poll frequency and others to 0.
	 */
	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
	mdelay(1);

	/*
	 * Reset DMA.
	 */
	if (full) {
		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
		mdelay(1);
	} else {
		hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
				HIFN_DMACNFG_MSTRESET);
		hifn_reset_puc(dev);
	}

	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);

	hifn_reset_puc(dev);
}

static u32 hifn_next_signature(u_int32_t a, u_int cnt)
{
	int i;
	u32 v;

	for (i = 0; i < cnt; i++) {

		/* get the parity */
		v = a & 0x80080125;
		v ^= v >> 16;
		v ^= v >> 8;
		v ^= v >> 4;
		v ^= v >> 2;
		v ^= v >> 1;

		a = (v & 1) ^ (a << 1);
	}

	return a;
}

static struct pci2id {
	u_short		pci_vendor;
	u_short		pci_prod;
	char		card_id[13];
} pci2id[] = {
	{
		PCI_VENDOR_ID_HIFN,
		PCI_DEVICE_ID_HIFN_7955,
		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		  0x00, 0x00, 0x00, 0x00, 0x00 }
	},
	{
		PCI_VENDOR_ID_HIFN,
		PCI_DEVICE_ID_HIFN_7956,
		{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
		  0x00, 0x00, 0x00, 0x00, 0x00 }
	}
};

static int hifn_init_pubrng(struct hifn_device *dev)
{
	int i;

	hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
			HIFN_PUBRST_RESET);

	for (i=100; i > 0; --i) {
		mdelay(1);

		if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
			break;
	}

	if (!i)
		dprintk("Chip %s: Failed to initialise public key engine.\n",
				dev->name);
	else {
		hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
		dev->dmareg |= HIFN_DMAIER_PUBDONE;
		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);

		dprintk("Chip %s: Public key engine has been sucessfully "
				"initialised.\n", dev->name);
	}

	/*
	 * Enable RNG engine.
	 */

	hifn_write_1(dev, HIFN_1_RNG_CONFIG,
			hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
	dprintk("Chip %s: RNG engine has been successfully initialised.\n",
			dev->name);

	return 0;
}

static int hifn_enable_crypto(struct hifn_device *dev)
{
	u32 dmacfg, addr;
	char *offtbl = NULL;
	int i;

	for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
		if (pci2id[i].pci_vendor == dev->pdev->vendor &&
				pci2id[i].pci_prod == dev->pdev->device) {
			offtbl = pci2id[i].card_id;
			break;
		}
	}

	if (offtbl == NULL) {
		dprintk("Chip %s: Unknown card!\n", dev->name);
		return -ENODEV;
	}

	dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);

	hifn_write_1(dev, HIFN_1_DMA_CNFG,
			HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
			HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
	mdelay(1);
	addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
	mdelay(1);
	hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
	mdelay(1);

	for (i=0; i<12; ++i) {
		addr = hifn_next_signature(addr, offtbl[i] + 0x101);
		hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);

		mdelay(1);
	}
	hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);

	dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));

	return 0;
}

static void hifn_init_dma(struct hifn_device *dev)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	u32 dptr = dev->desc_dma;
	int i;

	for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
		dma->cmdr[i].p = __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, command_bufs[i][0]));
	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
		dma->resr[i].p = __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, result_bufs[i][0]));

	/*
	 * Setup LAST descriptors.
	 */
	dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
			offsetof(struct hifn_dma, cmdr[0]));
	dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
			offsetof(struct hifn_dma, srcr[0]));
	dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
			offsetof(struct hifn_dma, dstr[0]));
	dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
			offsetof(struct hifn_dma, resr[0]));

	dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
	dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
	dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
}

/*
 * Initialize the PLL. We need to know the frequency of the reference clock
 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
 * allows us to operate without the risk of overclocking the chip. If it
 * actually uses 33MHz, the chip will operate at half the speed, this can be
 * overriden by specifying the frequency as module parameter (pci33).
 *
 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
 * stable clock and the PCI clock frequency may vary, so the default is the
 * external clock. There is no way to find out its frequency, we default to
 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
 * has an external crystal populated at 66MHz.
 */
static void hifn_init_pll(struct hifn_device *dev)
{
	unsigned int freq, m;
	u32 pllcfg;

	pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;

	if (strncmp(hifn_pll_ref, "ext", 3) == 0)
		pllcfg |= HIFN_PLL_REF_CLK_PLL;
	else
		pllcfg |= HIFN_PLL_REF_CLK_HBI;

	if (hifn_pll_ref[3] != '\0')
		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
	else {
		freq = 66;
		printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
				 "override with hifn_pll_ref=%.3s<frequency>\n",
		       freq, hifn_pll_ref);
	}

	m = HIFN_PLL_FCK_MAX / freq;

	pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
	if (m <= 8)
		pllcfg |= HIFN_PLL_IS_1_8;
	else
		pllcfg |= HIFN_PLL_IS_9_12;

	/* Select clock source and enable clock bypass */
	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);

	/* Let the chip lock to the input clock */
	mdelay(10);

	/* Disable clock bypass */
	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
		     HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);

	/* Switch the engines to the PLL */
	hifn_write_1(dev, HIFN_1_PLL, pllcfg |
		     HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
}

static void hifn_init_registers(struct hifn_device *dev)
{
	u32 dptr = dev->desc_dma;

	/* Initialization magic... */
	hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
	hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
	hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);

	/* write all 4 ring address registers */
	hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, cmdr[0])));
	hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, srcr[0])));
	hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, dstr[0])));
	hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
				offsetof(struct hifn_dma, resr[0])));

	mdelay(2);
#if 0
	hifn_write_1(dev, HIFN_1_DMA_CSR,
	    HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
	    HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
	    HIFN_DMACSR_S_WAIT |
	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
	    HIFN_DMACSR_C_WAIT |
	    HIFN_DMACSR_ENGINE |
	    HIFN_DMACSR_PUBDONE);
#else
	hifn_write_1(dev, HIFN_1_DMA_CSR,
	    HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
	    HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
	    HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
	    HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
	    HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
	    HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
	    HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
	    HIFN_DMACSR_S_WAIT |
	    HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
	    HIFN_DMACSR_C_WAIT |
	    HIFN_DMACSR_ENGINE |
	    HIFN_DMACSR_PUBDONE);
#endif
	hifn_read_1(dev, HIFN_1_DMA_CSR);

	dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
	    HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
	    HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
	    HIFN_DMAIER_ENGINE;
	dev->dmareg &= ~HIFN_DMAIER_C_WAIT;

	hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
	hifn_read_1(dev, HIFN_1_DMA_IER);
#if 0
	hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
		    HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
		    HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
		    HIFN_PUCNFG_DRAM);
#else
	hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
#endif
	hifn_init_pll(dev);

	hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
	hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
	    HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
	    ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
	    ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
}

static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
		unsigned dlen, unsigned slen, u16 mask, u8 snum)
{
	struct hifn_base_command *base_cmd;
	u8 *buf_pos = buf;

	base_cmd = (struct hifn_base_command *)buf_pos;
	base_cmd->masks = __cpu_to_le16(mask);
	base_cmd->total_source_count =
		__cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
	base_cmd->total_dest_count =
		__cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);

	dlen >>= 16;
	slen >>= 16;
	base_cmd->session_num = __cpu_to_le16(snum |
	    ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
	    ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));

	return sizeof(struct hifn_base_command);
}

static int hifn_setup_crypto_command(struct hifn_device *dev,
		u8 *buf, unsigned dlen, unsigned slen,
		u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	struct hifn_crypt_command *cry_cmd;
	u8 *buf_pos = buf;
	u16 cmd_len;

	cry_cmd = (struct hifn_crypt_command *)buf_pos;

	cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
	dlen >>= 16;
	cry_cmd->masks = __cpu_to_le16(mode |
			((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
			 HIFN_CRYPT_CMD_SRCLEN_M));
	cry_cmd->header_skip = 0;
	cry_cmd->reserved = 0;

	buf_pos += sizeof(struct hifn_crypt_command);

	dma->cmdu++;
	if (dma->cmdu > 1) {
		dev->dmareg |= HIFN_DMAIER_C_WAIT;
		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
	}

	if (keylen) {
		memcpy(buf_pos, key, keylen);
		buf_pos += keylen;
	}
	if (ivsize) {
		memcpy(buf_pos, iv, ivsize);
		buf_pos += ivsize;
	}

	cmd_len = buf_pos - buf;

	return cmd_len;
}

static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
		unsigned int offset, unsigned int size)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	int idx;
	dma_addr_t addr;

	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);

	idx = dma->srci;

	dma->srcr[idx].p = __cpu_to_le32(addr);
	dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
			HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;

	if (++idx == HIFN_D_SRC_RSIZE) {
		dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
				HIFN_D_JUMP |
				HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
		idx = 0;
	}

	dma->srci = idx;
	dma->srcu++;

	if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
		dev->flags |= HIFN_FLAG_SRC_BUSY;
	}

	return size;
}

static void hifn_setup_res_desc(struct hifn_device *dev)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;

	dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
			HIFN_D_VALID | HIFN_D_LAST);
	/*
	 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
	 *					HIFN_D_LAST | HIFN_D_NOINVALID);
	 */

	if (++dma->resi == HIFN_D_RES_RSIZE) {
		dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
		dma->resi = 0;
	}

	dma->resu++;

	if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
		dev->flags |= HIFN_FLAG_RES_BUSY;
	}
}

static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
		unsigned offset, unsigned size)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	int idx;
	dma_addr_t addr;

	addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);

	idx = dma->dsti;
	dma->dstr[idx].p = __cpu_to_le32(addr);
	dma->dstr[idx].l = __cpu_to_le32(size |	HIFN_D_VALID |
			HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);

	if (++idx == HIFN_D_DST_RSIZE) {
		dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
				HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
				HIFN_D_LAST | HIFN_D_NOINVALID);
		idx = 0;
	}
	dma->dsti = idx;
	dma->dstu++;

	if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
		dev->flags |= HIFN_FLAG_DST_BUSY;
	}
}

static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
		struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
		struct hifn_context *ctx)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	int cmd_len, sa_idx;
	u8 *buf, *buf_pos;
	u16 mask;

	dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
			dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);

	sa_idx = dma->resi;

	hifn_setup_src_desc(dev, spage, soff, nbytes);

	buf_pos = buf = dma->command_bufs[dma->cmdi];

	mask = 0;
	switch (ctx->op) {
		case ACRYPTO_OP_DECRYPT:
			mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
			break;
		case ACRYPTO_OP_ENCRYPT:
			mask = HIFN_BASE_CMD_CRYPT;
			break;
		case ACRYPTO_OP_HMAC:
			mask = HIFN_BASE_CMD_MAC;
			break;
		default:
			goto err_out;
	}

	buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
			nbytes, mask, dev->snum);

	if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
		u16 md = 0;

		if (ctx->keysize)
			md |= HIFN_CRYPT_CMD_NEW_KEY;
		if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
			md |= HIFN_CRYPT_CMD_NEW_IV;

		switch (ctx->mode) {
			case ACRYPTO_MODE_ECB:
				md |= HIFN_CRYPT_CMD_MODE_ECB;
				break;
			case ACRYPTO_MODE_CBC:
				md |= HIFN_CRYPT_CMD_MODE_CBC;
				break;
			case ACRYPTO_MODE_CFB:
				md |= HIFN_CRYPT_CMD_MODE_CFB;
				break;
			case ACRYPTO_MODE_OFB:
				md |= HIFN_CRYPT_CMD_MODE_OFB;
				break;
			default:
				goto err_out;
		}

		switch (ctx->type) {
			case ACRYPTO_TYPE_AES_128:
				if (ctx->keysize != 16)
					goto err_out;
				md |= HIFN_CRYPT_CMD_KSZ_128 |
					HIFN_CRYPT_CMD_ALG_AES;
				break;
			case ACRYPTO_TYPE_AES_192:
				if (ctx->keysize != 24)
					goto err_out;
				md |= HIFN_CRYPT_CMD_KSZ_192 |
					HIFN_CRYPT_CMD_ALG_AES;
				break;
			case ACRYPTO_TYPE_AES_256:
				if (ctx->keysize != 32)
					goto err_out;
				md |= HIFN_CRYPT_CMD_KSZ_256 |
					HIFN_CRYPT_CMD_ALG_AES;
				break;
			case ACRYPTO_TYPE_3DES:
				if (ctx->keysize != 24)
					goto err_out;
				md |= HIFN_CRYPT_CMD_ALG_3DES;
				break;
			case ACRYPTO_TYPE_DES:
				if (ctx->keysize != 8)
					goto err_out;
				md |= HIFN_CRYPT_CMD_ALG_DES;
				break;
			default:
				goto err_out;
		}

		buf_pos += hifn_setup_crypto_command(dev, buf_pos,
				nbytes, nbytes, ctx->key, ctx->keysize,
				ctx->iv, ctx->ivsize, md);
	}

	dev->sa[sa_idx] = priv;

	cmd_len = buf_pos - buf;
	dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
			HIFN_D_LAST | HIFN_D_MASKDONEIRQ);

	if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
		dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
			HIFN_D_VALID | HIFN_D_LAST |
			HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
		dma->cmdi = 0;
	} else
		dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);

	if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
		hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
		dev->flags |= HIFN_FLAG_CMD_BUSY;
	}

	hifn_setup_dst_desc(dev, dpage, doff, nbytes);
	hifn_setup_res_desc(dev);

	return 0;

err_out:
	return -EINVAL;
}

static int ablkcipher_walk_init(struct ablkcipher_walk *w,
		int num, gfp_t gfp_flags)
{
	int i;

	num = min(ASYNC_SCATTERLIST_CACHE, num);
	sg_init_table(w->cache, num);

	w->num = 0;
	for (i=0; i<num; ++i) {
		struct page *page = alloc_page(gfp_flags);
		struct scatterlist *s;

		if (!page)
			break;

		s = &w->cache[i];

		sg_set_page(s, page, PAGE_SIZE, 0);
		w->num++;
	}

	return i;
}

static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
{
	int i;

	for (i=0; i<w->num; ++i) {
		struct scatterlist *s = &w->cache[i];

		__free_page(sg_page(s));

		s->length = 0;
	}

	w->num = 0;
}

static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
		unsigned int size, unsigned int *nbytesp)
{
	unsigned int copy, drest = *drestp, nbytes = *nbytesp;
	int idx = 0;
	void *saddr;

	if (drest < size || size > nbytes)
		return -EINVAL;

	while (size) {
		copy = min(drest, src->length);

		saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
		memcpy(daddr, saddr + src->offset, copy);
		kunmap_atomic(saddr, KM_SOFTIRQ1);

		size -= copy;
		drest -= copy;
		nbytes -= copy;
		daddr += copy;

		dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
				__func__, copy, size, drest, nbytes);

		src++;
		idx++;
	}

	*nbytesp = nbytes;
	*drestp = drest;

	return idx;
}

static int ablkcipher_walk(struct ablkcipher_request *req,
		struct ablkcipher_walk *w)
{
	unsigned blocksize =
		crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
	unsigned alignmask =
		crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
	struct scatterlist *src, *dst, *t;
	void *daddr;
	unsigned int nbytes = req->nbytes, offset, copy, diff;
	int idx, tidx, err;

	tidx = idx = 0;
	offset = 0;
	while (nbytes) {
		if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
			return -EINVAL;

		src = &req->src[idx];
		dst = &req->dst[idx];

		dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
				"blocksize: %u, nbytes: %u.\n",
				__func__, src->length, dst->length, src->offset,
				dst->offset, offset, blocksize, nbytes);

		if (src->length & (blocksize - 1) ||
				src->offset & (alignmask - 1) ||
				dst->length & (blocksize - 1) ||
				dst->offset & (alignmask - 1) ||
				offset) {
			unsigned slen = src->length - offset;
			unsigned dlen = PAGE_SIZE;

			t = &w->cache[idx];

			daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
			err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
			if (err < 0)
				goto err_out_unmap;

			idx += err;

			copy = slen & ~(blocksize - 1);
			diff = slen & (blocksize - 1);

			if (dlen < nbytes) {
				/*
				 * Destination page does not have enough space
				 * to put there additional blocksized chunk,
				 * so we mark that page as containing only
				 * blocksize aligned chunks:
				 * 	t->length = (slen & ~(blocksize - 1));
				 * and increase number of bytes to be processed
				 * in next chunk:
				 * 	nbytes += diff;
				 */
				nbytes += diff;

				/*
				 * Temporary of course...
				 * Kick author if you will catch this one.
				 */
				printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
					"slen: %u, offset: %u.\n",
					__func__, dlen, nbytes, slen, offset);
				printk(KERN_ERR "%s: please contact author to fix this "
					"issue, generally you should not catch "
					"this path under any condition but who "
					"knows how did you use crypto code.\n"
					"Thank you.\n",	__func__);
				BUG();
			} else {
				copy += diff + nbytes;

				src = &req->src[idx];

				err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
				if (err < 0)
					goto err_out_unmap;

				idx += err;
			}

			t->length = copy;
			t->offset = offset;

			kunmap_atomic(daddr, KM_SOFTIRQ0);
		} else {
			nbytes -= src->length;
			idx++;
		}

		tidx++;
	}

	return tidx;

err_out_unmap:
	kunmap_atomic(daddr, KM_SOFTIRQ0);
	return err;
}

static int hifn_setup_session(struct ablkcipher_request *req)
{
	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
	struct hifn_device *dev = ctx->dev;
	struct page *spage, *dpage;
	unsigned long soff, doff, flags;
	unsigned int nbytes = req->nbytes, idx = 0, len;
	int err = -EINVAL, sg_num;
	struct scatterlist *src, *dst, *t;
	unsigned blocksize =
		crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
	unsigned alignmask =
		crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));

	if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
		goto err_out_exit;

	ctx->walk.flags = 0;

	while (nbytes) {
		src = &req->src[idx];
		dst = &req->dst[idx];

		if (src->length & (blocksize - 1) ||
				src->offset & (alignmask - 1) ||
				dst->length & (blocksize - 1) ||
				dst->offset & (alignmask - 1)) {
			ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
		}

		nbytes -= src->length;
		idx++;
	}

	if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
		err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
		if (err < 0)
			return err;
	}

	nbytes = req->nbytes;
	idx = 0;

	sg_num = ablkcipher_walk(req, &ctx->walk);

	atomic_set(&ctx->sg_num, sg_num);

	spin_lock_irqsave(&dev->lock, flags);
	if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
		err = -EAGAIN;
		goto err_out;
	}

	dev->snum++;
	dev->started += sg_num;

	while (nbytes) {
		src = &req->src[idx];
		dst = &req->dst[idx];
		t = &ctx->walk.cache[idx];

		if (t->length) {
			spage = dpage = sg_page(t);
			soff = doff = 0;
			len = t->length;
		} else {
			spage = sg_page(src);
			soff = src->offset;

			dpage = sg_page(dst);
			doff = dst->offset;

			len = dst->length;
		}

		idx++;

		err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
				req, ctx);
		if (err)
			goto err_out;

		nbytes -= len;
	}

	dev->active = HIFN_DEFAULT_ACTIVE_NUM;
	spin_unlock_irqrestore(&dev->lock, flags);

	return 0;

err_out:
	spin_unlock_irqrestore(&dev->lock, flags);
err_out_exit:
	if (err && printk_ratelimit())
		dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
				"type: %u, err: %d.\n",
			dev->name, ctx->iv, ctx->ivsize,
			ctx->key, ctx->keysize,
			ctx->mode, ctx->op, ctx->type, err);

	return err;
}

static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
{
	int n, err;
	u8 src[16];
	struct hifn_context ctx;
	u8 fips_aes_ecb_from_zero[16] = {
		0x66, 0xE9, 0x4B, 0xD4,
		0xEF, 0x8A, 0x2C, 0x3B,
		0x88, 0x4C, 0xFA, 0x59,
		0xCA, 0x34, 0x2B, 0x2E};

	memset(src, 0, sizeof(src));
	memset(ctx.key, 0, sizeof(ctx.key));

	ctx.dev = dev;
	ctx.keysize = 16;
	ctx.ivsize = 0;
	ctx.iv = NULL;
	ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
	ctx.mode = ACRYPTO_MODE_ECB;
	ctx.type = ACRYPTO_TYPE_AES_128;
	atomic_set(&ctx.sg_num, 1);

	err = hifn_setup_dma(dev,
			virt_to_page(src), offset_in_page(src),
			virt_to_page(src), offset_in_page(src),
			sizeof(src), NULL, &ctx);
	if (err)
		goto err_out;

	msleep(200);

	dprintk("%s: decoded: ", dev->name);
	for (n=0; n<sizeof(src); ++n)
		dprintk("%02x ", src[n]);
	dprintk("\n");
	dprintk("%s: FIPS   : ", dev->name);
	for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
		dprintk("%02x ", fips_aes_ecb_from_zero[n]);
	dprintk("\n");

	if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
		printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
				"passed.\n", dev->name);
		return 0;
	}

err_out:
	printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
	return -1;
}

static int hifn_start_device(struct hifn_device *dev)
{
	int err;

	hifn_reset_dma(dev, 1);

	err = hifn_enable_crypto(dev);
	if (err)
		return err;

	hifn_reset_puc(dev);

	hifn_init_dma(dev);

	hifn_init_registers(dev);

	hifn_init_pubrng(dev);

	return 0;
}

static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
		struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
{
	unsigned int srest = *srestp, nbytes = *nbytesp, copy;
	void *daddr;
	int idx = 0;

	if (srest < size || size > nbytes)
		return -EINVAL;

	while (size) {

		copy = min(dst->length, srest);

		daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
		memcpy(daddr + dst->offset + offset, saddr, copy);
		kunmap_atomic(daddr, KM_IRQ0);

		nbytes -= copy;
		size -= copy;
		srest -= copy;
		saddr += copy;
		offset = 0;

		dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
				__func__, copy, size, srest, nbytes);

		dst++;
		idx++;
	}

	*nbytesp = nbytes;
	*srestp = srest;

	return idx;
}

static void hifn_process_ready(struct ablkcipher_request *req, int error)
{
	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
	struct hifn_device *dev;

	dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);

	dev = ctx->dev;
	dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
		__func__, req, dev->started, atomic_read(&ctx->sg_num));

	if (--dev->started < 0)
		BUG();

	if (atomic_dec_and_test(&ctx->sg_num)) {
		unsigned int nbytes = req->nbytes;
		int idx = 0, err;
		struct scatterlist *dst, *t;
		void *saddr;

		if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
			while (nbytes) {
				t = &ctx->walk.cache[idx];
				dst = &req->dst[idx];

				dprintk("\n%s: sg_page(t): %p, t->length: %u, "
					"sg_page(dst): %p, dst->length: %u, "
					"nbytes: %u.\n",
					__func__, sg_page(t), t->length,
					sg_page(dst), dst->length, nbytes);

				if (!t->length) {
					nbytes -= dst->length;
					idx++;
					continue;
				}

				saddr = kmap_atomic(sg_page(t), KM_IRQ1);

				err = ablkcipher_get(saddr, &t->length, t->offset,
						dst, nbytes, &nbytes);
				if (err < 0) {
					kunmap_atomic(saddr, KM_IRQ1);
					break;
				}

				idx += err;
				kunmap_atomic(saddr, KM_IRQ1);
			}

			ablkcipher_walk_exit(&ctx->walk);
		}

		req->base.complete(&req->base, error);
	}
}

static void hifn_check_for_completion(struct hifn_device *dev, int error)
{
	int i;
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;

	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
		struct hifn_desc *d = &dma->resr[i];

		if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
			dev->success++;
			dev->reset = 0;
			hifn_process_ready(dev->sa[i], error);
			dev->sa[i] = NULL;
		}

		if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
			if (printk_ratelimit())
				printk("%s: overflow detected [d: %u, o: %u] "
						"at %d resr: l: %08x, p: %08x.\n",
					dev->name,
					!!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
					!!(d->l & __cpu_to_le32(HIFN_D_OVER)),
					i, d->l, d->p);
	}
}

static void hifn_clear_rings(struct hifn_device *dev)
{
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	int i, u;

	dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
			"k: %d.%d.%d.%d.\n",
			dev->name,
			dma->cmdi, dma->srci, dma->dsti, dma->resi,
			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
			dma->cmdk, dma->srck, dma->dstk, dma->resk);

	i = dma->resk; u = dma->resu;
	while (u != 0) {
		if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
			break;

		if (i != HIFN_D_RES_RSIZE)
			u--;

		if (++i == (HIFN_D_RES_RSIZE + 1))
			i = 0;
	}
	dma->resk = i; dma->resu = u;

	i = dma->srck; u = dma->srcu;
	while (u != 0) {
		if (i == HIFN_D_SRC_RSIZE)
			i = 0;
		if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
			break;
		i++, u--;
	}
	dma->srck = i; dma->srcu = u;

	i = dma->cmdk; u = dma->cmdu;
	while (u != 0) {
		if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
			break;
		if (i != HIFN_D_CMD_RSIZE)
			u--;
		if (++i == (HIFN_D_CMD_RSIZE + 1))
			i = 0;
	}
	dma->cmdk = i; dma->cmdu = u;

	i = dma->dstk; u = dma->dstu;
	while (u != 0) {
		if (i == HIFN_D_DST_RSIZE)
			i = 0;
		if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
			break;
		i++, u--;
	}
	dma->dstk = i; dma->dstu = u;

	dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
			"k: %d.%d.%d.%d.\n",
			dev->name,
			dma->cmdi, dma->srci, dma->dsti, dma->resi,
			dma->cmdu, dma->srcu, dma->dstu, dma->resu,
			dma->cmdk, dma->srck, dma->dstk, dma->resk);
}

static void hifn_work(struct work_struct *work)
{
	struct delayed_work *dw = container_of(work, struct delayed_work, work);
	struct hifn_device *dev = container_of(dw, struct hifn_device, work);
	unsigned long flags;
	int reset = 0;
	u32 r = 0;

	spin_lock_irqsave(&dev->lock, flags);
	if (dev->active == 0) {
		struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;

		if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
			dev->flags &= ~HIFN_FLAG_CMD_BUSY;
			r |= HIFN_DMACSR_C_CTRL_DIS;
		}
		if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
			dev->flags &= ~HIFN_FLAG_SRC_BUSY;
			r |= HIFN_DMACSR_S_CTRL_DIS;
		}
		if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
			dev->flags &= ~HIFN_FLAG_DST_BUSY;
			r |= HIFN_DMACSR_D_CTRL_DIS;
		}
		if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
			dev->flags &= ~HIFN_FLAG_RES_BUSY;
			r |= HIFN_DMACSR_R_CTRL_DIS;
		}
		if (r)
			hifn_write_1(dev, HIFN_1_DMA_CSR, r);
	} else
		dev->active--;

	if (dev->prev_success == dev->success && dev->started)
		reset = 1;
	dev->prev_success = dev->success;
	spin_unlock_irqrestore(&dev->lock, flags);

	if (reset) {
		dprintk("%s: r: %08x, active: %d, started: %d, "
				"success: %lu: reset: %d.\n",
			dev->name, r, dev->active, dev->started,
			dev->success, reset);

		if (++dev->reset >= 5) {
			dprintk("%s: really hard reset.\n", dev->name);
			hifn_reset_dma(dev, 1);
			hifn_stop_device(dev);
			hifn_start_device(dev);
			dev->reset = 0;
		}

		spin_lock_irqsave(&dev->lock, flags);
		hifn_check_for_completion(dev, -EBUSY);
		hifn_clear_rings(dev);
		dev->started = 0;
		spin_unlock_irqrestore(&dev->lock, flags);
	}

	schedule_delayed_work(&dev->work, HZ);
}

static irqreturn_t hifn_interrupt(int irq, void *data)
{
	struct hifn_device *dev = (struct hifn_device *)data;
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	u32 dmacsr, restart;

	dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);

	dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
			"i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
		dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
		dma->cmdu, dma->srcu, dma->dstu, dma->resu,
		dma->cmdi, dma->srci, dma->dsti, dma->resi);

	if ((dmacsr & dev->dmareg) == 0)
		return IRQ_NONE;

	hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);

	if (dmacsr & HIFN_DMACSR_ENGINE)
		hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
	if (dmacsr & HIFN_DMACSR_PUBDONE)
		hifn_write_1(dev, HIFN_1_PUB_STATUS,
			hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);

	restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
	if (restart) {
		u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);

		if (printk_ratelimit())
			printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
				dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
				!!(dmacsr & HIFN_DMACSR_D_OVER),
				puisr, !!(puisr & HIFN_PUISR_DSTOVER));
		if (!!(puisr & HIFN_PUISR_DSTOVER))
			hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
		hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
					HIFN_DMACSR_D_OVER));
	}

	restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
			HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
	if (restart) {
		if (printk_ratelimit())
			printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
				dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
				!!(dmacsr & HIFN_DMACSR_S_ABORT),
				!!(dmacsr & HIFN_DMACSR_D_ABORT),
				!!(dmacsr & HIFN_DMACSR_R_ABORT));
		hifn_reset_dma(dev, 1);
		hifn_init_dma(dev);
		hifn_init_registers(dev);
	}

	if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
		dprintk("%s: wait on command.\n", dev->name);
		dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
		hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
	}

	tasklet_schedule(&dev->tasklet);
	hifn_clear_rings(dev);

	return IRQ_HANDLED;
}

static void hifn_flush(struct hifn_device *dev)
{
	unsigned long flags;
	struct crypto_async_request *async_req;
	struct hifn_context *ctx;
	struct ablkcipher_request *req;
	struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
	int i;

	spin_lock_irqsave(&dev->lock, flags);
	for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
		struct hifn_desc *d = &dma->resr[i];

		if (dev->sa[i]) {
			hifn_process_ready(dev->sa[i],
				(d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
		}
	}

	while ((async_req = crypto_dequeue_request(&dev->queue))) {
		ctx = crypto_tfm_ctx(async_req->tfm);
		req = container_of(async_req, struct ablkcipher_request, base);

		hifn_process_ready(req, -ENODEV);
	}
	spin_unlock_irqrestore(&dev->lock, flags);
}

static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
		unsigned int len)
{
	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
	struct hifn_context *ctx = crypto_tfm_ctx(tfm);
	struct hifn_device *dev = ctx->dev;

	if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -1;
	}

	if (len == HIFN_DES_KEY_LENGTH) {
		u32 tmp[DES_EXPKEY_WORDS];
		int ret = des_ekey(tmp, key);
		
		if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
			tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
			return -EINVAL;
		}
	}

	dev->flags &= ~HIFN_FLAG_OLD_KEY;

	memcpy(ctx->key, key, len);
	ctx->keysize = len;

	return 0;
}

static int hifn_handle_req(struct ablkcipher_request *req)
{
	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
	struct hifn_device *dev = ctx->dev;
	int err = -EAGAIN;

	if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
		err = hifn_setup_session(req);

	if (err == -EAGAIN) {
		unsigned long flags;

		spin_lock_irqsave(&dev->lock, flags);
		err = ablkcipher_enqueue_request(&dev->queue, req);
		spin_unlock_irqrestore(&dev->lock, flags);
	}

	return err;
}

static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
		u8 type, u8 mode)
{
	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
	unsigned ivsize;

	ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));

	if (req->info && mode != ACRYPTO_MODE_ECB) {
		if (type == ACRYPTO_TYPE_AES_128)
			ivsize = HIFN_AES_IV_LENGTH;
		else if (type == ACRYPTO_TYPE_DES)
			ivsize = HIFN_DES_KEY_LENGTH;
		else if (type == ACRYPTO_TYPE_3DES)
			ivsize = HIFN_3DES_KEY_LENGTH;
	}

	if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
		if (ctx->keysize == 24)
			type = ACRYPTO_TYPE_AES_192;
		else if (ctx->keysize == 32)
			type = ACRYPTO_TYPE_AES_256;
	}

	ctx->op = op;
	ctx->mode = mode;
	ctx->type = type;
	ctx->iv = req->info;
	ctx->ivsize = ivsize;

	/*
	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
	 * HEAVY TODO: needs to kick Herbert XU to write documentation.
	 */

	return hifn_handle_req(req);
}

static int hifn_process_queue(struct hifn_device *dev)
{
	struct crypto_async_request *async_req;
	struct hifn_context *ctx;
	struct ablkcipher_request *req;
	unsigned long flags;
	int err = 0;

	while (dev->started < HIFN_QUEUE_LENGTH) {
		spin_lock_irqsave(&dev->lock, flags);
		async_req = crypto_dequeue_request(&dev->queue);
		spin_unlock_irqrestore(&dev->lock, flags);

		if (!async_req)
			break;

		ctx = crypto_tfm_ctx(async_req->tfm);
		req = container_of(async_req, struct ablkcipher_request, base);

		err = hifn_handle_req(req);
		if (err)
			break;
	}

	return err;
}

static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
		u8 type, u8 mode)
{
	int err;
	struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
	struct hifn_device *dev = ctx->dev;

	err = hifn_setup_crypto_req(req, op, type, mode);
	if (err)
		return err;

	if (dev->started < HIFN_QUEUE_LENGTH &&	dev->queue.qlen)
		err = hifn_process_queue(dev);

	return err;
}

/*
 * AES ecryption functions.
 */
static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}

/*
 * AES decryption functions.
 */
static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
}

/*
 * DES ecryption functions.
 */
static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}

/*
 * DES decryption functions.
 */
static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
}

/*
 * 3DES ecryption functions.
 */
static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}

/*
 * 3DES decryption functions.
 */
static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
}
static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
}
static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
}
static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
{
	return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
			ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
}

struct hifn_alg_template
{
	char name[CRYPTO_MAX_ALG_NAME];
	char drv_name[CRYPTO_MAX_ALG_NAME];
	unsigned int bsize;
	struct ablkcipher_alg ablkcipher;
};

static struct hifn_alg_template hifn_alg_templates[] = {
	/*
	 * 3DES ECB, CBC, CFB and OFB modes.
	 */
	{
		.name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_3des_cfb,
			.decrypt	=	hifn_decrypt_3des_cfb,
		},
	},
	{
		.name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_3des_ofb,
			.decrypt	=	hifn_decrypt_3des_ofb,
		},
	},
	{
		.name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_3des_cbc,
			.decrypt	=	hifn_decrypt_3des_cbc,
		},
	},
	{
		.name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_3DES_KEY_LENGTH,
			.max_keysize	=	HIFN_3DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_3des_ecb,
			.decrypt	=	hifn_decrypt_3des_ecb,
		},
	},

	/*
	 * DES ECB, CBC, CFB and OFB modes.
	 */
	{
		.name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_DES_KEY_LENGTH,
			.max_keysize	=	HIFN_DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_des_cfb,
			.decrypt	=	hifn_decrypt_des_cfb,
		},
	},
	{
		.name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_DES_KEY_LENGTH,
			.max_keysize	=	HIFN_DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_des_ofb,
			.decrypt	=	hifn_decrypt_des_ofb,
		},
	},
	{
		.name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_DES_KEY_LENGTH,
			.max_keysize	=	HIFN_DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_des_cbc,
			.decrypt	=	hifn_decrypt_des_cbc,
		},
	},
	{
		.name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
		.ablkcipher = {
			.min_keysize	=	HIFN_DES_KEY_LENGTH,
			.max_keysize	=	HIFN_DES_KEY_LENGTH,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_des_ecb,
			.decrypt	=	hifn_decrypt_des_ecb,
		},
	},

	/*
	 * AES ECB, CBC, CFB and OFB modes.
	 */
	{
		.name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_aes_ecb,
			.decrypt	=	hifn_decrypt_aes_ecb,
		},
	},
	{
		.name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_aes_cbc,
			.decrypt	=	hifn_decrypt_aes_cbc,
		},
	},
	{
		.name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_aes_cfb,
			.decrypt	=	hifn_decrypt_aes_cfb,
		},
	},
	{
		.name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
		.ablkcipher = {
			.min_keysize	=	AES_MIN_KEY_SIZE,
			.max_keysize	=	AES_MAX_KEY_SIZE,
			.setkey		=	hifn_setkey,
			.encrypt	=	hifn_encrypt_aes_ofb,
			.decrypt	=	hifn_decrypt_aes_ofb,
		},
	},
};

static int hifn_cra_init(struct crypto_tfm *tfm)
{
	struct crypto_alg *alg = tfm->__crt_alg;
	struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
	struct hifn_context *ctx = crypto_tfm_ctx(tfm);

	ctx->dev = ha->dev;

	return 0;
}

static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
{
	struct hifn_crypto_alg *alg;
	int err;

	alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
	if (!alg)
		return -ENOMEM;

	snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
	snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);

	alg->alg.cra_priority = 300;
	alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
	alg->alg.cra_blocksize = t->bsize;
	alg->alg.cra_ctxsize = sizeof(struct hifn_context);
	alg->alg.cra_alignmask = 15;
	if (t->bsize == 8)
		alg->alg.cra_alignmask = 3;
	alg->alg.cra_type = &crypto_ablkcipher_type;
	alg->alg.cra_module = THIS_MODULE;
	alg->alg.cra_u.ablkcipher = t->ablkcipher;
	alg->alg.cra_init = hifn_cra_init;

	alg->dev = dev;

	list_add_tail(&alg->entry, &dev->alg_list);

	err = crypto_register_alg(&alg->alg);
	if (err) {
		list_del(&alg->entry);
		kfree(alg);
	}

	return err;
}

static void hifn_unregister_alg(struct hifn_device *dev)
{
	struct hifn_crypto_alg *a, *n;

	list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
		list_del(&a->entry);
		crypto_unregister_alg(&a->alg);
		kfree(a);
	}
}

static int hifn_register_alg(struct hifn_device *dev)
{
	int i, err;

	for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
		err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
		if (err)
			goto err_out_exit;
	}

	return 0;

err_out_exit:
	hifn_unregister_alg(dev);
	return err;
}

static void hifn_tasklet_callback(unsigned long data)
{
	struct hifn_device *dev = (struct hifn_device *)data;

	/*
	 * This is ok to call this without lock being held,
	 * althogh it modifies some parameters used in parallel,
	 * (like dev->success), but they are used in process
	 * context or update is atomic (like setting dev->sa[i] to NULL).
	 */
	hifn_check_for_completion(dev, 0);
}

static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int err, i;
	struct hifn_device *dev;
	char name[8];

	err = pci_enable_device(pdev);
	if (err)
		return err;
	pci_set_master(pdev);

	err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
	if (err)
		goto err_out_disable_pci_device;

	snprintf(name, sizeof(name), "hifn%d",
			atomic_inc_return(&hifn_dev_number)-1);

	err = pci_request_regions(pdev, name);
	if (err)
		goto err_out_disable_pci_device;

	if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
	    pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
	    pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
		dprintk("%s: Broken hardware - I/O regions are too small.\n",
				pci_name(pdev));
		err = -ENODEV;
		goto err_out_free_regions;
	}

	dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
			GFP_KERNEL);
	if (!dev) {
		err = -ENOMEM;
		goto err_out_free_regions;
	}

	INIT_LIST_HEAD(&dev->alg_list);

	snprintf(dev->name, sizeof(dev->name), "%s", name);
	spin_lock_init(&dev->lock);

	for (i=0; i<3; ++i) {
		unsigned long addr, size;

		addr = pci_resource_start(pdev, i);
		size = pci_resource_len(pdev, i);

		dev->bar[i] = ioremap_nocache(addr, size);
		if (!dev->bar[i])
			goto err_out_unmap_bars;
	}

	dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
	if (!dev->result_mem) {
		dprintk("Failed to allocate %d pages for result_mem.\n",
				HIFN_MAX_RESULT_ORDER);
		goto err_out_unmap_bars;
	}
	memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));

	dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
			PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);

	dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
			&dev->desc_dma);
	if (!dev->desc_virt) {
		dprintk("Failed to allocate descriptor rings.\n");
		goto err_out_free_result_pages;
	}
	memset(dev->desc_virt, 0, sizeof(struct hifn_dma));

	dev->pdev = pdev;
	dev->irq = pdev->irq;

	for (i=0; i<HIFN_D_RES_RSIZE; ++i)
		dev->sa[i] = NULL;

	pci_set_drvdata(pdev, dev);

	tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);

	crypto_init_queue(&dev->queue, 1);

	err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
	if (err) {
		dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
		dev->irq = 0;
		goto err_out_free_desc;
	}

	err = hifn_start_device(dev);
	if (err)
		goto err_out_free_irq;

	err = hifn_test(dev, 1, 0);
	if (err)
		goto err_out_stop_device;

	err = hifn_register_alg(dev);
	if (err)
		goto err_out_stop_device;

	INIT_DELAYED_WORK(&dev->work, hifn_work);
	schedule_delayed_work(&dev->work, HZ);

	dprintk("HIFN crypto accelerator card at %s has been "
			"successfully registered as %s.\n",
			pci_name(pdev), dev->name);

	return 0;

err_out_stop_device:
	hifn_reset_dma(dev, 1);
	hifn_stop_device(dev);
err_out_free_irq:
	free_irq(dev->irq, dev->name);
	tasklet_kill(&dev->tasklet);
err_out_free_desc:
	pci_free_consistent(pdev, sizeof(struct hifn_dma),
			dev->desc_virt, dev->desc_dma);

err_out_free_result_pages:
	pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
			PCI_DMA_FROMDEVICE);
	free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);

err_out_unmap_bars:
	for (i=0; i<3; ++i)
		if (dev->bar[i])
			iounmap(dev->bar[i]);

err_out_free_regions:
	pci_release_regions(pdev);

err_out_disable_pci_device:
	pci_disable_device(pdev);

	return err;
}

static void hifn_remove(struct pci_dev *pdev)
{
	int i;
	struct hifn_device *dev;

	dev = pci_get_drvdata(pdev);

	if (dev) {
		cancel_delayed_work(&dev->work);
		flush_scheduled_work();

		hifn_unregister_alg(dev);
		hifn_reset_dma(dev, 1);
		hifn_stop_device(dev);

		free_irq(dev->irq, dev->name);
		tasklet_kill(&dev->tasklet);

		hifn_flush(dev);

		pci_free_consistent(pdev, sizeof(struct hifn_dma),
				dev->desc_virt, dev->desc_dma);
		pci_unmap_single(pdev, dev->dst,
				PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
				PCI_DMA_FROMDEVICE);
		free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
		for (i=0; i<3; ++i)
			if (dev->bar[i])
				iounmap(dev->bar[i]);

		kfree(dev);
	}

	pci_release_regions(pdev);
	pci_disable_device(pdev);
}

static struct pci_device_id hifn_pci_tbl[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
	{ PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
	{ 0 }
};
MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);

static struct pci_driver hifn_pci_driver = {
	.name     = "hifn795x",
	.id_table = hifn_pci_tbl,
	.probe    = hifn_probe,
	.remove   = __devexit_p(hifn_remove),
};

static int __devinit hifn_init(void)
{
	unsigned int freq;
	int err;

	if (strncmp(hifn_pll_ref, "ext", 3) &&
	    strncmp(hifn_pll_ref, "pci", 3)) {
		printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
				"must be pci or ext");
		return -EINVAL;
	}

	/*
	 * For the 7955/7956 the reference clock frequency must be in the
	 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
	 * but this chip is currently not supported.
	 */
	if (hifn_pll_ref[3] != '\0') {
		freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
		if (freq < 20 || freq > 100) {
			printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
					"frequency, must be in the range "
					"of 20-100");
			return -EINVAL;
		}
	}

	err = pci_register_driver(&hifn_pci_driver);
	if (err < 0) {
		dprintk("Failed to register PCI driver for %s device.\n",
				hifn_pci_driver.name);
		return -ENODEV;
	}

	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
			"has been successfully registered.\n");

	return 0;
}

static void __devexit hifn_fini(void)
{
	pci_unregister_driver(&hifn_pci_driver);

	printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
			"has been successfully unregistered.\n");
}

module_init(hifn_init);
module_exit(hifn_fini);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");